Computer Vision ECE7/39

Feature Based Alignments and Image
Stitching

By: Dénal Finnerty
Edited by: S. Shirani



Feature Based Alignment




Chapter Contents

2D and 3D feature-based alignment
— 2D alignment using least squares
— |terative algorithms
— Robust least squares and RANSAC
— 3D alignment
* Panography



2D Geometric Translations
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Least Squares Method
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Weighted Least Squares Method
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Linear Least Squares Method

Many transformations have a linear
relationship between the motion and the
unknown parameters:

Ax =x—x"=](x)p

Ers(@) = XillJ(x)p — Ax;'||?
Es(p) =p"Ap —2p'b+c
Minimum is found by solving : Ap=b
- A=Y (x)] (x;)

—b=Y;JT (x;)Ax;



Non-Linear Least Squares Method

With non-linear transformations we use
iterative algorithms to solve for p

We use the parameter Ap to update the
parameters of the transformation.

p<—p+Ap

Enis(Ap) = Xillf (xisp + Ap) — x|
Enis(Ap) = Xl (xi; p)Ap — 1|
Enis(Ap) = ApTAAp — 2Ap"h + ¢

Solve for Ap using (A + Adiag(A))Ap =b
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Robust Least Squares Method

Use an “M-estimator” to reduce the negative
influence of outliers.

ErLs(Ap) = X, p(lIr;1D)
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RAN SA C

RANSAC
fori=1:1:S
1.Randomally select a subset of the data
2.Compute the transformation from this subset
3.Count the number of “inliers”

4.1f the number of “inliers” is “sufficiently”
large recalculate the transformation including
“inliers”.

end
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Problems with RANSAC

* k: the amount of samples initially taken for
the data subset

e p: the probability that a randomly chosen
sample is an “inlier” to its own transform.

e Sthe number of times to iterate RANSAC for a
99% probability of success

3 0.5 35 G log(1—P)

6 0.6 97 " log(1 — p¥)
6 0.5 293
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PROgressive SAmple Concensus
PROSAC

Least Squares Approximation

(@)

(O

Voltage [V]
[/»
l
g3

[y
>

o

0.2 0.4 0.6 0.8 1 1.2
Input [W]

o

1.4



PRO SA C

PROSAC

e The initial subset of
data is chosen in a
“semi-random”

process.

m

Average 106,534
Time 10.76 [s]  0.06 [s]
Min 97,702 5
Max 146,069 29




Panography
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 Three images translated together and averaged
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Panography

Francisco Diez



3D Alignment

e Aligning 3D points instead of 2D features.

* “The biggest difference between 2D and 3D
coordinate transformations is that the
parameterization of the 3D rotation matrix is
not as straightforward.”



Rigid Euclidian Motion in 3D

EuCllde an

X cos@ —sinf t,] [x’
[Y] = [Sine cos 6 ty] [y,
1 0 ) 1 /
p=(tX’ ty,, e)




Rigid Euclidian Motion in 3D

* Translation component can be estimated from
the difference in centroids.
— Orthogonal Procrustes algorithm
Perform a SVD on the corrolation matrix
c=Y;2'2T =uzv?
The Rotation matrix R=UV"
— Absolute Orientation Algorithm
Estimates the Unit quarturnion associated with R

Convert C into a 4x4 matrix and find the
eigenvector associated with the largest

eigenvalue



