Computer Vision ECE739 Feature Based Alignments and Image Stitching

By: Dónal Finnerty

Edited by: S. Shirani

Feature Based Alignment

Chapter Contents

2D and 3D feature-based alignment

- 2D alignment using least squares
- Iterative algorithms
- Robust least squares and RANSAC
- 3D alignment
- Panography

2D Geometric Translations

$$p=(h_{00}, h_{01}, h_{02}, h_{10}, h_{11}, h_{12}, h_{20}, h_{21}, h_{22})$$

Least Squares Method

Weighted Least Squares Method

Linear Least Squares Method

- Many transformations have a linear relationship between the motion and the unknown parameters:
- $\Delta x = x x' = J(x)p$
- $E_{LLS}(p) = \sum_{i} ||J(x_i)p \Delta x_i'||^2$
- $E_{LLS}(p) = p^T A p 2p^T b + c$
- Minimum is found by solving: Ap=b
 - $-A = \sum_{i} J^{T}(x_{i})J(x_{i})$
 - $b = \sum_{i} J^{T}(x_{i}) \Delta x_{i}$

Non-Linear Least Squares Method

- With non-linear transformations we use iterative algorithms to solve for p
- We use the parameter Δp to update the parameters of the transformation.
- $p \leftarrow p + \Delta p$
- $E_{NLS}(\Delta p) = \sum_{i} ||f(x_i; p + \Delta p) x_i'||^2$
- $E_{NLS}(\Delta p) \approx \sum_{i} ||J(x_i; p)\Delta p r_i||^2$
- $E_{NLS}(\Delta p) = \Delta p^T A \Delta p 2 \Delta p^T b + c$
- Solve for Δp using $(A + \lambda diag(A))\Delta p = b$

The Drawback of E_{LS}

The Drawback of E_{LS}

Robust Least Squares Method

- Use an "M-estimator" to reduce the negative influence of outliers.
- $E_{RLS}(\Delta p) = \sum_{i} \rho(||r_i||)$
- $\frac{\partial E_{RLS}(\Delta p)}{\partial p} = \sum_{i} \psi(||r_i||) \frac{\partial ||r_i||}{\partial p} = 0$
- $w(||r_i||) = \frac{\psi(||r_i||)}{r_i} = \frac{\rho'(||r_i||)}{r_i}$
- $E_{IRLS}(\Delta p) = \sum_{i} w(||r_{i}||) ||r_{i}||^{2}$
- $w \leftarrow r \leftarrow p \leftarrow w \leftarrow r \leftarrow p$

for i=1:1:S

- 1. Randomally select a subset of the data
- 2. Compute the transformation from this subset
- 3. Count the number of "inliers"
- 4.If the number of "inliers" is "sufficiently" large recalculate the transformation including "inliers".

end

Problems with RANSAC

- k: the amount of samples initially taken for the data subset
- p: the probability that a randomly chosen sample is an "inlier" to its own transform.
- S the number of times to iterate RANSAC for a 99% probability of success

k	р	S
3	0.5	35
6	0.6	97
6	0.5	293

$$S = \frac{\log(1 - P)}{\log(1 - p^k)}$$

PROgressive SAmple Concensus PROSAC

PROgressive SAmple Concensus PROSAC

PROgressive SAmple Concensus PROSAC

 The initial subset of data is chosen in a "semi-random" process.

Samples	RANSAC	PROSAC
Average	106,534	9
Time	10.76 [s]	0.06 [s]
Min	97,702	5
Max	146,069	29

Panography

Three images translated together and averaged

Panography

3D Alignment

- Aligning 3D points instead of 2D features.
- "The biggest difference between 2D and 3D coordinate transformations is that the parameterization of the 3D rotation matrix is not as straightforward."

Rigid Euclidian Motion in 3D

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
$$p = (t_x, t_y, \theta)$$

Rigid Euclidian Motion in 3D

- Translation component can be estimated from the difference in centroids.
 - Orthogonal Procrustes algorithm
 Perform a SVD on the corrolation matrix

$$C = \sum_{i} \hat{x}' \hat{x}^T = U \Sigma V^T$$

The Rotation matrix $R = UV^T$

Absolute Orientation Algorithm
 Estimates the Unit quarturnion associated with R
 Convert C into a 4x4 matrix and find the eigenvector associated with the largest eigenvalue