Two View Geometry
Chapters 9-12

Multiple View Geometry



Two-view geometry

Epipolar geometry

F-matrix comp.



Three questions:

(i) Correspondence geometry: Given an image point X in
the first view, how does this constrain the position of the

corresponding point X in the second image?

(if) Camera geometry: Given a set of corresponding image

points {x,<>x" }, i=1,...,n, what are the cameras P and P’ for
the two views?

(iii) Scene geometry (structure): Given corresponding image
points x,<>x"; and cameras P, P', what is the position of
(their pre-image) X in space?



The epipolar geometry

epipolar plane 7T
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C,C ,x,x and X are coplanar



The epipolar geometry
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What if only C,C’ ,x are known?



The epipolar geometry

All points on Tt projectonland I’



The epipolar geometry
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The epipolar geometry

epipoles e,e’

= intersection of baseline with image plane

= projection of projection center in other image
= vanishing point of camera motion direction

baseline

an epipolar plane = ;;I'ane containing ”Baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)



Example: converging cameras




Example: parallel image plane
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The fundamental matrix F

Algebraic representation of epipolar geometry

X

we will see that mapping is (singular) correlation
(i.e. projective mapping from points to lines)
represented by the fundamental matrix F



The fundamental matrix F

algebraic derivation

X(\)=P*x +AC (PP =1)
|=P'CxP'P'x e
F=|[¢'| P'P*




The fundamental matrix F

correspondence condition

The fundamental matrix satisfies the condition
that for any pair of corresponding points x<x’ in

the two images T
X" Fx=0

(X’T I'= O)



The fundamental matrix F

F is the unique 3x3 rank 2 matrix that
satisfies x’ TFx=0 for all x«<>x’

(i) Transpose: if F is fundamental matrix for (P,P’), then
FT is fundamental matrix for (P’ ,P)

(ii) Epipolar lines: I’ =Fx & I=FTx’

(iii) Epipoles: on all epipolar lines, thus e’ TFx=0, for all x
thus: e’ TF=0, similarly Fe=0

(iv) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)

(v) F is a correlation, projective mapping from a point x to a
line I’ =Fx



The epipolar line geometry

,I” epipolar lines, k line not through e
then I’ =F[k],] and symmetrically I=FT[k" ], I’

k
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(pick k=€, since e'e#0)

'=Fell  1=F'[e]1



Computing F



Epipolar geometry: basic equation

x'"Fx =0

XX X Y X [+ VX A Y W+ Y s X+ Y+ f53 =0
separate known from unknown
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the singularity constraint

eTF=0 Fe=0 detF=0 rankF=2

SVD from linearly computed F matrix (rank 3)

F=U G, V' =Ugo,V, +U,V, +U,c,V,

F'=U G, V= UlcslVlT + Uzcsz\/zT




the minimum case — 7 point correspondences
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XoXg X5, Xq VaXo Va2V V4

A= U7X7diag(cs1 oy O ,O,O)Vgxg,T
= A[VVo]=0,,
x. (F+AF)x. =0,Vi=1..7

one parameter family of solutions

but F,+IF, not automatically rank 2

ol

x;, y; 1

(e.g.V™V, =[0000000107]")

det(F, +AE,) =a,A’ + a,A> +aA+a, =0 (cubic equation)



the NOT normalized 8-point algorithm

X1X1 V1Xq X1 X1 N M X1 N

XoXo  VopXo  Xop  XpVo  VoVo2 Y2 Xp V2

n YaXn X, X, ¥, YVaVe YVa X, YV,
~10000 ~10000 ~100 ~10000 ~10000 ~100 ~100 ~100

Orders of magnitude difference
Between column of data matrix

Ji
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J13
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J2
Ja3
J31
/32

/33

Therefore, least-squares yields poor results




the normalized 8-point algorithm

Transform image to ~[-1,1]x[-1,1]

Least squares yields good results (Hartley, PAMI"97)



algebraic minimization

possible to iteratively minimize algebraic distance
subject to det F=0 (see book if interested)



Gold standard

Maximum Likelihood Estimation (= least-squares for
Gaussian noise)

Zd(xl., XY +d(x',X.) subjectto X" Fx =0
Initialize: normalized 8-point, (P,P) from F, reconstruct X,

Parameterize:
P=[I1|0],P'=[M| t],Xl.

% =PX,% =P'X

Minimize cost using Levenberg-Marquardt

(overparametrized)

I



Automatic computation of F

(i) Interest points

(i) Putative correspondences
(i) RANSAC

(iv) Non-linear re-estimation of F



Feature points

» Extract feature points to relate images
* Required properties:
* Well-defined
(i.e. neigboring points should all be different)

o Stable across views

(i.e. same 3D point should be extracted
as feature for neighboring viewpoints)



Feature points

Select strongest features (e.g. 1000/image)



Feature matching

Evaluate NCC for all features with
similar coordinates

e.g (¢, y)e b= x+ s Iy 5, v+ 5]




Feature example

=l

0.96 | -040| -0.16| -0.39| 0.19

-0.05( 0.75| -047| 0.51| 0.72

-0.18 | -0.39| 0.73| 0.15| -0.75

-0.27| 0.49| 0.16| 0.79| 0.21

0.08| 0.50| -045| 0.28| 0.99

Gives satisfying results
for small image motions



RANSAC

Step 1. Extract features
Step 2. Compute a set of potential matches

Step 3. do

Step 3.1 select minimal sample (i.e. 7 matches) } (generate
Step 3.2 compute solution(s) for F hypothesis)
Step 3.3 determine inliers (verify hypothesis)

Step 4. Compute F based on all inliers
Step 5. Look for additional matches
Step 6. Refine F based on all correct matches



More problems:

* Absence of sufficient features (no texture)
* Repeated structure ambiguity




linear triangulation

x =PX

X X PX =

3TX
3TX

x(pzTX)

x'=P'X
0
; ITX :0

71X)=0
1X)=0

homogeneous

x| =

Inhomogeneous
(X,Y,Z)])
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geometric error

d(x,X)" +d(x',%'")’ subjectto X" FR =0

or equivalently subject to X = PX and X'=P'X

possibility to compute using LM (for 2 or more points)

or directly (for 2 points)



