Two View Geometry Chapters 9-12

Multiple View Geometry

Two-view geometry

Epipolar geometry

F-matrix comp.

Three questions:

- (i) Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point x' in the second image?
- (ii) Camera geometry: Given a set of corresponding image points $\{x_i \leftrightarrow x_i^i\}$, i=1,...,n, what are the cameras P and P' for the two views?
- (iii) Scene geometry (structure): Given corresponding image points $x_i \leftrightarrow x'_i$ and cameras P, P', what is the position of (their pre-image) X in space?

C,C',x,x' and X are coplanar

What if only C,C',x are known?

All points on π project on 1 and 1'

Family of planes π and lines I and I' Intersection in e and e'

epipoles e,e'

- = intersection of baseline with image plane
- = projection of projection center in other image
- = vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image (always come in corresponding pairs)

Example: converging cameras

Example: parallel image plane

Algebraic representation of epipolar geometry

$$x \mapsto 1'$$

we will see that mapping is (singular) correlation (i.e. projective mapping from points to lines) represented by the fundamental matrix F

algebraic derivation

$$X(\lambda) = P^+ x + \lambda C$$

$$1 = P'C \times P'P^+x$$

$$F = [e']_{k} P' P^{+}$$

$$(P^+P = I)$$

correspondence condition

The fundamental matrix satisfies the condition that for any pair of corresponding points $x \leftrightarrow x'$ in the two images $x'^T \ Fx = 0$

$$(x'^T l'=0)$$

F is the unique 3x3 rank 2 matrix that satisfies x'^TFx=0 for all $x \leftrightarrow x'$

- (i) **Transpose:** if F is fundamental matrix for (P,P'), then F^T is fundamental matrix for (P',P)
- (ii) Epipolar lines: $I' = Fx \& I = F^Tx'$
- (iii) **Epipoles:** on all epipolar lines, thus e' TFx=0, for all x thus: e' TF=0, similarly Fe=0
- (iv) F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)
- (v) F is a correlation, projective mapping from a point x to a line l'=Fx

The epipolar line geometry

I,I' epipolar lines, k line not through e then I'=F[k]_xI and symmetrically I=F^T[k']_xI'

(pick k=e, since $e^Te\neq 0$)

$$1' = F[e]_{*}1$$
 $1 = F^{T}[e']_{*}1'$

Computing F

Epipolar geometry: basic equation

$$x'^T Fx = 0$$

$$x'xf_{11} + x'yf_{12} + x'f_{13} + y'xf_{21} + y'yf_{22} + y'f_{23} + xf_{31} + yf_{32} + f_{33} = 0$$

separate known from unknown

$$\begin{bmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x'_n x_n & x'_n y_n & x'_n & y'_n x_n & y'_n y_n & y'_n & x_n & y_n & 1 \end{bmatrix} f = 0$$

$$Af = 0$$

the singularity constraint

$$e^{T} F = 0$$
 $Fe = 0$ $det F = 0$ $rank F = 2$

SVD from linearly computed F matrix (rank 3)

$$F = U \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix} V^T = U_1 \sigma_1 V_1^T + U_2 \sigma_2 V_2^T + U_3 \sigma_3 V_3^T$$

Compute closest rank-2 approximation $\min \|\mathbf{F} - \mathbf{F}'\|_{F}$

$$F' = U \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ 0 \end{bmatrix} V^T = U_1 \sigma_1 V_1^T + U_2 \sigma_2 V_2^T$$

the minimum case – 7 point correspondences

$$\begin{bmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x'_7 x_7 & x'_7 y_7 & x'_7 & y'_7 x_7 & y'_7 y_7 & y'_7 & x_7 & y_7 & 1 \end{bmatrix} f = 0$$

$$A = U_{7x7} diag(\sigma_1,...,\sigma_7,0,0) V_{9x9}^T$$

$$\Rightarrow$$
 A[V₈V₉]=0_{9x2}

$$(e.g.V^{T}V_{8} = [000000010]^{T})$$

$$\mathbf{x}_{i}^{T}(\mathbf{F}_{1} + \lambda \mathbf{F}_{2})\mathbf{x}_{i} = 0, \forall i = 1...7$$

one parameter family of solutions

but F₁+IF₂ not automatically rank 2

$$\det(\mathbf{F}_1 + \lambda \mathbf{F}_2) = a_3 \lambda^3 + a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \quad \text{(cubic equation)}$$

the NOT normalized 8-point algorithm

$$\begin{bmatrix} x_{1}x_{1}' & y_{1}x_{1}' & x_{1}' & x_{1}y_{1}' & y_{1}y_{1}' & y_{1}' & x_{1} & y_{1} & 1 \\ x_{2}x_{2}' & y_{2}x_{2}' & x_{2}' & x_{2}y_{2}' & y_{2}y_{2}' & y_{2}' & x_{2} & y_{2} & 1 \\ \vdots & \vdots \\ x_{n}x_{n}' & y_{n}x_{n}' & x_{n}y_{n}' & y_{n}y_{n}' & y_{n}' & x_{n} & y_{n} & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix} = 0$$

$$\begin{array}{c} \text{10000} & \sim 10000 & \sim 10000 & \sim 100 & \sim 100 & \sim 100 & 1 \\ \text{Orders of magnitude difference} \\ \text{Between column of data matrix} \\ \end{array}$$

Therefore, least-squares yields poor results

the normalized 8-point algorithm

Transform image to \sim [-1,1]x[-1,1]

Least squares yields good results (Hartley, PAMI'97)

algebraic minimization

possible to iteratively minimize algebraic distance subject to det F=0 (see book if interested)

Gold standard

Maximum Likelihood Estimation (= least-squares for Gaussian noise)

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}'_{i}, \hat{\mathbf{x}}'_{i})^{2} \text{ subject to } \hat{\mathbf{x}}^{\mathsf{T}} \mathbf{F} \hat{\mathbf{x}} = 0$$

Initialize: normalized 8-point, (P,P') from F, reconstruct X_i Parameterize:

$$\begin{split} \mathbf{P} = & [\mathbf{I} \mid \mathbf{0}], \mathbf{P'} = [\mathbf{M} \mid \mathbf{t}], \mathbf{X}_i \\ \hat{\mathbf{x}}_i = & \mathbf{PX}_i, \hat{\mathbf{x}}_i = \mathbf{P'X}_i \end{split} \tag{overparametrized}$$

Minimize cost using Levenberg-Marquardt

Automatic computation of F

- (i) Interest points
- (ii) Putative correspondences
- (iii) RANSAC
- (iv) Non-linear re-estimation of F

Feature points

- Extract feature points to relate images
- Required properties:
 - Well-defined

(i.e. neighboring points should all be different)

Stable across views

(i.e. same 3D point should be extracted as feature for neighboring viewpoints)

Feature points

Select strongest features (e.g. 1000/image)

Feature matching

Evaluate NCC for all features with similar coordinates

e.g.
$$(x', y') \in [x - \frac{w}{10}, x + \frac{w}{10}] \times [y - \frac{h}{10}, y + \frac{h}{10}]$$

Feature example

Gives satisfying results for small image motions

RANSAC

- Step 1. Extract features
- Step 2. Compute a set of potential matches
- Step 3. do

```
Step 3.1 select minimal sample (i.e. 7 matches)
```

Step 3.2 compute solution(s) for F

Step 3.3 determine inliers (verify hypothesis)

(generate hypothesis)

- Step 4. Compute F based on all inliers
- Step 5. Look for additional matches
- Step 6. Refine F based on all correct matches

More problems:

- Absence of sufficient features (no texture)
- Repeated structure ambiguity

linear triangulation

$$x = PX$$
 $x' = P'X$

$$x \times PX = 0$$

$$x(p^{3T}X) - (p^{1T}X) = 0$$

$$y(p^{3T}X) - (p^{2T}X) = 0$$

$$x(p^{2T}X) - y(p^{1T}X) = 0$$

$$AX = 0$$

$$A = \begin{bmatrix} xp^{3T} - p^{1T} \\ yp^{3T} - p^{2T} \\ x'p'^{3T} - p'^{1T} \\ y'p'^{3T} - p'^{2T} \end{bmatrix}$$

homogeneous

$$||X|| = 1$$

inhomogeneous

geometric error

 $d(\mathbf{x}, \hat{\mathbf{x}})^2 + d(\mathbf{x}', \hat{\mathbf{x}}')^2$ subject to $\hat{\mathbf{x}}'^T F \hat{\mathbf{x}} = 0$ or equivalently subject to $\hat{\mathbf{x}} = P \hat{\mathbf{X}}$ and $\hat{\mathbf{x}}' = P' \hat{\mathbf{X}}$

possibility to compute using LM (for 2 or more points) or directly (for 2 points)