Pattern Recognition
and Machine Learning

Chapter 4: Linear Models for Classification




Representing the target values for classification

* If there are only two classes, we typically use a single real
valued output that has target values of 1 for the “positive”
class and O (or sometimes -1) for the other class

* For probabilistic class labels the output of the model can
represent the probability the model gives to the positive
class.

* If there are N classes we often use a vector of N target
values containing a single 1 for the correct class and zeros
elsewhere.

* For probabilistic labels we can then use a vector of class
probabilities as the target vector.




Three approaches to classification

* Use discriminant functions directly without probabilities:

* Convert the input vector into one or more real values
so that a simple operation (like threshholding) can be
applied to get the class.

* Infer conditional class probabilities: p(class=C; |x)
e Then make a decision that minimizes some loss function

 Compare the probability of the input under separate,
class-specific, generative models.

e E.g. fit a multivariate Gaussian to the input vectors of
each class and see which Gaussian makes a test data
vector most probable.




Discriminant functions

y >0 T2 The planar decision surface
Y = In data-space for the simple

linear discriminant function:




Discriminant functions for N>2 classes

* One possibility is to use N two-way
discriminant functions.

e Each function discriminates one class from the rest.

* Another possibility is to use N(N-1)/2 two-
way discriminant functions

 Each function discriminates between two particular
classes.

 Both these methods have problems




Problems with multi-class discriminant functions




A simple solution

 Use K discriminant

functions, y;, ¥, yy ... Ky
and pick the max. R,
— This is guaranteed to
give consistent and R
convex decision
regions if y is linear. Xpo—"" 3%

Vi(x4)>y;(xy) and y,(xp)>y;(Xp)
implies (for positive &) that

nlax +1-a) XB)>yj(aXA +(1- o) xp)



Using “least squares” for classification

This is not the right thing to do and it doesn’ t work as well
as other methods (we will see later), but it is easy.

It reduces classification to least squares regression.

We already know how to do regression. We can just solve
for the optimal weights with some matrix algebra.




Least squares for classification

yk(x) — ng + Wko — y(x) = WTx
{Xn,tn}

The sum-of-squares error function:

nth row of matrix T is t7_

Bp(W) = ;Tr {(XW - T)"(XW - T)}.

W = (XTX)"'XTT =XIT

o~ — T
y(x)= WTx = TT (Xf) X,




Problems with using least squares for

classification logistic
/regression

I

least squares
regression

If the right answer is 1 and

the model says 1.5, it loses,
so it changes the boundary
to avoid being “too correct”



Another example where least squares
regression gives poor decision surfaces




Fisher’ s linear discriminant

 Asimple linear discriminant function is a projection of the
data down to 1-D.

* So choose the projection that gives the best separation of
the classes. What do we mean by “best separation”?

e An obvious direction to choose is the direction of the line
joining the class means.

e Butif the main direction of variance in each class is not
orthogonal to this line, this will not give good separation.

e Fisher’ s method chooses the direction that maximizes the
ratio of between class variance to within class variance.

* Thisis the direction in which the projected points contain
the most information about class membership (under
Gaussian assumptions)




Fisher s linear discriminant

The two-class linear discriminant acts as a projection:

y=wrx

followed by a threshold y > —wy
In which direction w should we project?

I”

One which separates classes “wel

Intuition: We want the (projected) centers of the
classes to be far apart, and each class (projection) to
be clustered around its centre.




Fisher s linear discriminant

A natural idea would be to project in the
direction of the line connecting class means

However, problematic if classes have variance
in this direction (ie are not clustered around
the mean)

Fisher criterion: maximize ratio of inter-class

separation (between) to intra-class variance
(inside)




A picture showing the advantage of Fisher s
linear discriminant.

When projected onto the Fisher chooses a direction that
line joining the class means, makes the projected classes much
the classes are not well tighter, even though their projected

separated. means are less far apart.



Math of Fisher’ s linear discriminants

What linear transformation is best for Y= WTX
discrimination?
The projection onto the vector separating
the class means seems sensible.
But we also want small variance within Slz = Z (y, —my)
each class: neC,
2 _
Sy = E(yn _mZ)
n€C2

2
(m2 — ml) «— between
Fisher’ s objective function is: J(W) - 2 2
S +85 <« within




More math of Fisher s linear discriminants

2 T
(my —my) WS pw

JW) = —5——— = —
Sl +S2 W SWW

Sp=(m, —m;) (m, _ml)T

Sy =Y (x,—m)) (x,—m)" + > (x,-m,)(x,—m,)"

ne Cl neC 2

Optimal solution: W o< S;V1 (m, —m,)




Probabilistic Generative Models

Model the class-conditional densities »(x|Cx) and class prior

p(Cr)
Use Bayes’ theorem to compute posterior probabilities p(Cj,|x)

p(Ci]x) = p(x|Cy)p(Cy)
p(x[C1)p(Cy) + p(x|C2)p(Cz)
1
T + exp(—a) = o(a)
a = In p(chl)p(cl) J(a,) 1

p(x|Co)p(Cs)




Logistic Sigmoid Function




Probabilistic Generative Models (k class)

* Beyes’ theorem
p(x[Cr)p(Cr)
> 2x|C;)p(C5)

exp(a,)

E;; exp(a;)

piCrlx) =

o = In p(x|Cp)p(Cr).

* if a, > a;for all j # k, then p(Ci|x) =1, and p(Cj |x)= 0.




Continuous inputs

Model the class-conditional densities

1 1 1 N
I = 5o g o |~ ) S k) |

Here, all classes share the same covariance matrix.

Two-classes Problem
p(Ci|x) = o(wTlx 4+ wp)

W= BTy - p)
LK ! | — p(C1)
= —— 3 — 5 3] 1 .
Wo o M1 py + oMz o + np(Cg)




Two-Classes Problem

p(x|Cy)p(Cy)

p(x[C1)p(Cy1) + p(x|C2)p(Cs)
1

~ ltexp(-a) 7(@)

p(Cilx) =

p(Cifx)




The posterior when the covariance matrices are
different for different classes.
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The decision surface is planar
when the covariance matrices
are the same and quadratic
when they are not.



Maximum likelihood solution

® The likelihood function:

Pl piy, 12, ) = [ [ N oo, D)™ (1= 1N Gz, B) 7

n=1

N
1 N, N
”_F;tn_N_NIJrNQ

1 < 1
_ . 1—+¢,
Hy N, ;tnxn Mo N, ;( )Xn,
e Shared covariance matrix:
N; 1 N> 1
3 = WIV] (xn_l"’l)(xn_”l)T‘f‘Wﬁz E :(xl’l_l"'z)(x"l_l"’Z)T

neCy neC,



Maximum likelihood solution

Note that the approach of fitting Gaussian
distributions to the classes is not robust to
outliers, because the maximum likelihood

estimation of a Gaussian is not robust.




Discrete features

When T; € {0,1}

The class-conditional distributions:

D
p(x|Cx) = | | wa(1 — paws)*
=1

Linear functions of the input values:

ap(x) = Z {zi Inpu; + (1 — ) In(1 — pus) } + Inp(Cy)

i=1




Probabilistic Discriminative Models

What 1s 1t?

It means to use the functional form of the generalized linear
probabilistic model explicitly, and to determine its parameters
directly p(Cr|x)

The difference from Discriminant Functions, and
Probabilistic Generative Models
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Fixed Basis Functions
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Space transformation by nonlinear function ¢(x)
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Logistic Regression
e To reduce the complexity of probabilistic models, the
logistic sigmoid o(-) is introduced
p(Ci]9) =y(p) =0 (W' )

— For Gaussian class conditional densities:
M(M+5)/2+1 parameters
— Logistic Regression:

M parameters
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p(tlw) =

The Likelihood

Iyt {1 —y, 't
Yn — (Cl‘¢n)
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The Gradient of the Log Likelihood

e FError function:

N
E(W) - hlp(t|W) - = Z {tn. Iny, + (1 —tn) hl(l — yn)}

n=1

e (Gradient of the Error function
N

VE(W) S Z(y-n - ZL'n)(f)n.

n=1
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Iterative Reweighted Least Squares

* Newton-Raphson

W(new) _ W(old) . H_1VE<W)

 H is the Hessian Matrix
H=VVE(w)
H=®'R®

* R 1s an NxN diagonal matrix with elements:
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Iterative Reweighted Least Squares

* The Newton-Raphson update takes this form:

W(uew) _ W(old) . ((I’TR(I’)_lq)T(y o t)
— (8"R®) {3"REWC — 3 (y — 1)}
= (2'R®) '®'Rz

z = dwld R 1(y —t)
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Multiclass Logistic Regression

* Generative models (discussed 1n section 4.2)

exp(ag)

p(Ck|@) = yr(¢p) = > expla;)

where ap — W;crﬁb
e Using the maximum likelihood to determine the
parameters directly

Ik T — s
aaj yk( kj ?JJ)
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Multiclass Logistic Regression

e Maximum likelihood method

N K N K
p(Twy, ..., wi) = | [ [T pCele) ™ =TT [ [vin

n=1 k=1 n=1k=1

N K

E(wy,...,wg)=—Inp(T|wy,...,Wg) = — Z Zt"’“ In vk
n=1 k=1
N
ij E(Wls cee aWK'> — Z (y'n.j — tnj) ¢n
n=1

e Using IRLS algorithm to do the w updating work
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