PATTERN RECOGNITION

ano MACHINE LEARNING
CHAPTER 3: LINEAR MODELS FOR REGRESSION




Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

0 1

y(z, w) — wo + w1z + wox® + ... +wy™ = ijazj




Linear Basis Function Models (2)

Generally
M—1

w; (X WTCb(X)

7=0
Where ¢,(x) are known as basis functions.

Typically, ¢o(x), so that wy acts as a bias.

In the simplest case, we use linear basis
functions : ®a(X)= xg4.




Linear Basis Function Models (3)

Polynomial basis functions:

¢j(x) = .

These are global; a small
change in X affect all basis
functions.




Linear Basis Function Models (4)

Gaussian basis functions:

by (2) = exp { - 1L

252

These are local; a small change
in X only affect nearby basis
functions.u;and s control
location and scale (width).
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Linear Basis Function Models (5)

Sigmoidal basis functions:

¢j(z) =0 (x _S'uj>

where

o(a)

1
- 1+exp(—a)

Also these are local; a small
change in X only affect nearby
basis functions./tjand S
control location and scale
(slope).
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Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function
with added Gaussian noise:

t=y(x,w)+e where p(elf) = N(E‘Oaﬁ_l)
which is the same as saying,
p(tlx, w, 3) = N(tly(x,w), 671).

Given observed inputs, X = {x1,...,xn}, and targets,
t = [t1,...,tn]" We obtain the likelihood function

p(t| X, w, §) = HN th|lWi(x,),571).




Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

N
Inp(tiw, 8) = > InN(ta|w e(x,),57")
n=1

_ % In g3 — gln(%) — BED(w)
where

1 N

Ep(w) =5 ) {ta =W ¢(xn)}’

n=1

is the sum-of-squares error.




Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

Vw Inp(tlw,3) = 0 Z {tn — WT¢(Xn)} Cb(xn)T = 0.

SOIVing fOr W’ WE get ! The Moore-Penrose
' T —1 T| pseudo-inverse, 3
“mm::<@ @) Pt

where
( do(x1) d1(x1) -+ dm—1(x1) \
Po(x2) P1(x2) -+ Pm—1(x2)

\ dolxn) di(xn) - duro1(xn)




Maximum Likelihood and Least Squares (4)

Maximizing with respect to the bias, wg, alone, we
see that 1

Wy = f—ijgb_j

We can also maximize with respect to 3, giving

Z{t — Wy (xn)




Geometry of Least Squares

Consider
y =®PwyL = [@1,- -, @] WML
yeSCT te7T

T\ ,tN—dimensionaI

M-dimensional

Sis spanned by ¢1,...,¢u.

Wy minimizes the distance

between t and its orthogonal
projectionon S, i.e. .




Sequential Learning

Data items considered one at a time (a.k.a.
online learning); use stochastic (sequential)

gradient descent:

wi ) = w _pVE,
= w4 (tn — W(T)Tqb(xn))qb(xn).

This is known as the least-mean-squares (LMS)
algorithm. Issue: how to choose 1 ?




Regularized Least Squares (1)

Consider the error function:
ED(W) + )\Ew<W)

Data term + Regularization term

With the sum-of-squares error function and a
guadratic regularizer we get

A
—Z{t —who(x,)} + §WTW
\is called the
which is minimized by regularization
coefficient.

—1
W — ()\I n <I>T<I>> Tt




Regularized Least Squares (2)

With a more general regularizer, we have

—Z{t — W (xa)} + Z\wg\q




Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a
quadratic
regularizer.
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Multiple Outputs (1)

Analogously to the single output case we have:

p(tIx,W,5) = N(t|ly(W,x),3'I)
= N@t|W'e(x),57').

Given observed inputs, X = {x1,...,xn}, and targets,
T = [t1,...,tn]) we obtain the log likelihood function

N
np(TIX,W,5) = > InN(to|W d(x,), 57'T)
n=1

NK 3
= g %) B 5; [0 — W )]




Multiple Outputs (2)

Maximizing with respect to W, we obtain
Wit = (@T@)_l 7T
If we consider a single target variable, t,, we see that
Wi = (<I>T<I>)_1 3Ty, = d't,

where t. = [tix,-..,tnk] -, Which is identical with the
single output case.




The Bias-Variance Decomposition (1)

Recall the expected squared loss,

/{y x)} p(x dx—l—//{h ) — t}2p(x, t)dxdt

where Lo |
h(x) = E[t|x] = /tp(t|x) dt. o

The second term of E[L] corresponds to the noise
inherent in the random variable t.

What about the first term?




The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of
size N. Any particular data set, D, will give a

particular function y(Xx;D). We then have

{y(x; D) — h(x)}*
{y(x; D) — Eply(x; D)] + Eply(x; D)] — h(x)}

= {y(xD) — Eply(x; D)]}* + {Eply(x; D)] — h(x)
+2{y(; D) = Eply(x; D) HEp [y(x; D)] — h(x) ]

}2




The Bias-Variance Decomposition (3)

Taking the expectation over D yields

Ep [{y(x; D) — h(x)}’]
= {Enly(x D) — h(x)}" +Ep [{y(x D) —Enly(x D))}’ .

7/

"

(bias)? variance




The Bias-Variance Decomposition (4)

Thus we can write

expected loss = (bias)? 4 variance + noise

where
(bias)? = /{ED x; D) x) }°p(x) dx
variance = /ED {y(x; D) — Ep[y(x; D)]}?] p(x) dx

noise = / / {h(x) — t}*p(x,t) dx dt




The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, ..

In\A=26




The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, ..




The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, A .
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The Bias-Variance Trade-off

From these plots, we note  0.15
that an over-regularized 0121
model (large )\) will have a
high bias, while an under-
regularized model (small \) 0.06¢
will have a high variance.

(bias)?
var 1ance

(blas) + Varlance
test error
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Bayesian Linear Regression (1)

Define a conjugate prior over w
p(w) = N(w|myg, Sp).

Combining this with the likelihood function and using
results for marginal and conditional Gaussian
distributions, gives the posterior

p(w|t) = N(w|/my,Sy)
where
my = Sy (Salmo—l—ﬁ@Tt)
Sy = S;l+pele.




Bayesian Linear Regression (2)

A common choice for the prior is
p(w) = N(w|0,a7'T)
for which
my = [Sy®'t
Sy ol + o' ®.

Next we consider an example ...




Bayesian Linear Regression (3)

0 data points observed

Prior Data Space




Bayesian Linear Regression (4)

1 data point observed

Likelihood Posterior Data Space




Bayesian Linear Regression (5)

2 data points observed

Likelihood Posterior Data Space




Bayesian Linear Regression (6)

20 data points observed

Likelihood Posterior Data Space




Predictive Distribution (1)

Predict t for new values of X by integrating
over W:

p(tlt, o, B) = / p(tlw, B)p(wlt, a, B) dw
—  N(tm5é(x), 0% (x))

where

% L $(x) Sy (x).
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Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions,
1 data point

i‘ i fﬁi !
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Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions,
2 data points




Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points




Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions,
25 data points




Equivalent Kernel (1)

The predictive mean can be written

y(Xv mN)

mNCb( ) = Bop(x)"SyP 't

Zﬁqﬁ Tqub (%0 )t

(Q—\

Zk (%, x5, )t
n=1

Equivalent kernel or
smoother matrix.

This is a weighted sum of the training data

target values, t,,.




Equivalent Kernel (2)

e T \
X X X

Weight of t, depends on distance between X and X;
nearby X, carry more weight.




Equivalent Kernel (3)

Non-local basis functions have local equivalent
kernels:

0.04 | 0.04 t

0.02 | 0.02 |

-1 0 1 -1 0 1
Polynomial Sigmoidal




Equivalent Kernel (4)

The kernel as a covariance function: consider

covly(x),y(x")] = COV[Cb(X) (X,>]
= ¢(x)'Sy ¢( ) B k(x,x).

We can avoid the use of basis functions and
define the kernel function directly, leading to
Gaussian Processes (Chapter 6).




Equivalent Kernel (5)

N

Z k(x,x,) =1

n=1
for all values of X; however, the equivalent kernel
may be negative for some values of X.

Like all kernel functions, the equivalent kernel can be
expressed as an inner product:

k(x,2) = ¢(x) P(z)

where ¥(x) = /282 p(x).




Bayesian Model Comparison (1)

How do we choose the ‘right’ model?
Assume we want to compare models M, 1=1, ...,L,
using data D; this requires computing

p(M;|D) o< p(M;)p(DIM;).

Posterior Prior Model evidence or
marginal likelihood

Bayes Factor: ratio of evidence for two models
p(DIM;)
p(DIM;)




Bayesian Model Comparison (2)

Having computed p(M;|D), we can compute
the predictive (mixture) distribution

L
p(t|x, D) = Zp(t‘xa M, D)p(M;|D).
i—1

A simpler approximation, known as model
selection, is to use the model with the highest
evidence.




Bayesian Model Comparison (3)

For a model with parameters w, we get the
model evidence by marginalizing over w

p(D|M;) = /p(D|W,M¢>p(W|M7;)dW.
!
Note that

p(D|M;)
T

p(w|D, M) = 2




Bayesian Model Comparison (4)

For a given model with a

single parameter, w, con- AWposterior
sider the approximation 'f—\.

p(D) = / p(Dlw)p(w) dw

A'wposterior

~ p(D|lwmap)

A/wprior /
where the posterior is j

assumed to be sharply < .
peaked. AWprior

o\

WMAP w




Bayesian Model Comparison (5)

Taking logarithms, we obtain

A osterior
In p(D) ~ In p(D|wmap) + In ( “post ) .

Aprrior
Y

Negative

With M parameters, all assumed to have the same
ratio Au)posterior/Aprriorr we get

Inp(D) ~ Inp(D|wnmap) + M In (

\

Negative and linear in M.




Bayesian Model Comparison (6)

Matching data and model complexity

p(D)




The Evidence Approximation (1)

The fully Bayesian predictive distribution is given by
p(t) = [ [ [ pltiw. Bp(wlt, o pa Blt) dwdads
but this integral is intractable. Approximate with

p(t[t) zp(t]t, a, B) _ /p(uwﬁ)p(wu, &, B) dw

where(@, 3) is the mode of p(a, 8|t), which is assumed to
be sharply peaked; a.k.a. empirical Bayes, type Il or gene-

ralized maximum likelihood, or evidence approximation.




The Evidence Approximation (2)

From Bayes’ theorem we have
p(a, BJt) o p(ta, B)p(a, B)
and if we assume p(a,[3) to be flat we see that
pa, Blt) o p(tle, B)
— [ pltiw, Bp(wla) dw.

General results for Gaussian integrals give

M N 1 N
Inp(tja, ) = > Ina + 5} Ing — E(my) + 5 In |[Sn| — 5} In(27).




The Evidence Approximation (3)

Example: sinusoidal data, Mt degree polynomial,
a=>5x10""

—18 7t




Maximizing the Evidence Function (1)

To maximise Inp(t|a, 5) w.r.t. a and 3, we define the
eigenvector equation

(6<I>T<I>) u; = \;u;.

Thus
A=Sy' =al+32'®

has eigenvalues o+A;.




Maximizing the Evidence Function (2)

We can now differentiate Inp(t|a, 8) w.r.t. a and B,
and set the results to zero, to get

where

N.B. ° depends on both ® and .




Effective Number of Parameters (3)

u
24 Likelihood
VVMLl \ ﬁ1
*WaAP /
>

M <L«
w1 is not well

determined by the
likelihood

Ao > «
w2 is well determined
by the likelihood

Y is the number of well
determined parameters




Effective Number of Parameters (2)

Example: sinusoidal data, 9 Gaussian basis functions,
B=11.1.




Effective Number of Parameters (3)

Example: sinusoidal data, 9 Gaussian basis functions,
B=11.1.

Test set error

In o




Effective Number of Parameters (4)

Example: sinusoidal data, 9 Gaussian basis functions,
B=11.1.




Effective Number of Parameters (5)

In the limit NV > M, Y=M and we can consider using
the easy-to-compute approximation

M

T

1 ] T 2
B = N Z {tn - qub(xn)} :
n=1

a =




Limitations of Fixed Basis Functions

* M basis function along each dimension of a
D-dimensional input space requires MP
basis functions: the curse of dimensionality.

* |n later chapters, we shall see how we can
get away with fewer basis functions, by
choosing these using the training data.




