Pattern Recognition
and IMachine Learning

Chapter 6: Kernel Methods




Polynomial regression
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Figure 1.4 Plots of polynomials having various orders A, shown as red curves, fitted to the data set shown in
Figure 1.2.



K-Nearest Neighbour

Figure 227 (a) In the K-nearest- 1,

neighbour classifier, a new point,
shown by the black diamond, is clas-
sified according to the majority class
membership of the K closest train-
ing data points, in this case K =
3. (b) In the nearest-neighbour
(K = 1) approach to classification,
the resulting decision boundary is
composed of hyperplanes that form

perpendicular bisectors of pairs of
points from different classes.
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Kernel Methods

 Are used to find and study general types of relations (eg.

Clustering, correlation, classification) in general types of data
(vectors, images, sets).

* For nonlinear feature space mapping ¢(x), the kernel function

IS given as o T
k(x,x') = @(x) @(x).



Kernel Methods

Kernel Trick (Kernel Substitution) :- If the input vector enters
in the form of scalar product, then the scalar product can be
replaced by some other kernel functions .

T,/

Linear Kernels: L'(X.X,) =
Stationary Kernels: /{(X. X/:) = A(X - X/)

Homogeneous Kernels : /\(X X HX X H



Dual Representations

* Consider linear regression model whose regularized sum-of-
squares error function 1s given by

N
L 1 < . 2 A _
J(w) =3 E {wh(xn) —ta}” +5w'w where A 2> 0.

n—1

* Minimizing with respect to w,

.'\‘. .'\‘.
1 . .
W = —X Z {W'T(»,i")(.xn, ) — iy (»‘J)(Xn ) — Z (L,,(_,.")(.X” ) = ‘I)Ta
n=1 n=1
where @ 1s the design matrix , whose nth row is given by ¢(x,)".

1 o

an = _T {W.T(f")(‘xu ) — 2Ln} .
/

a= ‘:(l-lq voey AN )T



Dual Representations

Substituting W= d'a into J (W)

1 A
J(a) = anlan«IHI)Ta—anI"I)TtJr tTt+ aT<I><I>Ta

where t = (¢4,..., tn)T.

Define Gram Matrix K =®®"' which is an N x N symmetric
matrix with elements

- o NT N 1 \
K nm — Q"(\Xn, ) P X ) = A(..an Xm )

Re-writing the sum-of-squares error using the Gram Matrix

1

. 1
J(a) = aTI&I&a aTI&t+—tT

A
t+ - aTI&a



Dual Representations

Minimizing .J(a) with respect to a , and solving
a=(K+\y) 't

Substituting back to the original linear regression model

y(x) = wlp(x) = aT®p(x) = k(x)" (K + ALy) "'t

Note that vector a is computed by inverting N x N matrix.

oolX1) o1(x1) o om-1(Xy)

oo(X2) o1(Xa) - On-1(Xy)
$= | .

Compare:  wy, = (2"®)" &"t

lsy) o) o dalxy) )



Dual Representations

* Even though the dual formulation requires higher dimensions ,
it comes with some advantages.

— We can see that y(x) 1s expressed entirely in terms of the kernel
functions.

— This allows us to work with feature spaces of higher dimension, even
with infinite dimensionality.



Constructing Kernels

» First Approach: Select the feature space mapping ¢(x) and use
it to construct the corresponding kernel.

M
k(z, T’ ) = (x ‘)T(_;")(‘ 1! ) = Z oi(x) i .l")

1=1

* Examples of basis function:

— Polynomial: Oilx) =27
, (vlf — IU])Q
— Gaussian: ¢5(x) = exp {_ 242

— Sigmoid: b;(x) =0 ('1' - ﬂj)




Constructing Kernels
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Figure 6.1 lllustration of the construction of kernel functions starting from a corresponding set of basis func-
tions. In each column the lower plot shows the kernel function k(z, =') defined by (6.10) plotted as a function of
x for ' = 0, while the upper plot shows the corresponding basis functions given by polynomials (left column),
‘Gaussians’ (centre column), and logistic sigmoids (right column).



Constructing Kernels

* Second Approach: Construct kernel functions directly. We
need to make sure that we are selecting a valid kernel.

 Valid Kernels: kernels who has a Gram Matrix whose
components are positive semi-definite for all possible choices
of input data.




Constructing Kernels

h

Consider a simple example:  k(x,z) = (x"z) .

Considering a 2D input space

I{(X, Z) = (XTZ) — (;17131 + ;1723‘))

New complex Kernels can also be reconstructed by using
simpler kernels as building blocks.



Techniques for Constructing New Kernels.

Given valid kernels &y (x,x") and ko(x,x"), the following new kernels will also
be valid:

k(x,x") = cki(x,x") (6.13)
E(x,x") = f(x)ki(x,x")f(x") (6.14)
E(x,x") = q(ki(x,x")) (6.15)
k(x,x") = exp(ki(x,x)) (6.16)
E(x,x") = ki(x.x")+ ka(x,x") (6.17)
k(x,x") = ki(x,x")ka(x,x") (6.18)
k(x,x") = ks(p(x),d(x)) (6.19)
E(x,x') = xVTAX (6.20)
k(x,x") = ko(Xa, X))+ kp(xp.X3) (6.21)
k(x,x") = ko(Xa, X, )kp(xp,X}) (6.22)

where ¢ > Ois aconstant, f(-) is any function, ¢(-) 1s a polynomial with nonneg-
ative coefficients, ¢»(x) is a function from x to RM | ks(-,-) is a valid kernel in
RM | A is a symmetric positive semidefinite matrix, X, and x; are variables (not
necessarily disjoint) with X = (x,, X3 ), and k, and kj are valid kernel functions
over their respective spaces.



Constructing Kernels

* (Gaussian Kernels

k(x,x') = exp (—|x — x[|*/207)

Taking the mner part:

Ix —x'|I* = x"x + (x) "% - 2x"x

\

T

k(x,x') = exp (—x"x/20°) exp (x"x'/0*) exp (-(x') 'x'/20°)

Substituting kernel

k(x,x") = exp {— — (k(x,x) + r(x', x') - 2rf(x.x’))} .
UH

—



Linear Regression Revisited

Consider

y(x) = w'p(x)

Taking prior distribution over w

p(w) = N (wl|0,a 1)
Note that this induces a probability distribution over function
y(%).

In terms of vector representation
y=>ow



Linear Regression Revisited

* Note that since y 1s a linear combination of Gaussian
distributed values w, and hence it 1s also a Gaussian distributed.

Ely] = ®Ew] =0
covly] = E|yy"| = ®E [ww']| &' = LT oK

(@
 where K 1s the Gram matrix with elements
1 ‘
[\'n.m — LT(X'II b XNI) — _(f)(xn )T(rf)(xm)

¥

* Definition: A Gaussian process 1s defined as a probability
distribution over functions v(x) evaluated at an arbitrary set of
points Xi,.. .. XN jointly have a Gaussian distribution.



Linear Regression Revisited

* Note that the joint distribution of Gaussian process can be
completely specified by the mean and covariance.

 Note also that the covariance can be evaluated from the kernel
function.

E [@/(Xn, )Z/(Xm )] — /‘7(X-n s Xm ) .

 Taking the Gaussian and exponential kernel functions, for
example, samples are drawn.

k(x,x') = exp (—[x — x[|*/20?) k(z,2") = exp (=0 |z — 2’|



Linear Regression Revisited

Figure 6.4 Samples from Gaus- 3 . 3
sian processes for a ‘Gaussian’ ker- ) :
nel (left) and an exponential kernel

(right).




Gaussian processes for regression

Considering noise on the observed target

tn = UYn + €n
Considering Gaussian noise
])( tn | Yy n.) — ~""\""(f'n. ‘y ns 3_ 1)
For independent noise, the joint distribution is given by
p(tly) = N(tly, 7' Iy)
Using the Gaussian process

p(y) = N(y]0.K).

Marginalizing the probability
pt) = [ ptly)n(y)dy = N (.



Gaussian processes for regression

* Where C 1s the covariance matrix given as
~ ‘ _l -
C (an Xm ) =k (_an Xm ) + 3 ()nm-

 Note the summation of the covariance.
* Widely used Kernel function

6

- 1 2 0. T
AT(X-n. XTTL ) — HO eXI) {_7 Hx-n - XIT[. H } + _92 + _HBXannl.



(1.00, 4.00, 0.00, 0.00) (9.00, 4.00, 0.00, 0.00) (1.00, 64.00, 0.00, 0.00)

3 9 3
1.5 1.5}
0 0
-1.5} -1.5¢
-3 —_ -9 —_ -3 —_
-1 =05 0 0.5 1 -1 =035 0 0.5 1 -1 =035 0 0.5 |
(1.00,0.25, 0.00, 0.00) (1.00, 4.00, 10.00, 0.00) (1.00, 4.00, 0.00, 5.00)
3 : : : 0 : : : 4 : : :
1.5} I a5} : 2t
/
~15} | 45} T
\_______—-—/ \——-—_-—_/-\’
-3 _ -9 T — 4 —
-1 =05 0 0.5 1 -1 =035 0 0.5 1 -1 =035 0 0.5 |

Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above
each plot denotes (6n. 61.65.63).



Gaussian processes for regression

Figure 6.6 lllustration of the sampling of data
points {t, } from a Gaussian process.
The blue curve shows a sample func- ®
tion from the Gaussian process prior
over functions, and the red points
show the values of y, obtained by 1
evaluating the function at a set of in-
put values {z,}. The correspond-
ing values of {t,}, shown in green,
are obtained by adding independent
Gaussian noise to each of the {y, }.




Gaussian processes for regression

Goal of regression: predict P(tn+1[ty)
Using the joint distribution
])(.t.,.‘\:’_|_1 ) — -""\"I’(.t.-’\"’—l—l |0. (jf\f—{—l ) p (tN_I_ 1 | t)

Partitioning the covariance

Cy k
CjN_H - ( k% C )

K has elements #(X.».Xn+1) and ¢ is given as
¢ = k(XN41,XN41) + 571

p(tn+1|t) is Gaussian with mean and covariance given by
m(xng1) = k' Cy't

o?(xny1) = c—k'Cy'k



Gaussian processes for regression

* Note that the mean and covariance are dependent on the term
k which 1s dependent on the mpuxy_,

* Note also that the additional kernel matrix should be a valid
kernel.

 The Gaussian process viewpoint is advantageous in that we
can consider covariance functions that can be expressed in
terms of an infinite number of basis functions.



Gaussian processes for regression

Figure 6.7 lllustration of the mechanism of
Gaussian process regression for
the case of one training point and
one test point, in which the red el-
lipses show contours of the joint dis-
tribution p(t1,t2). Here t, is the
training data point, and condition-

ing on the value of t,, correspond-
ing to the vertical blue line, we ob-
tain p(¢2[t1) shown as a function of

t2 by the green curve.




Gaussian processes for regression

Figure 6.8 lllustration of Gaussian process re-
gression applied to the sinusoidal
data set in Figure A.6 in whichthe 1} (0]
three right-most data points have
been omitted. The green curve (51|
shows the sinusoidal function from 0
which the data points, shown in 0\ ©
blue, are obtained by sampling and Ui
addition of Gaussian noise. The
red line shows the mean of the (5}
Gaussian process predictive distri-
bution, and the shaded region cor-
responds to plus and minus two
standard deviations. Notice how . . : : . .
the uncertainty increases in the re- 0 02 04 0.6 0.8 I
gion to the right of the data points.




