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Polynomial	  regression	  



K-‐Nearest	  Neighbour	  



Kernel	  Methods	  
•  Are	   used	   to	   find	   and	   study	   general	   types	   of	   rela;ons	   (eg.	  

Clustering,	  correla;on,	  	  classifica;on)	  in	  general	  types	  of	  data	  
(vectors,	  images,	  sets).	  

•  For	  nonlinear	  feature	  space	  mapping	  	  	  	  	  	  	  	  ,	  the	  kernel	  func;on	  
is	  given	  as	  	  



Kernel	  Methods	  
•  Kernel	  Trick	  (Kernel	  Subs;tu;on)	  :-‐	   If	  the	  input	  vector	  enters	  

in	  the	  form	  of	  scalar	  product,	  then	  the	  scalar	  product	  can	  be	  
replaced	  by	  some	  other	  kernel	  func;ons	  .	  

•  Linear	  Kernels:	  	  

•  Sta;onary	  Kernels:	  

•  Homogeneous	  Kernels	  :	  



Dual	  Representa;ons	  
•  Consider linear regression model whose regularized sum-of-

squares error function is given by  

•  Minimizing with respect to  w, 

 
 where Φ is the design matrix , whose nth row is given by  

                                         	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  



Dual	  Representa;ons	  
•  Substituting               into  

•  Define Gram Matrix                  which is an N x N symmetric 
matrix with elements 

•  Re-writing the sum-of-squares error using the Gram Matrix 



Dual	  Representa;ons	  
•  Minimizing          with respect to a , and solving 

•  Substituting back to the original linear regression model  

•  Note that vector a is computed by inverting N x N matrix. 

•  Compare:  



Dual	  Representa;ons	  
•  Even though the dual formulation requires higher dimensions , 

it comes with some advantages. 

–  We can see that          is expressed entirely in terms of the kernel 
functions. 

–  This allows us to work with feature spaces of higher dimension, even 
with infinite dimensionality. 



Construc;ng	  Kernels	  
•  First Approach: Select the feature space mapping         and use 

it to construct the corresponding kernel. 

•  Examples of basis function: 

–  Polynomial:  

–  Gaussian: 

–  Sigmoid: 



Construc;ng	  Kernels	  



Construc;ng	  Kernels	  
•  Second  Approach:  Construct kernel functions directly. We 

need to make sure that we are selecting a valid kernel.  

•  Valid Kernels: kernels who has a Gram Matrix whose 
components are positive semi-definite for all possible choices 
of input data. 



Construc;ng	  Kernels	  
•  Consider a simple example: 

•  Considering a 2D input space 

•  New complex Kernels can also be reconstructed by using 
simpler kernels as building blocks. 





Construc;ng	  Kernels	  
•  Gaussian Kernels 

  Taking the inner part: 
 
 
 
 
Substituting kernel   



Linear	  Regression	  Revisited	  
•  Consider 

•  Taking prior distribution over w 

•  Note that this induces a probability distribution over function 
y(x). 

•  In terms of vector representation 



Linear	  Regression	  Revisited	  
•  Note that since y is a linear combination of Gaussian 

distributed values w, and hence it is also a Gaussian distributed. 

•  where K is the Gram matrix with elements 

•  Definition: A Gaussian process is defined as a probability 
distribution over functions           evaluated at an arbitrary set of 
points                   jointly   have a Gaussian distribution.  



Linear	  Regression	  Revisited	  
•  Note that the joint distribution of Gaussian process can be 

completely specified by the mean and covariance. 

•  Note also that the covariance can be evaluated from the kernel 
function. 

•  Taking the Gaussian and exponential kernel functions, for 
example, samples are drawn.  



Linear	  Regression	  Revisited	  



Gaussian	  processes	  for	  regression	  
•  Considering noise on the observed target 

•  Considering Gaussian noise 

•  For independent noise, the joint distribution is given by 

•  Using the Gaussian process 

•  Marginalizing the probability 



Gaussian	  processes	  for	  regression	  
•  Where C is the covariance matrix given as 

•   Note the summation of the covariance. 

•  Widely used Kernel function 





Gaussian	  processes	  for	  regression	  



Gaussian	  processes	  for	  regression	  
•  Goal of regression: predict 
•  Using the joint distribution 

•  Partitioning the covariance 

•  K has elements                       and c is given as  

•                      is Gaussian with mean and covariance given by 
  

p(tN+1|t)

p(tN+1|t)



Gaussian	  processes	  for	  regression	  
•  Note that the mean and covariance are dependent on the term 

k which is dependent on the input  

•  Note also that the additional kernel matrix should be a valid 
kernel. 

•  The Gaussian process viewpoint is advantageous in that we 
can consider covariance functions that can be expressed in 
terms of an infinite number of basis functions. 



Gaussian	  processes	  for	  regression	  



Gaussian	  processes	  for	  regression	  


