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Kernel	
  Methods	
  
•  Are	
   used	
   to	
   find	
   and	
   study	
   general	
   types	
   of	
   rela;ons	
   (eg.	
  

Clustering,	
  correla;on,	
  	
  classifica;on)	
  in	
  general	
  types	
  of	
  data	
  
(vectors,	
  images,	
  sets).	
  

•  For	
  nonlinear	
  feature	
  space	
  mapping	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  kernel	
  func;on	
  
is	
  given	
  as	
  	
  



Kernel	
  Methods	
  
•  Kernel	
  Trick	
  (Kernel	
  Subs;tu;on)	
  :-­‐	
   If	
  the	
  input	
  vector	
  enters	
  

in	
  the	
  form	
  of	
  scalar	
  product,	
  then	
  the	
  scalar	
  product	
  can	
  be	
  
replaced	
  by	
  some	
  other	
  kernel	
  func;ons	
  .	
  

•  Linear	
  Kernels:	
  	
  

•  Sta;onary	
  Kernels:	
  

•  Homogeneous	
  Kernels	
  :	
  



Dual	
  Representa;ons	
  
•  Consider linear regression model whose regularized sum-of-

squares error function is given by  

•  Minimizing with respect to  w, 

 
 where Φ is the design matrix , whose nth row is given by  

                                         	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  



Dual	
  Representa;ons	
  
•  Substituting               into  

•  Define Gram Matrix                  which is an N x N symmetric 
matrix with elements 

•  Re-writing the sum-of-squares error using the Gram Matrix 



Dual	
  Representa;ons	
  
•  Minimizing          with respect to a , and solving 

•  Substituting back to the original linear regression model  

•  Note that vector a is computed by inverting N x N matrix. 

•  Compare:  



Dual	
  Representa;ons	
  
•  Even though the dual formulation requires higher dimensions , 

it comes with some advantages. 

–  We can see that          is expressed entirely in terms of the kernel 
functions. 

–  This allows us to work with feature spaces of higher dimension, even 
with infinite dimensionality. 



Construc;ng	
  Kernels	
  
•  First Approach: Select the feature space mapping         and use 

it to construct the corresponding kernel. 

•  Examples of basis function: 

–  Polynomial:  

–  Gaussian: 

–  Sigmoid: 



Construc;ng	
  Kernels	
  



Construc;ng	
  Kernels	
  
•  Second  Approach:  Construct kernel functions directly. We 

need to make sure that we are selecting a valid kernel.  

•  Valid Kernels: kernels who has a Gram Matrix whose 
components are positive semi-definite for all possible choices 
of input data. 



Construc;ng	
  Kernels	
  
•  Consider a simple example: 

•  Considering a 2D input space 

•  New complex Kernels can also be reconstructed by using 
simpler kernels as building blocks. 





Construc;ng	
  Kernels	
  
•  Gaussian Kernels 

  Taking the inner part: 
 
 
 
 
Substituting kernel   



Linear	
  Regression	
  Revisited	
  
•  Consider 

•  Taking prior distribution over w 

•  Note that this induces a probability distribution over function 
y(x). 

•  In terms of vector representation 



Linear	
  Regression	
  Revisited	
  
•  Note that since y is a linear combination of Gaussian 

distributed values w, and hence it is also a Gaussian distributed. 

•  where K is the Gram matrix with elements 

•  Definition: A Gaussian process is defined as a probability 
distribution over functions           evaluated at an arbitrary set of 
points                   jointly   have a Gaussian distribution.  



Linear	
  Regression	
  Revisited	
  
•  Note that the joint distribution of Gaussian process can be 

completely specified by the mean and covariance. 

•  Note also that the covariance can be evaluated from the kernel 
function. 

•  Taking the Gaussian and exponential kernel functions, for 
example, samples are drawn.  



Linear	
  Regression	
  Revisited	
  



Gaussian	
  processes	
  for	
  regression	
  
•  Considering noise on the observed target 

•  Considering Gaussian noise 

•  For independent noise, the joint distribution is given by 

•  Using the Gaussian process 

•  Marginalizing the probability 



Gaussian	
  processes	
  for	
  regression	
  
•  Where C is the covariance matrix given as 

•   Note the summation of the covariance. 

•  Widely used Kernel function 
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Gaussian	
  processes	
  for	
  regression	
  
•  Goal of regression: predict 
•  Using the joint distribution 

•  Partitioning the covariance 

•  K has elements                       and c is given as  

•                      is Gaussian with mean and covariance given by 
  

p(tN+1|t)

p(tN+1|t)



Gaussian	
  processes	
  for	
  regression	
  
•  Note that the mean and covariance are dependent on the term 

k which is dependent on the input  

•  Note also that the additional kernel matrix should be a valid 
kernel. 

•  The Gaussian process viewpoint is advantageous in that we 
can consider covariance functions that can be expressed in 
terms of an infinite number of basis functions. 
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  processes	
  for	
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