

Probabilistic Graphical Models

- Graphical representation of a probabilistic model
- Each variable corresponds to a node in the graph
- Links in the graph denote probabilistic relations between variables

Why do we need graphical models?

- Graphs are an intuitive way of representing and visualizing the relationships between many variables. (Examples: family trees, electric circuit diagrams, neural networks)
- A graph allows us to abstract out the conditional independence relationships between the variables from the details of their parametric forms. Thus we can ask questions like: "Is A dependent on B given that we know the value of C?" just by looking at the graph.
- Graphical models allow us to define general message-passing algorithms that implement Bayesian inference efficiently. Thus we can answer queries like "What is P(A|C = c)?" without enumerating all settings of all variables in the model.

Three kinds of Graphical Models

Bayesian Networks

Directed Acyclic Graph (DAG)

$$p(a, b, c) = p(c|a, b)p(a, b) = p(c|a, b)p(b|a)p(a)$$
$$p(x_1, \dots, x_K) = p(x_K|x_1, \dots, x_{K-1}) \dots p(x_2|x_1)p(x_1)$$

Note: the left-hand side is symmetrical w/r to the variables whereas the right-hand side is not.

Bayesian Networks

Generalization to K variables:

$$p(x_1,\ldots,x_K) = p(x_K|x_1,\ldots,x_{K-1})\ldots p(x_2|x_1)p(x_1)$$

- The associated graph is fully connected.
- The absence of links conveys important information.

Bayesian Networks

$$p(x_1, ..., x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$$

General Factorization

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

Bayesian Curve Fitting (1)

Polynomial

$$y(x, \mathbf{w}) = \sum_{j=0}^{M} w_j x^j$$

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | y(\mathbf{w}, x_n))$$

Bayesian Curve Fitting (2)

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | y(\mathbf{w}, x_n))$$

Bayesian Curve Fitting (3)

Input variables and explicit hyperparameters

$$p(\mathbf{t}, \mathbf{w} | \mathbf{x}, \alpha, \sigma^2) = p(\mathbf{w} | \alpha) \prod_{n=1}^{N} p(t_n | \mathbf{w}, x_n, \sigma^2).$$

Bayesian Curve Fitting—Learning

Condition on data

$$p(\mathbf{w}|\mathbf{t}) \propto p(\mathbf{w}) \prod_{n=1}^{N} p(t_n|\mathbf{w})$$

Bayesian Curve Fitting—Prediction

Predictive distribution: $p(\widehat{t}|\widehat{x}, \mathbf{x}, \mathbf{t}, \alpha, \sigma^2) \propto \int p(\widehat{t}, \mathbf{t}, \mathbf{w}|\widehat{x}, \mathbf{x}, \alpha, \sigma^2) d\mathbf{w}$

Discrete Variables (1)

General joint distribution: K^2 -1 parameters

$$p(\mathbf{x}_1, \mathbf{x}_2 | \boldsymbol{\mu}) = \prod_{k=1}^K \prod_{l=1}^K \mu_{kl}^{x_{1k} x_{2l}}$$

Independent joint distribution: 2(K-1) parameters

$$\overset{\mathbf{x}_1}{\bigcirc}$$

$$\sum_{i=1}^{n}$$

$$\hat{p}(\mathbf{x}_1, \mathbf{x}_2 | \boldsymbol{\mu}) = \prod_{k=1}^K \mu_{1k}^{x_{1k}} \prod_{l=1}^K \mu_{2l}^{x_{2l}}$$

Discrete Variables (2)

General joint distribution over M variables: K^{M} -1 parameters

M-node Markov chain: K-1+(M-1)K(K-1) parameters

Reduce the number of parameters by dropping link in the graph, at the expense of having a restricted class of distributions.

Discrete Variables: Bayesian Parameters (1)

$$p\left(\left\{\mathbf{x}_{m}, \boldsymbol{\mu}_{m}\right\}\right) = p\left(\mathbf{x}_{1} \mid \boldsymbol{\mu}_{1}\right) p\left(\boldsymbol{\mu}_{1}\right) \prod_{m=2}^{M} p\left(\mathbf{x}_{m} \mid \mathbf{x}_{m-1}, \boldsymbol{\mu}_{m}\right) p\left(\boldsymbol{\mu}_{m}\right)$$

$$p(\boldsymbol{\mu}_m) = \operatorname{Dir}(\boldsymbol{\mu}_m | \boldsymbol{\alpha}_m)$$

Discrete Variables: Bayesian Parameters (2)

$$p(\{\mathbf{x}_m\}, \boldsymbol{\mu}_1, \boldsymbol{\mu}) = p(\mathbf{x}_1 | \boldsymbol{\mu}_1) p(\boldsymbol{\mu}_1) \prod_{m=2}^{M} p(\mathbf{x}_m | \mathbf{x}_{m-1}, \boldsymbol{\mu}) p(\boldsymbol{\mu})$$

Parameterized Conditional Distributions

If x_1, \ldots, x_M are discrete, K-state variables, $p(y=1|x_1,\ldots,x_M)$ in general has $O(K^M)$ parameters.

The parameterized form

$$p(y = 1|x_1, \dots, x_M) = \sigma\left(w_0 + \sum_{i=1}^M w_i x_i\right) = \sigma(\mathbf{w}^T \mathbf{x})$$

requires only M + 1 parameters

Linear-Gaussian Models

Directed Graph

$$p(x_i|pa_i) = \mathcal{N}\left(x_i \left| \sum_{j \in pa_i} w_{ij} x_j + b_i, v_i \right)\right)$$

- •Each node is Gaussian, the mean is a linear function of the parents.
- The logarithm of the joint distribution is a quadratic function in x_1, \ldots, x_D (see equations (8.12) and (8.13)).
- The joint distribution p(x) is a multivariate Gaussian function.
- The the mean and variance of this joint distribution can be determined recursively, given the parent-child relationships in the graph.

Linear-Gaussian Models

$$p(x_i|pa_i) = \mathcal{N}\left(x_i \left| \sum_{j \in pa_i} w_{ij} x_j + b_i, v_i \right) \right)$$

$$\ln p(\mathbf{x}) = \sum_{i=1}^{D} \ln p(x_i|pa_i)$$

$$= -\sum_{i=1}^{D} \frac{1}{2v_i} \left(x_i - \sum_{j \in pa_i} w_{ij} x_j - b_i \right)^2 + \text{const}$$
(8.12)

Mean and covariance of the joint distribution:

$$x_{i} = \sum_{j \in pa_{i}} w_{ij}x_{j} + b_{i} + \sqrt{v_{i}}\epsilon_{i}$$

$$\mathbb{E}[x_{i}] = \sum_{j \in pa_{i}} w_{ij}\mathbb{E}[x_{j}] + b_{i}.$$

$$cov[x_{i}, x_{j}] = \mathbb{E}[(x_{i} - \mathbb{E}[x_{i}])(x_{j} - \mathbb{E}[x_{j}])]$$

$$= \mathbb{E}\left[(x_{i} - \mathbb{E}[x_{i}])\left\{\sum_{k \in pa_{j}} w_{jk}(x_{k} - \mathbb{E}[x_{k}]) + \sqrt{v_{j}}\epsilon_{j}\right\}\right]$$

$$= \sum_{k \in pa_{j}} w_{jk}cov[x_{i}, x_{k}] + I_{ij}v_{j}$$

$$(8.16)$$

Linear-Gaussian Models

- Two extreme cases, intermediate case
 - no links: D isolated nodes, total of D+D parameters (diagonal covariance)
 - Fully connected: each node has all lower numbered nodes as parents. D(D-1)/2 + D parameters
 - Intermediate case: partially connected

$$\mu = (b_1, b_2 + w_{21}b_1, b_3 + w_{32}b_2 + w_{32}w_{21}b_1)^{\mathrm{T}}$$

$$\Sigma = \begin{pmatrix} v_1 & w_{21}v_1 & w_{32}w_{21}v_1 \\ w_{21}v_1 & v_2 + w_{21}^2v_1 & w_{32}(v_2 + w_{21}^2v_1) \\ w_{32}w_{21}v_1 & w_{32}(v_2 + w_{21}^2v_1) & v_3 + w_{32}^2(v_2 + w_{21}^2v_1) \end{pmatrix} . (8.18)$$

Conditional Independence

a is independent of b given c

$$p(a|b,c) = p(a|c)$$

$$p(a, b|c) = p(a|b, c)p(b|c)$$
$$= p(a|c)p(b|c)$$

Notation

$$a \perp \!\!\!\perp b \mid c$$

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

$$p(a,b) = \sum_{c} p(a|c)p(b|c)p(c)$$
$$a \not\perp\!\!\!\perp b \mid \emptyset$$

as it doesn"t factorize into p(a)p(b) in general

$$p(a, b|c) = \frac{p(a, b, c)}{p(c)}$$
$$= p(a|c)p(b|c)$$
$$a \perp \perp b \mid c$$

$$p(a, b, c) = p(a)p(c|a)p(b|c)$$

$$p(a,b) = p(a) \sum_{c} p(c|a)p(b|c) = p(a)p(b|a)$$

$$a \not\perp \!\!\!\perp b \mid \emptyset$$

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$

$$= \frac{p(a)p(c|a)p(b|c)}{p(c)}$$

$$= p(a|c)p(b|c)$$

 $a \perp \!\!\!\perp b \mid c$

$$p(a,b,c) = p(a)p(b)p(c|a,b)$$

$$p(a,b) = p(a)p(b)$$

$$a \perp \!\!\!\perp b \mid \emptyset$$

Note: this is the opposite of Example 1, with C unobserved.

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$

$$= \frac{p(a)p(b)p(c|a,b)}{p(c)}$$

 $a \not\perp \!\!\!\perp b \mid c$

Note: this is the opposite of Example 1, with C observed.

"Am I out of fuel?"

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$

 $p(F=1) = 0.9$
and hence
 $p(F=0) = 0.1$

"Am I out of fuel?"

$$p(F = 0|G = 0) = \frac{p(G = 0|F = 0)p(F = 0)}{p(G = 0)}$$

\$\sim 0.257\$

Probability of an empty tank increased by observing G = 0.

"Am I out of fuel?"

$$p(F = 0|G = 0, B = 0) = \frac{p(G = 0|B = 0, F = 0)p(F = 0)}{\sum_{F \in \{0,1\}} p(G = 0|B = 0, F)p(F)}$$

$$\simeq 0.111$$

Probability of an empty tank reduced by observing B = 0. This referred to as "explaining away".

D-separation

- A, B, and C are non-intersecting subsets of nodes in a directed graph.
- A path from A to B is blocked if it contains a node such that either
 - a) the arrows on the path meet either head-to-tail or tailto-tail at the node, and the node is in the set C, or
 - b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
- If all paths from A to B are blocked, A is said to be d-separated from B by C.
- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp \!\!\! \perp B \mid C$.

D-separation: Example

$$a \perp \!\!\! \perp b \mid f$$

D-separation: I.I.D. Data

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu)$$

$$p(\mathcal{D}) = \int_{-\infty}^{\infty} p(\mathcal{D}|\mu) p(\mu) d\mu \neq \prod_{n=1}^{N} p(x_n)$$

Directed Graphs as Distribution Filters

The Markov Blanket

Factors independent of X_i cancel between numerator and denominator.

Markov Random Fields

Cliques and Maximal Cliques

Joint Distribution

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

where $\psi_C(\mathbf{x}_C)$ is the potential over clique ${\sf C}$ and

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

is the normalization coefficient;

Note: If the model has M nodes each with K-state variables K^{M} terms in Z.

Energies and the Boltzmann distribution

$$\psi_C(\mathbf{x}_C) = \exp\left\{-E(\mathbf{x}_C)\right\}$$

Illustration: Image De-Noising (1)

Original Image

Noisy Image

Illustration: Image De-Noising (2)

Illustration: Image De-Noising (3)

Noisy Image

Restored Image (ICM)

Illustration: Image De-Noising (4)

Restored Image (Graph cuts)

Converting Directed to Undirected Graphs (1)

Converting Directed to Undirected Graphs (2)

Additional links

Directed vs. Undirected Graphs (1)

Directed vs. Undirected Graphs (2)

$$A \perp \!\!\!\perp B \mid \emptyset$$
 $A \perp \!\!\!\!\perp B \mid C$

$$A \not\perp \!\!\!\perp B \mid \emptyset$$

$$A \perp \!\!\!\!\perp B \mid C \cup D$$

$$C \perp \!\!\!\!\perp D \mid A \cup B$$

Inference in Graphical Models

$$p(y) = \sum_{x'} p(y|x')p(x') \qquad p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

$$p(\mathbf{x}) = \frac{1}{Z}\psi_{1,2}(x_1, x_2)\psi_{2,3}(x_2, x_3)\cdots\psi_{N-1,N}(x_{N-1}, x_N)$$

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x})$$

$$\mu_{\alpha}(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2)$$

$$\mu_{\beta}(x_{N-1}) = \sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)$$

$$Z = \sum_{x_n} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

To compute local marginals:

- Compute and store all forward messages, $\mu_{\alpha}(x_n)$.
- Compute and store all backward messages, $\mu_{\beta}(x_n)$.
- Compute Z at any node x_m
- Compute

$$p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

for all variables required.

Trees

Factor Graphs

$$p(\mathbf{x}) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$$

$$p(\mathbf{x}) = \prod_{s} f_s(\mathbf{x}_s)$$

Factor Graphs from Directed Graphs

$$p(x_1) = p(x_1)p(x_2)$$
 $f(x_1, x_2, x_3) = f(x_1)$ $f(x_1, x_2)$ $f(x_1)p(x_2)p(x_1)p(x_2)$ $f(x_1, x_2)$ $f(x_2) = f(x_2)$ $f(x_1, x_2, x_3) = f(x_1)$

Factor Graphs from Undirected Graphs

The Sum-Product Algorithm (1)

Objective:

- i. to obtain an efficient, exact inference algorithm for finding marginals;
- ii. in situations where several marginals are required, to allow computations to be shared efficiently.

Key idea: Distributive Law

$$ab + ac = a(b+c)$$

The Sum-Product Algorithm (2)

$$p(x) = \sum_{\mathbf{x} \setminus x} p(\mathbf{x})$$

 $p(\mathbf{x}) = \prod_{s \in \text{ne}(x)} F_s(x, X_s)$

The Sum-Product Algorithm (3)

$$p(x) = \prod_{s \in ne(x)} \left[\sum_{X_s} F_s(x, X_s) \right]$$
$$= \prod_{s \in ne(x)} \mu_{f_s \to x}(x). \qquad \mu_{f_s \to x}(x) \equiv \sum_{X_s} F_s(x, X_s)$$

The Sum-Product Algorithm (4)

$$F_s(x, X_s) = f_s(x, x_1, \dots, x_M)G_1(x_1, X_{s1}) \dots G_M(x_M, X_{sM})$$

The Sum-Product Algorithm (5)

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \left[\sum_{X_{sm}} G_m(x_m, X_{sm}) \right]$$

$$= \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$

The Sum-Product Algorithm (6)

$$\mu_{x_m \to f_s}(x_m) \equiv \sum_{X_{sm}} G_m(x_m, X_{sm}) = \sum_{X_{sm}} \prod_{l \in \text{ne}(x_m) \setminus f_s} F_l(x_m, X_{ml})$$

$$= \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m)$$

The Sum-Product Algorithm (7)

Initialization

The Sum-Product Algorithm (8)

To compute local marginals:

- Pick an arbitrary node as root
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

Sum-Product: Example (1)

Sum-Product: Example (2)

Sum-Product: Example (3)

Sum-Product: Example (4)

The Max-Sum Algorithm (1)

Objective: an efficient algorithm for finding

- i. the value x^{max} that maximises p(x);
- ii. the value of $p(x^{max})$.

In general, maximum marginals ≠ joint maximum.

$$\underset{x}{\operatorname{arg}} \max_{x} p(x, y) = 1 \qquad \underset{x}{\operatorname{arg}} \max_{x} p(x) = 0$$

The Max-Sum Algorithm (2)

Maximizing over a chain (max-product)

$$p(\mathbf{x}^{\max}) = \max_{\mathbf{x}} p(\mathbf{x}) = \max_{x_1} \dots \max_{x_M} p(\mathbf{x})$$

$$= \frac{1}{Z} \max_{x_1} \dots \max_{x_N} \left[\psi_{1,2}(x_1, x_2) \dots \psi_{N-1,N}(x_{N-1}, x_N) \right]$$

$$= \frac{1}{Z} \max_{x_1} \left[\max_{x_2} \left[\psi_{1,2}(x_1, x_2) \left[\dots \max_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \dots \right] \right]$$

The Max-Sum Algorithm (3)

Generalizes to tree-structured factor graph

$$\max_{\mathbf{x}} p(\mathbf{x}) = \max_{x_n} \prod_{f_s \in ne(x_n)} \max_{X_s} f_s(x_n, X_s)$$

maximizing as close to the leaf nodes as possible

The Max-Sum Algorithm (4)

Max-Product → Max-Sum

For numerical reasons, use

$$\ln\left(\max_{\mathbf{x}} p(\mathbf{x})\right) = \max_{\mathbf{x}} \ln p(\mathbf{x}).$$

Again, use distributive law

$$\max(a+b, a+c) = a + \max(b, c).$$

The Max-Sum Algorithm (5)

Initialization (leaf nodes)

$$\mu_{x \to f}(x) = 0 \qquad \qquad \mu_{f \to x}(x) = \ln f(x)$$

Recursion

$$\mu_{f \to x}(x) = \max_{x_1, \dots, x_M} \left[\ln f(x, x_1, \dots, x_M) + \sum_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f}(x_m) \right]$$

$$\phi(x) = \arg \max_{x_1, \dots, x_M} \left[\ln f(x, x_1, \dots, x_M) + \sum_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f}(x_m) \right]$$

$$\mu_{x \to f}(x) = \sum_{l \in \text{ne}(x) \setminus f} \mu_{f_l \to x}(x)$$

The Max-Sum Algorithm (6)

Termination (root node)

$$p^{\max} = \max_{x} \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \to x}(x) \right]$$

$$x^{\max} = \arg\max_{x} \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \to x}(x) \right]$$

Back-track, for all nodes i with I factor nodes to the root (I=0)

$$\mathbf{x}_l^{\max} = \phi(x_{i,l-1}^{\max})$$

The Max-Sum Algorithm (7)

Example: Markov chain

The Junction Tree Algorithm

- Exact inference on general graphs.
- Works by turning the initial graph into a junction tree and then running a sumproduct-like algorithm.
- Intractable on graphs with large cliques.

Loopy Belief Propagation

- Sum-Product on general graphs.
- Initial unit messages passed across all links, after which messages are passed around until convergence (not guaranteed!).
- Approximate but tractable for large graphs.
- Sometime works well, sometimes not at all.