Pattern Recognition
and Machine Learning

Chapter 8: graphical models




Probabilistic Graphical Models

e Graphical representation of a probabilistic
model

* Each variable corresponds to a node in the
graph

* Links in the graph denote probabilistic
relations between variables




Why do we need graphical models?

Graphs are an intuitive way of representing and visualizing the
relationships between many variables. (Examples: family trees, electric
circuit diagrams, neural networks)

A graph allows us to abstract out the conditional independence
relationships between the variables from the details of their parametric
forms. Thus we can ask questions like: “Is A dependent on B given that
we know the value of C ?” just by looking at the graph.

Graphical models allow us to define general message-passing
algorithms that implement Bayesian inference efficiently. Thus we can
answer queries like “What is P(A|C = ¢)?” without enumerating all
settings of all variables in the model.




Three kinds of Graphical Models

factor graph undirected graph directed graph




Bayesian Networks

Directed Acyclic Graph (DAG)

b
p(a,b, c) = p(c|a, b)p(a, b) = p(c|a, b)p(bla)p(a)
p(ilfl, “en ,QZK) — p(xK|:c1, “ . ,ZIZK_l) .. .p(x2|x1)p(:v1)

Note: the left-hand side is symmetrical w/r to the variables whereas the
right-hand side is not.




Bayesian Networks

Generalization to K variables:
p(xl, .. ,UUK) :p(lexl, .. ,xK—1) . -P($2|$1)p(5€1)

« The associated graph is fully connected.
* The absence of links conveys important information.




Bayesian Networks

cx7) = p(x1)p(x2)p(as)p(xa|z1, 22, 23)
p(xs|z1, x3)p(T6|Ta)p(X7|T4, T5)

General Factorization

K
p(x) = || p(zx|pay)
k=1




Bayesian Curve Fitting (1)

Polynomial

M
y(z,w) =Y wsa?
=0




Bayesian Curve Fitting (2)

p(t,w) = p(w) | [ pltnly(w,zn))

n=1




Bayesian Curve Fitting (3)

Input variables and explicit hyperparameters

p(t, w|x, a, 0?) = p(w|a) Hp n|W, T, o




Bayesian Curve Fitting—Learning

Condition on data

p(wlt) o p(w

i:z
?




Bayesian Curve Fitting—Prediction

Predictive distribution: p(#|Z,x,t,a,0?) /p(tA, t,w|Z,x,a,0°) dw

s

Ln

"

where

84

p(t,t, w|Z, x,a, 0%) =

A
O—

[Hp n|Tn, W, o ]p(wa)p(t z,w,0°)

z




Discrete Variables (1)

General joint distribution: K2-1 parameters

X1 X9 K K
()>——C)  pbxixelu = [T T uit

k=11=1

Independent joint distribution: 2(K-1) parameters

X1 X9 K K
O O sl =TTuw [
k=1 =1




Discrete Variables (2)

General joint distribution over M variables:
KM -1 parameters

M-node Markov chain: K-1+(M -1)K(K -1)
parameters

Reduce the number of parameters by dropping link in the graph, at the
expense of having a restricted class of distributions.




Discrete Variables: Bayesian Parameters (1)

H1 H2 12371

Q Q

M
P ({Xms o }) = p (%1 |11) 2 (1) || P el X1, ) P (12,)

m=2




Discrete Variables: Bayesian Parameters (2)

H1 P Shared prior

p({xm} s, 1) =p(x1 ) p (1) [ p Ko Xm—1, 1) p (12)

m=2




Parameterized Conditional Distributions

If x1,...,2pr are discrete,
K-state variables,

p(y = 1|z1,...,2p) in
general has O(KM)
parameters.

The parameterized form

M
p(y — 1|$1, I wrM) — g (UJO + szxz) = U(WTX>
=1
requires only M + 1 parameters




Linear-Gaussian Models

Directed Graph
P p(z;ilpa;) = N (azz Z Wi i + bi,vi>

JEpa;

*Each node is Gaussian, the mean is a linear function of the
parents.

 The logarithm of the joint distribution is a quadratic function in
X1, ..., Xo(see equations (8.12) and (8.13)).

 The joint distribution p(x) is a multivariate Gaussian function.

 The the mean and variance of this joint distribution can be
determined recursively, given the parent-child relationships in
the graph.




Linear-Gaussian Models

Z ll‘,_).l‘j-i-b;.l'z) (8.11)

JEpa,
D
np(x) = Zln p(xi|pa;) (8.12)
1=1
D | 2
= - Z 5| vi— Z wijr; — by + const (8.13)
=1 o j€pag
= Mean and covariance of the joint distribution:
ri = Z wi;rj + bi + \,:"IF‘,G (8.14)
J€Epa;
Elzi] = ) wi;Elz;] + bi. (8.15)
JEpa;
covlz.z;] = E[(z; —E[z])(z; — E[z;])]
= E [(z; —E[z]) Z wir(zr — E[zr]) + /U5¢€;
kEpa)
= Z w;kcov(zy, o] + Iij;v; (8.16)

k-’fpa)




Linear-Gaussian Models

Two extreme cases, intermediate case

*

no links: D isolated nodes, total of D+D parameters (diagonal
covariance)

Fully connected: each node has all lower numbered nodes as
parents. D(D-1)/2 + D parameters

. . . I Iy I
Intermediate case: partially connected O ) O
A/
H = (bl . b-z + ll'::lbl o bg —+ ll'32b2 -+ ll'321['21b1 )ll. (8]7)
" w21t W32W21y
Yy = Wo va + w3 vy wsz(v2 + w3 vy) .(8.18)
wagway vy waz(va + wivy) 3 +wiy(va + wivy)




Conditional Independence

a is independent of b given C

p(alb, c) = p(alc)

Equivalently  p(a,blc) = p(alb,c)p(blc)
= p(alc)p(blc)

Notation all b|ec




Conditional Independence: Example 1

c p(a, b, c) = p(alc)p(b|c)p(c)
p(a,b) = p(ale)p(ble)p(c)

all b0

as it doesn"t factorize into p(a)p(b) in
general




Conditional Independence: Example 1

p(a,b,c)
p(c)
= p(alc)p(blc)

p(a,blc) =

allb|c




Conditional Independence: Example 2

O—O0—0O

p(a,b,c) = p(a)p(cla)p(blc)

(@) 3 plcla)ptle) = p(a)p(tlo




Conditional Independence: Example 2

p(a,b\c) — (C;




Conditional Independence: Example 3

Note: this is the opposite of Example 1, with ¢ unobserved.




Conditional Independence: Example 3

y b
a.ble) = p(a,b,c)
et p(c)
_ p(a)p(b)p(c|a, b)
p(c)
all b]c

Note: this is the opposite of Example 1, with C observed.




“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8 B F
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1
G
p(B=1) = 0.9
p(F=1) = 0.9 B = Battery (0=flat, 1=fully charged)
F = Fuel Tank (O=empty, 1=full)
and hence G = Fuel Gauge Reading

p(F=0) = 0.1 (0O=empty, 1=full)




“Am | out of fuel?”

p(F=0|G=0) =

2

0.257

Probability of an empty tank increased by observing G = 0.




“Am | out of fuel?”

G

p(G=0|B=0,F =0)p(F =0)
>_refo1y P(G =0[B =0, F)p(F)
0.111

p(F =0|G =0, B = 0)

2

Probability of an empty tank reduced by observing B = 0.
This referred to as “explaining away”.




D-separation

* A, B, and C are non-intersecting subsets of nodes in a
directed graph.
* A path from A to B is blocked if it contains a node such that
either
a) the arrows on the path meet either head-to-tail or tail-
to-tail at the node, and the node is in the set C, or
b) the arrows meet head-to-head at the node, and
neither the node, nor any of its descendants, are in
the set C.
* If all paths from A to B are blocked, A is said to be d-
separated from B by C.
* If Ais d-separated from B by C, the joint distribution over
all variables in the graph satisfies A 1. B | C'.




D-separation: Example

all blc

allb|f




D-separation: |.1.D. Data




Directed Graphs as Distribution Filters

CO RO




The Markov Blanket

_ p(X19°"aXM)
/p(xl,...,xM)dx,;
HP(Xk|Pak>
k

/ ] [ p(xxpay) dx,
k

Factors independent of X; cancel
between numerator and denominator.




Markov Random Fields

Markov Blanket

Al B|C




Cliques and Maximal Cliques

/
=)

Maximal Clique




Joint Distribution

p(x) = 7 [ ] velxe)
C

where Y¢ (Xc) is the potential over clique C and
Z =3 ]]vexe)
x C

is the normalization coefficient;

Note: If the model has M nodes each with K-state variables KM terms in Z.

Energies and the Boltzmann distribution

Vo (xco) = exp{—FE(xc)}




lllustration: Image De-Noising (1)

Original Image Noisy Image




lllustration: Image De-Noising (2)




lllustration: Image De-Noising (3)

Noisy Image Restored Image (ICM




lllustration: Image De-Noising (4)

Restored Image (ICM) Restored Image (Graph cuts)




Converting Directed to Undirected Graphs (1)

X1 X2 ITN-1 TN

p(x) = p(x1)p(x2|21) p(as|r2) - - - p(rNn|TN-1)

p(x) = % Y1,2(x1,22) Y2,3(T2, 23) - YN_1,N(@N_1,2ZN)

Iy Zo IN -1 TN




Converting Directed to Undirected Graphs (2)

Additional links

T I3 T I3




Directed vs. Undirected Graphs (1)




Directed vs. Undirected Graphs (2)

C
A B

Al B0 AY B¢
AY B|C Al B|CUD
Cl1D|AUB




Inference in Graphical Models

T T T

o 2ol 2! . _ p(y]a:)p(a:)
p(y)—;p(m )p(z’) p(z|y) o00)




Inference on a Chain

X1 1 LTN-1 TN
1
p(x) = 2101,2(561, r2)2,3(2,23) - YN-1,N(TN-1,TN)

R BRPIPIRD WL

Tn—1Ln+1




Inference on a Chain

LTn—1 1
fa(Zn)
Z Unn41(Tn, Tng1) - - [ YN-1,N(TN-1, IEN)]
Tn41 TN

A\ . g




Inference on a Chain

=

Q
8

<
|

Z wn—l,n<l’n—1,$n) |:Z .. :|

= Z Wn—l,n(mn—laxn)l’l’oé(xn_l)'

LTn—1

pa(en) = an,n+1(xn,xn+1) [Z}

Tn41 Tn+2

= ) Vst (@, Tng1)18(Tng1)-

Tn+1




Inference on a Chain




Inference on a Chain

To compute local marginals:

* Compute and store all forward messages, (tq(2r).
* Compute and store all backward messages, pg(xy).
* Compute Z at any node X,

* Compute

p(x,) = %Uoz (xn>l«bﬁ(xn>

for all variables required.




Trees

Undirected Tree Directed Tree Polytree




Factor Graphs

T T2 T3

fa fb fc fd
p(x) = fa(x1,22) fo (21, 22) fe(x2, 23) fa(x3)

p(x) = [ £:(xs)




Factor Graphs from Directed Graphs

J
p(x) = p(z1)p(z2)  f(z1,72,23) = fa(z1) = p(z1)
p(x3|z1, 2) p(z1)p(z2)p(s|z1, 22) fols) = plas)

fc(x17x2’ 553) — p(ﬁE3|ZE1,fL'2>




Factor Graphs from Undirected Graphs

T T x To T x
S I
Je
3 3 T3
VY(z1, 22, 73) f(z1, 22, 23) fa(x1, 22, 23) fr, (22, T3)

= Y(x1,22,23) = Y(z1,22,23)




The Sum-Product Algorithm (1)

Objective:
i. to obtain an efficient, exact inference

algorithm for finding marginals;

ii. in situations where several marginals are

required, to allow computations to be shared
efficiently.

Key idea: Distributive Law

ab + ac = a(b+ ¢)




The Sum-Product Algorithm (2)

2 (3}7 Xs)




The Sum-Product Algorithm (3)

Fs(a’;a Xs)

pz) = ]I

s€ne(x)

= 1] wp—e@. y,—a(@) = > Fy(, X,)

s€ne(x) X,

ZFS(x,XS)]

Xs




The Sum-Product Algorithm (4)




The Sum-Product Algorithm (5)

11 [Z Gm(xm,Xsm)]

meéene(fs)\z LXsm

H Haz o — £, (T

méene(fs)\z

Mfs—>:c(37) =




The Sum-Product Algorithm (6)

M

\MxMHfs (mM)




The Sum-Product Algorithm (7)

Initialization




The Sum-Product Algorithm (8)

To compute local marginals:

Pick an arbitrary node as root

Compute and propagate messages from the leaf
nodes to the root, storing received messages at
every node.

Compute and propagate messages from the root to
the leaf nodes, storing received messages at every
node.

Compute the product of received messages at each
node for which the marginal is required, and

normalize if necessary.




Sum-Product: Example (1)

O—a—CO—8——0
_ FE

O P(x) = fa(w1,22) fo(22, 23) fe(22, 24)




Sum-Product: Example (2)

. Mx1—>fa(x1) = 1
T /ifa—m:g(xQ) — Zfa(xlaxQ)

/"Lwél_)fc (CU4> — 1
L4 ff.—as(T2) = ch(x%%)
Zq

/"LxZ_)fb(x2> — lu‘fa_)w2 (xZ)MfC—)IE2 (x2>
s (X3) = Y fo(@2,23) ttay— g, (T2)

2




Sum-Product: Example (3)

O—a—0O—a—0

|

Has— fi (333) = 1
ffy—ao (T2) = Z fo(x2,23)
3

() (@) = ws(@n (@)

&4 :ufa—m?l(xl) — Zfa(x17x2>lux2—>fa(x2)
2
,U/w2—>fc(x2) — Iu’fa_>w2 (x2>lujfb_>m2 (:EQ)

ooza(@a) = Y fel@2,T4) ttay— 5. (22)
2




Sum-Product: Example (4)

1 X2 L3

O—8—CO—a—C0

¥a Jo

. fc ﬁ(l‘g) — Hfo—zo (x2>:ufb—>x2 (372),Ufc—>x2 (332)

— Zfa(331,332) [Z fb(3327553)]

T4 ch 2, 334
= TYYJ”G (z1, x2) fo (w2, 23) fe(@2, 74)

1 X3 T4

= 222 )

1 rs T4




The Max-Sum Algorithm (1)

Objective: an efficient algorithm for finding
i. the value XM that maximises p(X);
ii. thevalue of p(xmaX).

In general, maximum marginals # joint maximum.

y=01| 0.3 0.4
y=1 0.3 0.0

argmaxp(zx,y) =1 argmax p(x) =0

x x




The Max-Sum Algorithm (2)

Maximizing over a chain (max-product)

X ) ITN-1 TN

= max p(x) = max...max p(x)
X L1 LM

max - - - max V12(x1,22) - - YN, N (TN=1,TN)]
N

max {max [wl,g(xl,@) [ --maxsz_l,N(xN_l,xN)] ”

TN




The Max-Sum Algorithm (3)

Generalizes to tree-structured factor graph

m)?xp(x) = max H max fs(xn, Xs)
fs€Ene(xy)

maximizing as close to the leaf nodes as possible




The Max-Sum Algorithm (4)

Max-Product = Max-Sum

For numerical reasons, use
In (maxp(x)) = max In p(x).

Again, use distributive law

max(a + b,a + ¢) = a + max(b, ¢).




The Max-Sum Algorithm (5)

Initialization (leaf nodes)

:ua:—>f(37) =0 Uf—wc(x) — lnf(ilﬁ)
Recursion
proz(x) = mlma;c [ln flryxy,...,xp0) + Z ,uxm_>f(33m)}
""" M mene(f.)\z

méene(fs)\x

#(r) = argmax [Inf(x,xl,...,xM)—i— Z uxmﬁf(azm)}

pomp@) = 3 pp—a(@)




The Max-Sum Algorithm (6)

Termination (root node)

p** = max Z ,ufs_>q;(33):|

X

x

pmax argmax|: Z Nfs—w(x)

s€ne(x)

Back-track, for all nodes | with | factor nodes
to the root (I1=0)

X, = ¢($§?zai(1>




The Max-Sum Algorithm (7)

Example: Markov chain

-0 D

n+1




The Junction Tree Algorithm

* Exact inference on general graphs.

 Works by turning the initial graph into a
junction tree and then running a sum-
product-like algorithm.

* Intractable on graphs with large cliques.




Loopy Belief Propagation

* Sum-Product on general graphs.

* |nitial unit messages passed across all links,
after which messages are passed around
until convergence (not guaranteed!).

* Approximate but tractable for large graphs.
e Sometime works well, sometimes not at all.




