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Mixture	
  Models	
  
•  Can be used to build more complex probability distribution 

from simple ones. 

•  Advantageous for clustering. 

•  Latent variables can be cased to the mixture models. 

•  Gaussian mixtures models are widely used in data mining, 
pattern recognition, machine learning and statistical analysis. 



K-­‐means	
  Clustering	
  
•  Uses to identify clusters in multidimensional space. 

•  Aim: Partition the data set into some number K of clusters, 
where K is given. 

•  Note: A cluster comprises of a group of data points whose 
inter-point distances are small compared with the distances to 
points outside of the cluster. Each cluster is represented by a 
vector representing the centeroid of each cluster. 



K-­‐means	
  Clustering	
  
•  Define an Objective function or Distortion Measure 



K-­‐means	
  Clustering	
  
•  Choose some initial values of  

•  First Phase: 

–  Minimize  J with respect to         keeping the       fixed.    

•  Second Phase: 

–  Minimize  J with respect to         keeping the        fixed. 

•  Iterate until convergence 



K-­‐means	
  Clustering	
  
•  While optimizing the above equations, we will get  

•  Note that the denominator of        is equal to the number of 
points assigned to cluster k. 
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K-­‐means	
  Clustering	
  
•  Note that the previous algorithm is a batch version of K-means 

and there is also a sequential version. 

•  The dissimilarity measure used previously is Euclidean 
distance and it has some limitations. Hence there are some 
modification of the dissimilarity measure. 

•  K-means is a hard clustering algorithm in which a point is 
assigned to one and only one cluster and it has limitations for 
points lying at equidistant between two clusters. 



Image	
  Segmenta:on	
  and	
  Compression	
  

•  Goal: Partition an image into regions each of which has a 
reasonably homogenous visual appearance or which 
corresponds to objects or parts of objects. 

•  Treat each pixel as a 3-D data point of the RGB intensities and 
apply K-means clustering. Finally replace each pixel with the 
corresponding RGB intensity of the cluster it is assigned to. 

•  Lossy Image compression can be performed by storing indexes 
of cluster centres and the cluster centres. 
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Mixtures	
  of	
  Gaussian	
  
•  Gaussian Mixture Distribution can be given as 



Mixtures	
  of	
  Gaussian	
  
•  Using 1-of-K coding scheme for z 

•  Define conditional distribution of x given a particular z 

•  Define Joint Distribution over all possible states of z 





Mixtures	
  of	
  Gaussian	
  
•  Define the conditional probability of z given x. 

•  Note that       is the prior probability of              and the quantity       
as the corresponding posterior probability once we observed x.  





Mixtures	
  of	
  Gaussian:	
  	
  
Maximum	
  Likelihood	
  

•  Taking data points drawn independently from a mixture of 
Gaussians, the log likelihood is given by 
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Maximum	
  Likelihood	
  

•  Consider a diagonal covariance matrices for simplicity and 
consider the case 

 
•  If                  then                                  and 
•  Note that this problem does not occur in the case of single 

Gaussian function where the overall likelihood goes to zero 
rather than infinity. 

•  Maximum likelihood also gives many identical distribution. 
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EM	
  for	
  Gaussian	
  Mixtures	
  
•  Expectation-Maximization: powerful method for finding 

maximum likelihood models with latent variables. 

•  Differentiate with respect to  
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•  Differentiate with respect to 

•  Use Lagrange multiplier in order to differentiate with respect 
to   
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General	
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Rela:on	
  to	
  K-­‐means	
  
•  For identical covariance 

•  Expected complete-data log likelihood 


