Mixture Models and EM



Mixture Models

Can be used to build more complex probability distribution
from simple ones.

Advantageous for clustering.
Latent variables can be cased to the mixture models.

Gaussian mixtures models are widely used in data mining,
pattern recognition, machine learning and statistical analysis.



K-means Clustering

* Uses to 1dentify clusters in multidimensional space.

 Aim: Partition the data set into some number K of clusters,
where K 1s given.

* Note: A cluster comprises of a group of data points whose
inter-point distances are small compared with the distances to
points outside of the cluster. Each cluster is represented by a
vector representing the centeroid of each cluster.




K-means Clustering

* Define an Objective function or Distortion Measure

N
J = Z "'n};HXn — /-l‘A'HQ
=1k

n=1 k=1



K-means Clustering

Choose some initial values of 1,

First Phase:
— Minimize J with respect to 7% keeping the M« fixed.

Second Phase:

— Minimize J with respect to M keeping the "nk fixed.

[terate until convergence



K-means Clustering

* While optimizing the above equations, we will get

; . oo . 2

1 if k= argmin; ||x, — p;||*

'mk — - . ) )
0 otherwise.

o TnkXn

T

Ky = -
n I'nk

* Note that the denominator of (¢, 1s equal to the number of
points assigned to cluster k.



K-means Clustering
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Figure 9.1 lllustration of the K -means algorithm using the re-scaled Old Faithful data set. (a) Green points
denote the data set in a two-dimensional Euclidean space. The initial choices for centres y, and p, are shown
by the red and blue crosses, respectively. (b) In the initial E step, each data point is assigned either to the red
cluster or to the blue cluster, according to which cluster centre is nearer. This is equivalent to classifying the
points according to which side of the perpendicular bisector of the two cluster centres, shown by the magenta
line, they lie on. (c) In the subsequent M step, each cluster centre is re-computed to be the mean of the points
assigned to the corresponding cluster. (d)—(i) show successive E and M steps through to final convergence of
the algorithm.



K-means Clustering

Figure 9.2 Plot of the cost function J given by
(9.1) after each E step (blue points) 1000}
and M step (red points) of the K-
means algorithm for the example
shown in Figure 9.1. The algo- J
rithm has converged after the third
M step, and the final EM cycle pro-
duces no changes in either the as- 00
signments or the prototype vectors.




K-means Clustering

* Note that the previous algorithm is a batch version of K-means
and there 1s also a sequential version.

 The dissimilarity measure used previously 1s Euclidean
distance and i1t has some limitations. Hence there are some
modification of the dissimilarity measure.

 K-means is a hard clustering algorithm in which a point is
assigned to one and only one cluster and it has limitations for
points lying at equidistant between two clusters.



Image Segmentation and Compression

* Goal: Partition an 1mage into regions each of which has a
reasonably homogenous visual appearance or which
corresponds to objects or parts of objects.

* Treat each pixel as a 3-D data point of the RGB intensities and
apply K-means clustering. Finally replace each pixel with the
corresponding RGB intensity of the cluster it is assigned to.

* Lossy Image compression can be performed by storing indexes
of cluster centres and the cluster centres.



Image Segmentation and Compression




Image Segmentation and Compression

Original image




Image Segmentation and Compression




Image Segmentation and Compression




Mixtures of Gaussian

* Gaussian Mixture Distribution can be given as

K

p(X) = Z TN (X pty, X))

k=1

o



Mixtures of Gaussian

* Using 1-of-K coding scheme for z
K
p(z) = || =i
k=1

* Define conditional distribution of x given a particular z

p(x|zr = 1) = N (x|, )

K
p(x[z) = TV (xlper, Zi)™.
k=1

* Define Joint Distribution over all possible states of z

K

p(x) = p(2)p(x|z) = Y mN(x|py, )
Z

k=1



Figure 9.4 Graphical representation of a mixture model, in which
the joint distribution is expressed in the form p(x,z) =

plz)p(x[z).

Z



Mixtures of Gaussian

* Define the conditional probability of z given x.

_ p(zr = 1)p(x|zp = 1)
V() = plar =1]x) = —
> plz=1)px|z = 1)
J=1

« Note that 7k is the prior probability of zx = | and the quantity ~(z)
as the corresponding posterior probability once we observed x.



Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities (=) associated with data point x,,, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by ~(z.x) for k = 1,2, 3, respectively



Mixtures of Gaussian:
Maximum Likelihood

* Taking data points drawn independently from a mixture of
Gaussians, the log likelihood 1s given by

K
Inp(X|m, @, X) Z In {Z TN (X |1 g Ek)} :

n=1 k=1

Figure 9.6 Graphical representation of a Gaussian mixture model (2.
for a set of N i.i.d. data points {xn} with corresponding ‘
latent points {z,}, where n =1,... N. e
Xn
J o e )
N
———




Mixtures of Gaussian:
Maximum Likelihood

Consider a diagonal covariance matrices for simplicity and
consider the case p; = X

1 1
(27)1/2 Tj

2
.\ (.X~n ‘X~n . (_TJ I ) —

If o. — 0 then N(X,|X,,0°I) — w and np(X|m, @, T)— o
J ]

Note that this problem does not occur in the case of single
Gaussian function where the overall likelihood goes to zero
rather than infinity.

Maximum likelithood also gives many 1dentical distribution.



Mixtures of Gaussian:
Maximum Likelihood

>

Figure 9.7 lllustration of how singularities in the
likelihood function arise with mixtures
of Gaussians. This should be com- p(z)
pared with the case of a single Gaus-
sian shown in Figure 1.14 for which no

singularities arise.




EM for Gaussian Mixtures

* Expectation-Maximization: powerful method for finding
maximum likelthood models with latent variables.

* Differentiate with respect to Hk

n=1

T koo N X71|HL EL)

Z N (x|, ;)
( nk)
) N

i — _Z nk Xn

Zk (Xn

— M )



EM for Gaussian Mixtures

* Differentiate with respect to 3,
1 N
k, — \_ Z nA Xn. — M ) (_Xn — /»l']\-v)T

* Use Lagrange multiplier in order to differentiate with respect
to 7k

K
Inp(X|m, @, 3) + A (Z Tk — l)

k=1



EM for Gaussian Mixtures

(g




EM for Gaussian Mixtures
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EM for Gaussian Mixtures
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Figure 9.8 lllustration of the EM algorithm using the Old Faithful set as used for the illustration of the K'-means
algorithm in Figure 9.1. See the text for details.



EM for Gaussian Mixtures

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal 1s to maximize the likelihood function
with respect to the parameters (comprising the means and covariances of the
components and the mixing coefficients).

|. Initialize the means g, covartances X and mixing coefficients my, and
evaluate the initial value of the log likelthood.

2. E step. Evaluate the responsibilities using the current parameter values

. TN (X | g, 2
A‘r" ( »:":n ]\ ) — I'!

A

Z WJ'""\'"F (Xn|p js ;)

1=1



EM for Gaussian Mixtures

3. M step. Re-estimate the parameters using the current responsibilities

N
. 1 ,
ll-l;‘l.e“ = N Zﬁ.’(snk )Xn (9.24)
Nk n=1
1 N
3 = N E :7"(37116) (Xn — ™) (X — #'if-ew)T (9.25)
- A n—1
N,
new — 0.26
k N (=.26)
where
N
N = E Y(zZnk)- (9.27)
n—=1
4. Evaluate the log likelihood
N K
Inp(X|pe,2,7m) = E In E TN (X0 | feg., 28) (9.28)
n=—1 k=1

and check for convergence of either the parameters or the log likelihood. If
the convergence criterion 1s not satisfied return to step 2.



General EM Algorithm

The General EM Algorithm

Given a joint distribution p(X, Z|@) over observed variables X and latent vari-
ables Z, governed by parameters 6, the goal 18 to maximize the likelihood func-
tion p(X|@) with respect to 6.

|. Choose an initial setting for the parameters 0°'9.
' ld
2. E step Evaluate p(Z|X, 07).



General EM Algorithm

3. M step Evaluate ™" given by

0" = arg max Q(6,0°'9) (9.32)
0
where
Q(6,6°) = " p(Z|X,6°) Inp(X, Z|6). (9.33)
Z

4. Check for convergence of either the log likelihood or the parameter values.
If the convergence criterion 1s not satisfied, then let

Oolcl o Onew (9}4)

and return to step 2.



Relation to K-means

 For identical covariance

1 1 .-
p(x|py, Xi) = PERIE exp {—)—EHX — ;LL,|\2} :

i exp { =[x — pg|?/2)

S 75 exp {— [ — puy|2/26}

s

8l ( “nk ) —

* Expected complete-data log likelithood

Ez[np(X,Z|p, 3, m) ———ZZ k|| Xn — p]|* + const.
n=1 k=1



