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Abstract—This paper presents an algorithm for the optimal
design of general entropy-constrained successively refinable un-
restricted polar quantizer, i.e., with arbitrary number L of
refinement levels, for bivariate circularly symmetric sources.
The optimization problem is formulated as the minimization of
a weighted sum of distortions and entropies for the scenario
where the magnitude quantizers’ thresholds are confined to a
predefined finite set. The proposed solution algorithm is globally
optimal. It involves L stages, where each stage corresponds to an
unrestricted polar quantizer (UPQ) level, and includes solving the
minimum-weight path problem for multiple node pairs in a series
of weighted directed acyclic graphs. Additionally, we derive an
upper bound P

(l)
max, l ∈ [1 : L], on the possible number of phase

levels in any phase quantizer of the l-th level UPQ, which grows
linearly with l. The time complexity of the proposed approach
is O(L2K3P

(1)
max), where K is the cardinality of the predefined

set of possible magnitude thresholds. Finally, the experimental
results for L = 3 demonstrate the effectiveness in practice of the
proposed scheme.

Index Terms—Successively refinable quantizer, entropy-
constrained unrestricted polar quantization, globally optimal
algorithm, minimum-weight path problem.

I. INTRODUCTION

Polar coordinates are a natural choice when representing
two-dimensional circularly symmetric probability densities.
Accordingly, the quantization of bivariate sources with such
densities can be performed in polar coordinates by the so-
called polar quantizers. Specifically, a polar quantizer consists
of two sequential scalar quantizers, i.e., a magnitude quantizer
that may be nonuniform, and a uniform phase quantizer. There
is a large body of literature focusing on the design of polar
quantizers, such as [1]– [20] and references therein. Polar
quantizers can be applied, for instance, in the encoding of
discrete Fourier transform coefficients [1], [2], in holographic
image processing [5], as well as in audio coding [6] for
quantizing the sinusoid signals. Recently, the use of polar
transmitters in wireless communication systems has gained in-
creased attention [21]–[23], which also calls for the application
of polar quantization in wireless receivers design [10], [12],
[15].

In polar quantization, the phase quantizer can be designed
either separately or dependently on the magnitude quantizer.
The former one is called strictly polar quantizer (SPQ), while
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the latter one is known as unrestricted polar quantizer (UPQ).
Note that the UPQ is of higher interest since it possesses
better rate-distortion performance [3]. Most of the prior work
on UPQ design focuses on the design of single-description
fixed-rate UPQ (FRUPQ), aiming at minimizing the distortion
for a fixed number of quantization regions. In particular,
the design of uniform FRUPQ, i.e., where the magnitude
quantizer is also uniform, was investigated in [13], [19]. The
design of nonuniform FRUPQ was considered in [4], [8],
[9], while the work [11] addresses the variance mismatch
analysis for FRUPQ for Gaussian sources. Note that in the
aforementioned literature, the optimal designs were derived
using the asymptotic analysis, thus the optimality holds as the
rate approaches infinity. The design of optimal FRUPQ for
finite rates, i.e., without the high resolution assumption, was
firstly conducted in [3], but the solution suffers from high
complexity. Recently, in order to make the practical FRUPQ
design more feasible for larger rates, an optimal algorithm
based on dynamic programming was proposed in [18].

It is known that it is inefficient to assign equal length
bitstreams to all quantized outputs (which is the case in
FRUPQ), since they may have non-equal probabilities. Thus,
Wilson applied entropy coding to the FRUPQ’s output in [3],
in order to improve its performance. On the other hand, he
also pointed out that for optimal rate-distortion performance,
the entropy-constrained optimization has to be accomplished,
i.e. where the distortion is minimized with a constraint on
the entropy, but he did not pursue it. The entropy-constrained
UPQ (ECUPQ) design was addressed in [6] for the high rate
scenario and in [17] for the finite rate case. The optimization
criterion in both works is the minimization of a weighted sum
of the distortion and entropy.

A successively refinable (or progressive/embedded/scalable)
quantizer encodes the input signal into a base layer followed
by several refinement (or enhancement) layers. The decoding
of the base layer guarantees a coarser reconstruction of the
signal, while the decoding of any additional enhancement
layer gradually improves the reconstruction. This characteristic
is useful for data transmission over the Internet and mobile
networks, in order to maintain the quality of service when
the bandwidth fluctuates in time due to network congestion
and/or channel noise. For instance, in case of network con-
gestion, the packets containing the last refinement layer can
be dropped leading to only a slight decrease in the quality of
reconstruction at the decoder. Thus, a successively refinable
code enables a graceful degradation of the reconstruction when
channel conditions deteriorate. On the other hand, if a non-
successively refinable code is used, the loss of a portion of
the bitstream may worsen dramatically the reconstruction of
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the signal. Much effort has been put into the investigation of
successively refinable quantizers (see [24]– [31] and references
therein), with applications in JPEG 2000 image compression
standard [32], [33] and H. 264 scalable video coding standard
[34], among others.

Therefore, it is of interest to study the design of successively
refinable UPQs (SRUPQ). To the best of our knowledge, there
are only two papers, [7] and [20], dealing with the practical
design of SRUPQ. The authors of [7] address the design of
fixed-rate SRUPQ with a general number L of refinement
levels, where each component UPQ Q(k) consists of exactly 2k

quantization bins, in other words, the rate is k/2 bits/sample.
The design of [7] employs a greedy algorithm. To be specific,
Q(1) is the optimal two-level FRUPQ. Further, for each k ≥ 2,
after constructing Q(1), · · · , Q(k−1), the FRUPQ Q(k), is
obtained as the (asymptotically) best one-bit refinement of
Q(k−1). Work [20] presents design algorithms for both fixed-
rate SRUPQs (FR-SRUPQ) and entropy-constrained SRUPQs
(EC-SRUPQ), but with only L = 2 refinement levels. In
[20], the EC-SRUPQ design problem is formulated as the
minimization of a weighted sum of distortions and entropies
of UPQs at both levels for the case when the thresholds of the
magnitude quantizers are restricted to some predefined finite
sets and a globally optimal solution is proposed.

This work is concerned with the design of EC-SRUPQs
with an arbitrary number L of refinement levels and is
related to [20]. Therefore, we will review the EC-SRUPQ
design algorithm proposed in [20] more closely. The solution
algorithm extends ideas from the design of optimal single-
level ECUPQ of [17], but is much more involved. In particular,
the algorithm of [17] first finds the optimal number of phase
levels for each possible cell of the magnitude quantizer, then
solves the minimum-weight path (MWP) problem in a certain
weighted directed acyclic graph (WDAG) in order to find
the optimal partition of the magnitude quantizer. Adding one
refinement level to the ECUPQ leads to the need of finding
the best refinement of each possible quantization region of
the coarse UPQ first, which is a problem similar in spirit to
the problem of single-level ECUPQ design. This leads to the
addition of another stage in the solution algorithm of [20],
whose computationally dominant portion consists of solving
the MWP problem between multiple pairs of nodes in multiple
WDAGs. Each pair of nodes represents a possible magnitude
cell of the coarse UPQ. Multiple WDAGs are needed since
each of them is connected to one possible value of the number
of phase levels of the phase quantizer corresponding to a
magnitude cell in the coarse UPQ. Finally, this addition leads
to the increase of the time complexity from O(K2) in the
single-level case to O(K3P

(1)
max) in the two-level case, where

K is the size of the set of possible magnitude thresholds and
P

(1)
max is an upper bound on the possible number of phase levels

of the phase quantizers involved in the coarse UPQ.

However, it is worth pointing out that from [20], it is
not clear how the solution approach can be generalized to
solve the problem of optimal EC-SRUPQ design for higher
values of L. It is also not clear how big the impact of adding
refinement levels beyond two would be on the time complexity.

The fact that adding just one refinement level increases the
running time by a factor of O(KP

(1)
max) naturally leads to the

question whether such an increase should be expected for each
additional level of refinement.

In this work, we settle the aforementioned two problems
by presenting an algorithm for the design of an EC-SRUPQ
with general number L ≥ 2 of refinement levels, for which the
algorithm of [20] is a special case corresponding to L = 2.
Similarly to [20], we consider the scenario where the mag-
nitude quantizer thresholds are confined to some predefined
finite set and propose a globally optimal solution for this
problem. Namely, we show that the solution algorithm for
general L consists of L stages, where each stage is related to
a UPQ level. The algorithm starts with the stage associated to
the L-th level (i.e., the finest level) and proceeds in decreasing
order of levels. The stage corresponding to each level l, l > 1,
is similar in spirit to the stage corresponding to the finest level
in the design of [20] and its time complexity is O(K3P

(l−1)
max ),

where P (l−1)
max is an upper bound on the possible number of

phase levels of the phase quantizers at the (l−1)-th refinement
level. The challenge here was to develop an upper bound P (l)

max

that does not increase exponentially with l. Interestingly, we
found a value for P (l)

max that increases at most linearly with l,
i.e., it satisfies the inequality P (l)

max ≤ lP (1)
max. This leads to the

conclusion that the time complexity of the proposed algorithm
is O(L2K3P

(1)
max), i.e., only a factor of O(L2) higher than for

the case of two levels.
The remaining of this paper is structured as follows. The

following section introduces the notations, definitions and the
problem formulation. In Section III, the major steps of the
solution algorithm are described for the case of L = 3. Section
IV shows how the process revealed in the previous section can
be generalized to the case of arbitrary number of levels L ≥ 3.
Section V presents the details of each step of the proposed
algorithm for general L. Finally, the experimental results are
presented in Section VI, while Section VII concludes the
paper.

II. NOTATION, DEFINITIONS AND PROBLEM
FORMULATION

A. Notation and Definitions

Consider a bivariate random variable with the following
circularly symmetric density, as a function of the polar co-
ordinates r and θ,

p(r, θ) =
1

2π
g(r), 0 ≤ r <∞, 0 ≤ θ < 2π.

Note that g(r) is the marginal probability density function
(pdf) of the magnitude variable, and the phase variable is
uniformly distributed over the interval [0, 2π). In addition,
notice that the magnitude and phase variables are independent.
An example of such a bivariate random variable is a two-
dimensional memoryless Gaussian vector (X1, X2), with X1

and X2 following independent and identical marginal pdfs.
Let us first define, for any integer n ≥ 2, an increasing n-

sequence as any n-tuple r = (r0, r1, · · · , rn−1), where 0 ≤
r0 < r1 < · · · < rn−2 < rn−1 ≤ ∞. Additionally, for any
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n ≥ 2, a ∈ [0,∞) and b ∈ (0,∞], with a < b, let Sn(a, b)
denote the set of all increasing n-sequences such that r0 = a
and rn−1 = b.

For any integer L ≥ 2, an EC-SRUPQ with L refinement
levels is a sequence of L progressively refinable ECUPQs
QL = (Q1, Q2, · · · , QL), where Ql is a refinement of Ql−1,
for l ∈ [2 : L]1.

We will first discuss the notations for the coarse ECUPQ
Q1. Let M1 denote its number of magnitude levels, while
r = (r0, r1, · · · , rM1

) denotes the increasing sequence of
thresholds of its magnitude quantizer. Then the bins of the
magnitude quantizer are Ci1 = [ri1−1, ri1), for 1 ≤ i1 ≤M1.
Each magnitude quantizer is associated with a uniform phase
quantizer, and we denote by Pi1 the number of phase regions
of the phase quantizer associated to cell Ci1 , 1 ≤ i1 ≤ M1.
Note that Pi1 ∈ Z+, where Z+ is the set of positive integers.
Finally, each quantization bin of the ECUPQ Q1 is given by

R(i1, k) =

{
reθ|r ∈ Ci1 , (k − 1)

2π

Pi1
≤ θ < k

2π

Pi1

}
,

for some 1 ≤ i1 ≤ M1 and 1 ≤ k ≤ Pi1 , where  is the
imaginary unit, i.e., 2 = −1. The total number of quantization
bins of Q1 is N1 =

∑M1

i1=1 Pi1 . For each quantization bin
of Q1, the reconstructed magnitude-phase pair that minimizes
the distortion (measured using the squared error) is Ai1e

θi1,k

given by [1], [3]

θi1,k = (2k − 1)
π

Pi1
, Ai1 = sinc

(
1

Pi1

)
x(Ci1),

where sinc
(

1
Pi1

)
=

sin(π/Pi1 )

π/Pi1
, and for C ⊆ [0,∞), x(C) =∫

C
rg(r)dr∫

C
g(r)dr

.
For each l, l ∈ [2 : L], ECUPQ Ql is a refinement of Ql−1.

In other words, each magnitude cell C of Ql is a subset of
some magnitude cell C ′ of Ql−1, and the number of phase
levels of the phase quantizer corresponding to C is a multiple
of the number of phase levels of the phase quantizer associated
to C ′. We will index the magnitude cells of Ql using l-tuples of
positive integers. We use the notation il for such an l-tuple, i.e.,
il = (i1, i2, · · · , il). Given the l-tuple il = (i1, i2, · · · , il), il−1
denotes its (l−1)-length prefix, i.e., il−1 = (i1, i2, · · · , il−1).
The magnitude cell Cil of Ql is a subset of the magnitude
cell Cil−1

of Ql−1. More specifically, each cell Cil−1
of the

magnitude quantizer of Ql−1 is partitioned into Ml,il−1
cells

of the magnitude quantizer of Ql.
Moreover, for any magnitude cell Cil of Ql, l ∈ [2 : L],

let us denote by P̃il the number of phase regions of the phase
quantizer associated to Cil . As Ql is a refinement of Ql−1, P̃il

must be a multiple of P̃il−1
, i.e., one has P̃il = Pil P̃il−1

, for
some Pil ∈ Z+, where P̃i1 = Pi1 . It follows that P̃il can be
computed by P̃il = Πl

j=1Pij . Here we make the convention
that ij , for 1 ≤ j ≤ l − 1, denotes the j-length prefix of
the l-tuple il, and Pi1 = Pi1 . We will use this convention in
the sequel without explicitly specifying it. Accordingly, each

1Note that technically there are only L−1 levels of refinement, since level
1 can be considered as the base level. However, since the total number of
levels, i.e., component UPQs, is L, we refer to such an EC-SRUPQ as having
L refinement levels.

C1

(P1)
C2
(P2) · · · Ci1

(Pi1) (PM1
)

CM1· · ·

Ci1,1 · · · Ci1,i2 · · · Ci1,M2,i1
(Pi1,i2 · Pi1)

(Pi1,1 · Pi1) (Pi1,M2,i1
· Pi1)

· · · · · ·Ci1,i2,1

Ci1,i2,i3

Ci1,i2,M3,i1,i2

(Pi1,i2,i3 · Pi1,i2 · Pi1)

(Pi1,i2,1 · Pi1,i2 · Pi1) (Pi1,i2,M3,i1,i2
· Pi1,i2 · Pi1)

Fig. 1. An illustration of the partitions of the magnitude quantizer for the
case L = 3, as described in Section II.

quantization bin of the refined ECUPQ Ql can be represented
as

R(il, k) =

{
reθ|r ∈ Cil , (k − 1)

2π

P̃il

≤ θ < k
2π

P̃il

}
,

for 1 ≤ k ≤ P̃il , 1 ≤ i1 ≤ M1 and 1 ≤ il ≤ Ml,il−1

for l ≥ 2. The total number of quantization bins of Ql is
thus Nl =

∑
il
P̃il , where the summation is over all l-tuples

il labeling the magnitude cells of Ql. It follows that each
quantization region R(il, k) of UPQ Ql is a subset of the
quantization region R(il−1, d kPil

e) of UPQ Ql−1, where d·e
denotes the ceiling function.

To facilitate the understanding of the notations and structure
of the EC-SRUPQ, we illustrate in Figure 1 the partitions of
the magnitude quantizers for the case with L = 3 refinement
levels. Notation Ci1 , 1 ≤ i1 ≤M1, is used for the magnitude
cell [ri1−1, ri1) of the coarse ECUPQ Q1, while Pi1 represents
the number of phase levels of the phase quantizer associated
to Ci1 . Further, the cell Ci1 is partitioned into M2,i1 refined
cells of the magnitude quantizer of Q2. Each such refined
magnitude bin is denoted by Ci1,i2 , 1 ≤ i2 ≤ M2,i1 . The
corresponding number of phase regions for this bin is then
P̃i1,i2 = Pi1,i2Pi1 . Similarly, the cell Ci1,i2 is divided into
M3,i1,i2 bins of the magnitude quantizer of Q3. We denote by
Ci1,i2,i3 , 1 ≤ i3 ≤ M3,i1,i2 , each such refined magnitude
bin and by P̃i1,i2,i3 = Pi1,i2,i3Pi1,i2Pi1 the corresponding
number of phase regions. In addition, Figure 3 in Section VI
shows the quantization regions of an actual EC-SRUPQ with
3 levels obtained with the optimization algorithm proposed in
this work.

The squared error is utilized as the distortion measure. As
a consequence, the expected distortion (per sample) of the
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ECUPQ Ql, l ∈ [1 : L], can be expressed as [1], [3]

D(Ql)

=
1

2

∑
il

P̃il∑
k′=1

∫
Cil

∫ k′ 2π

P̃il

(k′−1) 2π

P̃il

||reθ −Aile
θil,k′ ||2 p(r, θ) dθdr

=
1

2

∑
il

∫
Cil

{ P̃il∑
k′=1

∫ k′ 2π

P̃il

(k′−1) 2π

P̃il

[
r2 − 2rAil cos(θ − θil,k′)

+A2
il

] g(r)

2π
dθ

}
dr,

(1)
where the outer summation is over all l-tuples il labeling
the magnitude cells of Ql. According to [1], [3], for each
bin R(il, k

′), the reconstructed magnitude-phase pair that
minimizes the distortion is

Ail = sinc

(
1

P̃il

)
x(Cil), θil,k′ = (2k′ − 1)

π

P̃il

. (2)

Substituting (2) into (1), we obtain the following simplified
expression

D(Ql) =
1

2

(∑
il

∫
Cil

r2g(r)dr −
∑
il

A2
il
q(Cil)

)

=
1

2

(∫ +∞

0

r2g(r)dr −
∑
il

A2
il
q(Cil)

)
,

(3)

where, for C ⊆ [0,∞), q(C) =
∫
C
g(r)dr.

The encoder generates a bitstream with L refinement layers
as follows. Each input pair (r, θ) is quantized using the UPQ
QL, i.e., the region R(iL, k) satisfying (r, θ) ∈ R(iL, k) is
determined. Next the L-tuple (k1, · · · , kL) satisfying kL = k
and R(iL, kL) ⊆ R(iL−1, kL−1) ⊆ · · · ⊆ R(i1, k1) is
computed. The first layer is obtained by applying entropy
coding to the pairs (i1, k1). Further, for each l, l ∈ [2 : L], the
l-th refinement layer is generated by encoding the pairs (il, kl)
conditionally on (il−1, kl−1) also using an entropy coder.
Since practical entropy coders, such as the arithmetic coder
or the block Huffman coder, are able to approach the entropy
of the random variable being encoded as the block dimension
increases to infinity, we assume that the bitrate (per sample) of
the l-th refinement layer equals 1

2H(Il,Kl|Il−1,Kl−1), where
Il denotes the random vector representing the l-tuple il, Kl

denotes the random variable representing the integer kl, and
H(·|·) denotes the conditional entropy function2. For each
l, l ∈ [1 : L], denote by R(Ql) the bitrate (per sample) of
the prefix formed of the first l layers. It follows that R(Ql)
equals half of the entropy of the output of UPQ Ql, i.e.,

R(Ql) =
1

2
H(Il,Kl) =

1

2
(H(Il) +H(Kl|Il))

=
1

2

∑
il

q(Cil)
(
− log2 q(Cil) + log2(P̃il)

)
,

(4)

2Note that the assumption that the rate of an entropy-constrained quantizer
equals the entropy of the quantized output divided by the quantizer dimension
is very common in the entropy-constrained quantizer design literature [6], [17],
[20], [35], [36].

where the summation is over all l-tuples il labeling the
magnitude cells of Ql.

We will further assume that the thresholds of the magnitude
quantizer at each level take values in some predefined set A =
{a1, · · · , aK}. In practice, this set can be obtained by finely
discretizing the interval [0, B], for some B chosen such that the
probability that r /∈ [0, B] is sufficiently small. Assume that
the elements of A are labeled in increasing order, i.e., ai <
ai+1, for 1 ≤ i ≤ K − 1. Additionally, let us denote a0 = 0,
aK+1 =∞ and Ā = A∪ {a0, aK+1}. We emphasize that the
algorithm proposed in this work can be easily generalized to
the case where the predefined sets of possible thresholds of
the magnitude quantizer of Ql is a subset of that for Ql+1,
for l ∈ [1 : L− 1].

B. Problem Formulation
We are interested in the minimization of a weighted sum of

distortions and rates. Therefore, the cost in the optimization
problem is

L(QL) ,
L∑
l=1

[
φlD(Ql) + λlR(Ql)

]
, (5)

where 0 ≤ φl ≤ 1, λl > 0, for l ∈ [1 : L], and
∑L
l=1 φl = 1.

Let us denote by QL(A) the set of all EC-SRUPQs with the
magnitude quantizers’ thresholds taken from the set Ā. We
formulate the problem of optimal design of an EC-SRUPQ
with L refinement levels as follows

min
QL∈QL(A)

L(QL). (6)

It is known [37], [38] that the solution to problem (6)
corresponds to an EC-SRUPQ whose 2L-tuple of rates and
distortions (R(Q1), · · · , R(QL), D(Q1), · · · , D(QL)) lies on
the lower boundary of the convex hull of the set of all such
2L-tuples obtained when QL ∈ QL(A).

III. PROPOSED EC-SRUPQ DESIGN WHEN L = 3

In order to facilitate the understanding of the proposed
solution to the optimization problem (6) for general L, we
first treat the simpler case when L = 3. This section describes
explicitly the major steps of the proposed design algorithm for
the case of L = 3 refinement levels.

When L = 3, the optimal EC-SRUPQ design problem is

min
Q3∈Q3(A)

L(Q3). (7)

Notice that the first term in (3) is always constant, and hence
it can be removed from the cost function (7) for each l, l ∈
[1 : 3]. Further, by substituting relations (3) and (4) in (7),
the problem (7) becomes equivalent to minimizing the cost
F(Q3), which is given in (8) at the top of the next page.

Let us assume that we know some integers P (1)
max and P (2)

max,
such that there is an optimal EC-SRUPQ satisfying

Pi1 ≤ P (1)
max and Pi1Pi1,i2 ≤ P (2)

max,

for any 1 ≤ i1 ≤M1 and 1 ≤ i2 ≤M2,i1 .
(9)

By examining the cost function F(Q3), it can be noticed
that for each triplet i3 = (i1, i2, i3), the variable Pi3 only

4
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F(Q3) ,
1

2

M1∑
i1=1

q(Ci1)

(
− φ1 sinc2

(
1

Pi1

)
x2(Ci1)− λ1 log2 q(Ci1) + (λ1 + λ2 + λ3) log2 Pi1

)
︸ ︷︷ ︸

ϕ1(Ci1 ,Pi1 )

+

M2,i1∑
i2=1

q(Ci1,i2)

(
− φ2 sinc2

(
1

Pi1Pi1,i2

)
x2(Ci1,i2)− λ2 log2 q(Ci1,i2) + (λ2 + λ3) log2 Pi1,i2

)
︸ ︷︷ ︸

ϕ2(Ci1,i2 ,Pi1 ,Pi1,i2 )

+

M3,i1,i2∑
i3=1

q(Ci1,i2,i3)

(
− φ3 sinc2

(
1

Pi1Pi1,i2Pi1,i2,i3

)
x2(Ci1,i2,i3)− λ3 log2 q(Ci1,i2,i3) + λ3 log2 Pi1,i2,i3

)
︸ ︷︷ ︸

ϕ3(Ci1,i2,i3 ,Pi1 ·Pi1,i2 ,Pi1,i2,i3 )


 .

(8)

appears in the term ϕ3(Ci1,i2,i3 , Pi1 · Pi1,i2 , Pi1,i2,i3). There-
fore, Pi1,i2,i3 can be optimized separately for fixed Ci1,i2,i3
and P̃i1,i2 = Pi1Pi1,i2 . Note that the final Ci1,i2,i3 and P̃i1,i2
are not known in advance. Nevertheless, we can compute the
optimal Pi1,i2,i3 for each possible choice of Ci1,i2,i3 , i.e., for
each interval [c, d), c, d ∈ Ā, c < d, and for each possible
P̃i1,i2 , i.e., for each positive integer P ≤ P (2)

max. Let us denote
by P ∗3 ([c, d), P ) the optimal Pi1,i2,i3 , namely

P ∗3 ([c, d), P ) = arg min
P ′∈Z+

ϕ3([c, d), P, P ′), (10)

where the smallest minimizer is taken if there are more
solutions. Notice that the problem (10) is identical to problem
(10) in [20] up to a change of parameters. Thus, according
to [20, Proposition 1], there is a finite integer achieving the
minimum in (10). Further, let

ϕ∗3([c, d), P ) = ϕ3([c, d), P, P ∗3 ([c, d), P )), (11)

for each c, d and P as in (10).

Next, by replacing Pi1,i2,i3 in F(Q3) with
P ∗3 (Ci1,i2,i3 , P̃i1,i2), for each 1 ≤ i1 ≤ M1, 1 ≤ i2 ≤ M2,i1

and 1 ≤ i3 ≤M3,i1,i2 , we obtain the following cost function

F3,1(Q3) ,
1

2

M1∑
i1=1

{
ϕ1(Ci1 , Pi1)+

M2,i1∑
i2=1

[
ϕ2(Ci1,i2 , Pi1 , Pi1,i2) +

M3,i1,i2∑
i3=1

ϕ∗3(Ci1,i2,i3 , P̃i1,i2)

]}
.

As F(Q3) ≥ F3,1(Q3), it follows that the problem (7) is
equivalent to minimizing F3,1(Q3). It can also be noticed
that, if the values ϕ∗3(Ci1,i2,i3 , P̃i1,i2) are known for each
possible pair (Ci1,i2,i3 , P̃i1,i2), then the partition of Ci1,i2
into cells Ci1,i2,i3 can be optimized separately for each pair
(Ci1,i2 , P̃i1,i2). We will then denote by r∗3(Ci1,i2 , P̃i1,i2) this
optimal partition. The optimal partition can be computed for
each possible magnitude cell Ci1,i2 , i.e., for each interval
[c, d), c, d ∈ Ā, c < d, and for each positive integer P ≤ P (2)

max,
where P represents the value P̃i1,i2 . In other words, we

compute

r∗3([c, d), P ) = arg min
M,r

M∑
i=1

ϕ∗3([ri−1, ri), P ), (12)

where r = (r0, · · · , rM ) ∈ SM+1(c, d) ∩ ĀM+1. Then, let us
denote by τ∗2 ([c, d), P ) the cost obtained at optimality in (12),
i.e.,

τ∗2 ([c, d), P ) =

M∗∑
i=1

ϕ∗3([r∗i−1, r
∗
i ), P ), (13)

where r∗3([c, d), P ) = (r∗0 , · · · , r∗M∗). Subsequently, by replac-
ing, for each (i1, i2), the partition of Ci1,i2 in F3,1(Q3) with
the optimal partition r∗3(Ci1,i2 , P̃i1,i2), a new cost function is
obtained, which depends only on the ECUPQs at levels 1 and
2, namely

F3,2(Q3) ,
1

2

M1∑
i1=1

{
ϕ1(Ci1 , Pi1)+

M2,i1∑
i2=1

[
ϕ2(Ci1,i2 , Pi1 , Pi1,i2) + τ∗2 (Ci1,i2 , P̃i1,i2)

]}
.

Now it can be observed that, if the values τ∗2 (Ci1,i2 , P̃i1,i2)

are known for all possible pairs (Ci1,i2 , P̃i1,i2), then the
optimal Pi1,i2 can be found independently for each possible
pair (Ci1,i2 , Pi1). Similarly to the evaluation of the optimal
Pi1,i2,i3 , the optimal Pi1,i2 will be computed for each possible
cell Ci1,i2 , i.e., for each interval [c, d), c, d ∈ Ā, c < d,
and for each possible choice of Pi1 , i.e., for each positive
integer P ≤ P

(1)
max. This optimal Pi1,i2 will be denoted by

P ∗2 ([c, d), P ) and computed as follows

P ∗2 ([c, d), P ) =

arg min
P ′∈Z+

P ′≤P
(2)
max
P

[
ϕ2([c, d), P, P ′) + τ∗2 ([c, d), P · P ′)

]
, (14)

where the smallest one is taken if there are multiple minimiz-
ers. Recall that the term τ∗2 ([c, d), P · P ′) has already been

5
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computed by (13). Further, let

ϕ∗2([c, d), P ) =

ϕ2([c, d), P, P ∗2 ([c, d), P )) + τ∗2 ([c, d), P · P ∗2 ([c, d), P )).
(15)

We then replace in F3,2(Q3) each Pi1,i2 by the optimum
P ∗2 (Ci1,i2 , Pi1), for each 1 ≤ i1 ≤ M1 and 1 ≤ i2 ≤ M2,i1 ,
and thus obtain

F2,1(Q3) ,
1

2

M1∑
i1=1

[
ϕ1(Ci1 , Pi1) +

M2,i1∑
i2=1

ϕ∗2(Ci1,i2 , Pi1)

]
.

We conclude that the problem (7) can be further reduced to
minimizing F2,1(Q3), as F3,2(Q3) ≥ F2,1(Q3). Now it can
be seen that, if the values ϕ∗2(Ci1,i2 , Pi1) are already known
for each possible pair (Ci1,i2 , Pi1), then the refined partition
of Ci1 into cells Ci1,i2 can be optimized separately for each
pair (Ci1 , Pi1). Thus, we can determine this optimal partition
for each possible choice of Ci1 , i.e., for each interval [c, d)
with c, d ∈ Ā, c < d, and for each possible choice of Pi1 , i.e.,
for each positive integer P ≤ P

(1)
max. This optimal partition

will be denoted by r∗2(Ci1 , Pi1), i.e.,

r∗2([c, d), P ) = arg min
M,r

M∑
i=1

ϕ∗2([ri−1, ri), P ), (16)

where r = (r0, · · · , rM ) ∈ SM+1(c, d) ∩ ĀM+1. Further, the
cost obtained at optimality in (16) is

τ∗1 ([c, d), P ) =

M∗∑
i=1

ϕ∗2([r∗i−1, r
∗
i ), P ), (17)

where r∗2([c, d), P ) = (r∗0 , · · · , r∗M∗). At the next step, we
replace, for each i1, the partition of Ci1 in F2,1(Q3) with the
optimum r∗2(Ci1 , Pi1), and obtain a new cost as a function of
only Ci1 and Pi1 , namely

F2,2(Q3) ,
1

2

M1∑
i1=1

[
ϕ1(Ci1 , Pi1) + τ∗1 (Ci1 , Pi1)

]
.

Now it can be pointed out that, if the values τ∗1 (Ci1 , Pi1)
are known for all possible pairs (Ci1 , Pi1), then the optimal
Pi1 can be evaluated independently for each Ci1 . As a conse-
quence, we can compute the optimal Pi1 for each possible cell
Ci1 , i.e., for each interval [c, d), c, d ∈ Ā, c < d. We further
denote by P ∗1 ([c, d)) this optimal Pi1 , i.e.,

P ∗1 ([c, d)) = arg min
P∈Z+

P≤P (1)
max

[
ϕ1([c, d), P ) + τ∗1 ([c, d), P )

]
,

(18)
where the smallest one is taken if there are multiple mini-
mizers. Finally, by replacing Pi1 in F2,2(Q3) with P ∗1 (Ci1),
a new cost function is obtained, which depends only on Ci1 ,
namely

F1(Q3) ,
1

2

M1∑
i1=1

[
ϕ1

(
Ci1 , P

∗
1 (Ci1)

)
+ τ∗1

(
Ci1 , P

∗
1 (Ci1)

)]
.

Therefore, the optimization problem (7) reduces to

min
M1,r

F1(Q3)

subject to r ∈ SM1+1(0,∞) ∩ ĀM1+1.
(19)

The above discussion suggests the following procedure to
solve the problem (7).

i) Determine some integers P (1)
max and P (2)

max such that there
is an optimal EC-SRUPQ satisfying condition (9).

ii) For each pair (c, d) ∈ Ā2, with c < d, and any positive
integer P ≤ P

(2)
max, evaluate P ∗3 ([c, d), P ) according to

(10).
iii) For each pair (c, d) ∈ Ā2, with c < d, and each

positive integer P ≤ P (2)
max, compute the optimal partition

r∗3([c, d), P ) defined in (12) and the corresponding cost
τ∗2 ([c, d), P ) given in (13).

iv) For each pair (c, d) ∈ Ā2, with c < d, and each positive
integer P ≤ P

(1)
max, evaluate P ∗2 ([c, d), P ) according to

(14).
v) For each pair (c, d) ∈ Ā2, with c < d, and each

positive integer P ≤ P
(1)
max, compute the best partition

r∗2([c, d), P ) defined in (16) and the corresponding cost
τ∗1 ([c, d), P ) given in (17).

vi) For each pair (c, d) ∈ Ā2, with c < d, compute P ∗1 ([c, d))
according to (18).

vii) Solve the problem (19).
The detailed solutions for each step will be described in the
context of general L in Section V. In the following section,
we explain how the above procedure can be generalized to
find the optimal EC-SRUPQ for any L ≥ 3.

IV. PROPOSED EC-SRUPQ DESIGN FOR GENERAL L

By removing the constant terms in (3) and substituting
relations (2), (3) and (4) into the cost (5), the problem (6)
becomes equivalent to minimizing F′(QL), which is shown
in equation (20) at the top of next page.

We will assume that we know some integers P (l)
max, for l ∈

[1 : L−1], such that there is an optimal EC-SRUPQ satisfying

P̃il ≤ P (l)
max, for any il = (i1, · · · , il),

1 ≤ i1 ≤M1, 1 ≤ ik ≤Mk,ik−1
,

1 ≤ k ≤ l, l ∈ [1 : L− 1],

(21)

where P̃i1 = Pi1 . It can be noted from (20) that for each
L-tuple iL, the variable PiL appears only in the last term
ϕL(CiL , P̃iL−1

, PiL). Consequently, PiL can be optimized sep-
arately for fixed cell CiL and positive integer P representing
the value P̃iL−1

= ΠL−1
j=1 Pij . In order to achieve this, we need

to evaluate the optimal PiL for each possible choice of CiL ,
i.e., for each interval [c, d), where c, d ∈ Ā, with c < d, and
for each positive integer P ≤ P

(L−1)
max . Then the optimal PiL

can be obtained as

P ∗L([c, d), P ) = arg min
P ′∈Z+

ϕL([c, d), P, P ′), (22)

where the smallest value is chosen in case of multiple minimiz-
ers. The above problem is identical to problem (10) in [20] up
to a change of parameters. Thus, according to [20, Proposition

6
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F′(QL) =
1

2

M1∑
i1=1

(
q(Ci1)

(
− φ1 sinc2

(
1

Pi1

)
x2(Ci1)− λ1 log2 q(Ci1) + (

L∑
j=1

λj) log2 Pi1

)
︸ ︷︷ ︸

ϕ1(Ci1 ,Pi1 )

+ · · ·

+

Ml,il−1∑
il=1

(
q(Cil)

(
− φl sinc2

(
1

Pil · P̃il−1

)
x2(Cil)− λl log2 q(Cil) + (

L∑
j=l

λj) log2 Pil

)
︸ ︷︷ ︸

ϕl(Cil
,P̃il−1

,Pil
)

+ · · ·

+

ML,iL−1∑
iL=1

(
q(CiL)

(
− φL sinc2

(
1

PiL · P̃iL−1

)
x2(CiL)− λL log2 q(CiL) + λL log2 PiL

)
︸ ︷︷ ︸

ϕL(CiL
,P̃iL−1

,PiL
)

)
· · ·
)

︸ ︷︷ ︸
L parentheses

.

(20)

1], we conclude that it has a finite solution. Additionally, we
denote

ϕ∗L([c, d), P ) = ϕL([c, d), P, P ∗L([c, d), P )). (23)

Further, we replace PiL in F′(QL) with its optimal value
P ∗L(CiL , P̃iL−1

), for each iL. Then the following cost function
is obtained,

F′L,1(QL) ,

1

2

M1∑
i1=1

(
ϕ1(Ci1 , Pi1) + · · ·+

Ml,il−1∑
il=1

(
ϕl(Cil , P̃il−1

, Pil)+

· · ·+
ML−1,iL−2∑
iL−1=1

(
ϕL−1(CiL−1

, P̃iL−2
, PiL−1

)+

ML,iL−1∑
iL=1

(
ϕ∗L(CiL , P̃iL−1

)

)
· · ·
)

︸ ︷︷ ︸
L parentheses

.

Since F′(QL) ≥ F′L,1(QL), it follows that the problem (6)
is equivalent to minimizing F′L,1(QL). Further, if the values
ϕ∗L(CiL , P̃iL−1

) are known for each possible pair (CiL , P̃iL−1
),

then the refined partition of CiL−1
into cells CiL can be op-

timized separately for each pair (CiL−1
, P̃iL−1

). This optimal
partition will be denoted by r∗L(CiL−1

, P̃iL−1
). The optimal

partition can be computed for each possible magnitude level
CiL−1

, i.e., for each interval [c, d), where c, d ∈ Ā, with c < d,
and each possible positive integer P ≤ P

(L−1)
max , representing

a possible value of P̃iL−1
. In other words, we obtain

r∗L([c, d), P ) = arg min
M,r

M∑
i=1

ϕ∗L([ri−1, ri), P ), (24)

where r = (r0, · · · , rM ) ∈ SM+1(c, d)∩ĀM+1. Let us further
denote by τ∗L−1([c, d), P ) the cost obtained at optimality in
(24), i.e.,

τ∗L−1([c, d), P ) =

M∗∑
i=1

ϕ∗L([r∗i−1, r
∗
i ), P ), (25)

where r∗L([c, d), P ) = (r∗0 , · · · , r∗M∗).

Subsequently, by replacing, for each iL−1, the parti-
tion of CiL−1

in F′L,1(QL) with the optimal partition
r∗L(CiL−1

, P̃iL−1
), we obtain the new cost function F′L,2(QL)

presented in equation (26) on next page, which depends only
on the EC-SRUPQs levels 1 through L− 1.

Let us assume now that L ≥ 3. We will continue the
description of the process recursively. Namely, let us fix some
l, l ∈ [2 : L − 1], and assume that for each k, l < k ≤ L,
each positive integer P ≤ P

(k−1)
max and each pair (c, d) ∈ Ā2

with c < d, we have defined the quantities P ∗k ([c, d), P ),
r∗k([c, d), P ) and τ∗k−1([c, d), P ). The current cost function is
F′l+1,2(QL) presented in (27) at the top of next page, which
depends only on the EC-SRUPQs levels 1 through l. Thus,
solving the problem (6) is equivalent to minimizing the cost
in (27). By analyzing this cost, we observe that the optimal
Pil can be computed separately for fixed cell Cil and fixed
product P̃il−1

. We will compute it for each possible cell Cil ,
i.e., for each interval [c, d), c, d ∈ Ā, c < d, and for each
positive integer P ≤ P

(l−1)
max , representing a possible value

P̃il−1
, as follows

P ∗l ([c, d), P ) = arg min
P ′∈Z+

P ′≤P
(l)
max
P

(
ϕl([c, d), P, P ′) + τ∗l ([c, d), P · P ′)

)
,

(28)
where the smallest value is chosen in case of multiple mini-
mizers. Further, we denote

ϕ∗l ([c, d), P ) =

ϕl([c, d), P, P ∗l ([c, d), P )) + τ∗l ([c, d), P · P ∗l ([c, d), P )).
(29)

By replacing the variable Pil in F′l+1,2(QL) with the optimum
P ∗l (Cil , P̃il−1

), for each il, we obtain the following cost

F′l,1(QL) ,
1

2

M1∑
i1=1

(
ϕ1(Ci1 , Pi1) + · · ·+

Ml−1,il−2∑
il−1=1

(

ϕl−1(Cil−1
, P̃il−2

, Pil−1
) +

Ml,il−1∑
il=1

(
ϕ∗l (Cil , P̃il−1

)

)
· · ·
)

︸ ︷︷ ︸
l parentheses

.

7
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F′L,2(QL) ,
1

2

M1∑
i1=1

(
ϕ1(Ci1 , Pi1) + · · ·+

Ml,il−1∑
il=1

(
ϕl(Cil , P̃il−1

, Pil) + · · ·+
ML−2,iL−3∑
iL−2=1

(
ϕL−2(CiL−2

, P̃iL−3
, PiL−2

)

+

ML−1,iL−2∑
iL−1=1

(
ϕL−1(CiL−1

, P̃iL−2
, PiL−1

) + τ∗L−1(CiL−1
, P̃iL−1

)

)
· · ·
)

︸ ︷︷ ︸
L−1 parentheses

.
(26)

F′l+1,2(QL) ,
1

2

M1∑
i1=1

(
ϕ1(Ci1 , Pi1) + · · ·+

Ml−1,il−2∑
il−1=1

(
ϕl−1(Cil−1

, P̃il−2
, Pil−1

)

+

Ml,il−1∑
il=1

(
ϕl(Cil , P̃il−1

, Pil) + τ∗l (Cil , Pil · P̃il−1
)

)
· · ·
)

︸ ︷︷ ︸
l parentheses

.
(27)

F′l,2(QL) ,
1

2

M1∑
i1=1

(
ϕ1(Ci1 , Pi1) + · · ·+

Ml−2,il−3∑
il−2=1

(
ϕl−2(Cil−2

, P̃il−3
, Pil−2

)

+

Ml−1,il−2∑
il−1=1

(
ϕl−1(Cil−1

, P̃il−2
, Pil−1

) + τ∗l−1(Cil−1
, P̃il−1

)

)
· · ·
)

︸ ︷︷ ︸
l−1 parentheses

.
(32)

Based on the fact that F′l+1,2(QL) ≥ F′l,1(QL), the problem
(6) is further reduced to minimizing the cost F′l,1(QL). It
follows that, if the values ϕ∗l (Cil , P̃il−1

) are already computed
for each possible pair (Cil , P̃il−1

), then the partition of Cil−1

into cells Cil can be optimized separately for each pair
(Cil−1

, P̃il−1
). We denote by r∗l (Cil−1

, P̃il−1
) this optimal

refined partition, which will be computed for each possible
cell Cil−1

, i.e., for each interval [c, d), c, d ∈ Ā, c < d, and
for each positive integer P ≤ P

(l−1)
max , representing a possible

value P̃il−1
. In other words, we obtain

r∗l ([c, d), P ) = arg min
M,r

M∑
i=1

ϕ∗l ([ri−1, ri), P ), (30)

where r = (r0, · · · , rM ) ∈ SM+1(c, d)∩ĀM+1. Subsequently,
the following cost is obtained at optimality in (30),

τ∗l−1([c, d), P ) =

M∗∑
i=1

ϕ∗l ([r
∗
i−1, r

∗
i ), P ), (31)

where r∗l ([c, d), P ) = (r∗0 , · · · , r∗M∗). By further replacing
the partition of each Cil−1

in F′l,1(QL) with the optimum
partition r∗l (Cil−1

, P̃il−1
), we obtain a cost function that

depends only on the EC-SRUPQs levels 1 through l − 1,
namely F′l,2(QL) in (32) at the top of this page. Since
F′l,1(QL) ≥ F′l,2(QL), it follows that the problem (6) is
equivalent to minimizing F′l,2(QL).

The aforementioned procedure will be repeated in decreas-
ing order for l = L − 1, L − 2, · · · , 2. After doing so, the

problem (6) reduces to minimizing the cost F′2,2(QL) given
as follows,

F′2,2(QL) =
1

2

M1∑
i1=1

(
ϕ1(Ci1 , Pi1) + τ∗1 (Ci1 , Pi1)

)
.

As in the previous section, if the values τ∗1 (Ci1 , Pi1) are
known for all possible pairs (Ci1 , Pi1), then the optimal Pi1
can be evaluated independently for each Ci1 . Thus, the optimal
Pi1 can be computed for each possible choice of Ci1 , i.e.,
for each interval [c, d), c, d ∈ Ā, c < d. Let us denote by
P ∗1 ([c, d)) this optimal Pi1 , i.e.,

P ∗1 ([c, d)) = arg min
P ′∈Z+

P ′≤P (1)
max

(
ϕ1([c, d), P ′) + τ∗1 ([c, d), P ′)

)
,

(33)
where the smallest value is taken in case of multiple minimiz-
ers. Additionally, we denote

ϕ∗1([c, d)) = ϕ1([c, d), P ∗1 ([c, d))) + τ∗1 ([c, d), P ∗1 ([c, d))).
(34)

By replacing the above in the cost function F′2,2(QL), the
problem (6) reduces to

min
M1,r

1

2

M1∑
i1=1

ϕ∗1([ri1−1, ri1))

subject to r ∈ SM1+1(0,∞) ∩ ĀM1+1.

(35)

Based on the above discussion, we conclude that the following
procedure can be utilized to solve the problem (6).

8



This article has been accepted for publication in a future issue of IEEE Transactions on Communications, but has not been fully edited.
0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Step 1) For each l, l ∈ [1 : L − 1], determine an integer
P

(l)
max such that there is an optimal EC-SRUPQ satisfying

condition (21).
Step 2) Repeat the following steps for all l from L down to

2:
Step 2.A) For each pair (c, d) ∈ Ā2, with c < d, and each

positive integer P ≤ P
(l−1)
max , compute P ∗l ([c, d), P )

according to (22) when l = L, respectively according
to (28) for l < L.

Step 2.B) For each pair (c, d) ∈ Ā2, with c < d, and each
positive integer P ≤ P (l−1)

max , compute the optimal par-
tition r∗l ([c, d), P ) defined in (30) and τ∗l−1([c, d), P )
given in (31)3.

Step 3) For each pair (c, d) ∈ Ā2, with c < d, compute
P ∗1 ([c, d)) defined in (33).

Step 4) Solve the problem (35).
The detailed solutions for each step are discussed in the
following Section.

It is also important to notice that when L = 3, the above
procedure reduces to the sequence of steps to solve the
problem (7), described in the previous section. Likewise, if
we replace L by 2, we recover the major steps of the design
algorithm for the optimal EC-SRUPQ with two refinement
levels, presented in [20, Section III. B].

V. STEP-BY-STEP SOLUTION FOR THE EC-SRUPQ
DESIGN WITH GENERAL L

A. Solution for Step 1)

In order to determine the values of P (l)
max, l ∈ [1 : L − 1],

we need to consider problem (16) in [20], which, for com-
pleteness, is presented next. Let us denote f(y) = −sinc2( 1

y )
and h(y) = ln y, for any y > 0. Then for any P ∈ Z+ and
δ > 0, consider the following minimization problem

min
P ′∈Z+

(f(PP ′) + δh(PP ′)). (36)

According to [20, Proposition 1], the above minimum can be
achieved with a finite value of P ′, which will be denoted by
Popt(P, δ). Note that, if there are more than one minimizers,
the smallest one is considered.

For each j, j ∈ [1 : L], denote δj =
λj

φjx([aK ,aK+1))2 ln 2 .
Next, for each l, l ∈ [1 : L], denote

P0,l = max
l≤j≤L

Popt(1, δj). (37)

We will define the values P (l)
max recursively. Namely,

P (1)
max = P0,1, (38)

and, for l, l ∈ [2 : L− 1],

P (l)
max = P0,l + P (l−1)

max . (39)

Clearly, one has P (l)
max ≤ lP (1)

max.
The following result validates that the above definition

satisfies the requirements imposed on P (l)
max. The proof of the

result is deferred to the appendix.

3Note that by letting l = L in (30) and (31), relations (24) and (25) are
recovered, respectively.

Proposition 1: There is an optimal EC-SRUPQ (i.e., a
solution to problem (6)) that satisfies condition (21).

According to [17], [20], each value Popt(1, δj) can be
determined using a linear search in O(Popt(1, δj)) time,
j ∈ [1 : L]. To compute all of them takes O(LP

(1)
max) time,

since P (1)
max ≥ Popt(1, δj), j ∈ [1 : L]. By accounting for the

remaining maximizations in (37), the running time to complete
Step 1) amounts to O(LP

(1)
max + L) = O(LP

(1)
max).

B. Solution to Step 2.A)

As we have already pointed out, the problem (22) is
identical to problem (10) in [20] up to a change of parameters.
More specifically, it is equivalent to solving problem (36) for
δ = λL

φLx([c,d))2 ln 2 . Therefore, Step 2.A) for l = L can be
solved using the same procedure as the solution to Step 1
in [20, Section III. C]. Specifically, for each integer P , all
values P ∗L([c, d), P ) can be determined using Algorithm 1 in
[17]. This requires O(KPopt(P, δL) +K2) time for fixed P .
Performing this for all P, 1 ≤ P ≤ P

(L−1)
max , amounts to

O(K
∑P (L−1)

max

P=1 Popt(P, δL) +K2P
(L−1)
max ) operations. Accord-

ing to Proposition 4 of [20], the following holds

Popt(P, δL) ≤ Popt(1, δL)

P
+ 1, (40)

which implies that

P (L−1)
max∑
P=1

Popt(P, δL) ≤ Popt(1, δL)

P (L−1)
max∑
P=1

1

P
+ P (L−1)

max

≤ P0,L(lnP (L−1)
max + 1) + P (L−1)

max ,

where we used the well-known upper bound on the partial sum
of the Harmonic series. We conclude that the time complexity
of the algorithm to solve Step 2.A) when l = L is
O(KP0,L logP

(L−1)
max +K2P

(L−1)
max ).

Let us analyze now Step 2.A) for l < L. Solving the
problem (28) for fixed pair (c, d) and fixed P is straight-
forward using linear search and requires O(P

(l)
max/P ) time.

Doing so for all pairs (c, d) and all values of P , takes
O(K2

∑P (l)
max

P=1 P
(l)
max/P ) = O(K2P

(l)
max logP

(l)
max) operations.

Since P
(l)
max ≤ P

(L−1)
max ≤ (L − 1)P

(1)
max, we conclude that

solving Step 2.A) for all l, l ∈ [2 : L − 1], requires
O(L2K2P

(1)
max(logP

(1)
max + logL)) operations.

C. Solution to Step 2.B)

Let us discuss now the solution for Step 2.B). It is obvious
that for each positive integer P , the problem (30) is identical
to problem (12) in [20], up to a change in notations. Therefore,
the solution for Step 2 in [20, Section III. D] can be used for
Step 2.B). According to the justification in [20, Section III.
D], solving the problem (30) for fixed P and all pairs (c, d) is
equivalent to solving multiple minimum weight path (MWP)
problems in the weighted directed acyclic graph (WDAG) GP,l
specified next.

For each l ∈ [2 : L] and each positive integer P ,
construct the WDAG GP,l = (V,E,wP,l) with vertex set
V = {0, 1, · · · ,K + 1} and edge set E = {(m,n) ∈ V 2|0 ≤

9
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m < n ≤ K + 1}. For each edge (m,n) ∈ E, its weight
wP,l(m,n) is

wP,l(m,n) , ϕ∗l ([am, an), P ),

where ϕ∗l ([am, an), P ) is given by (29). Then r∗l ([am, an), P )
is an MWP from node m to node n in GP,l. The algorithm
to find all these paths will loop through m ∈ V , and for
each m, it will solve the single source MWP problem with
m being the source, i.e., it will find the MWP from m to
any other node in the graph GP,l reachable from m. The time
complexity of the solution for the single source MWP problem
is O(|V | + |E|) = O(K2). Since this is done for each m ∈
V and each P ≤ P

(l−1)
max , the total time complexity to solve

Step 2.B) amounts to O(K3P
(l−1)
max ). Accounting for all values

of l from L down to 2, we obtain the time complexity of
O(LK3P

(L−1)
max ) = O(L2K3P

(1)
max).

D. Solution to Steps 3) and 4)

Step 3) is straightforward. Namely, for each pair (c, d),
a linear search is performed. Thus, the total running time
amounts to O(K2P

(1)
max).

Let us discuss now Step 4). Note that the problem (35) is
identical to problem (15) in [20], up to a change in notations.
Thus, according to the justification in [20], solving Step 4)
is equivalent to finding an MWP in the WDAG G defined
next. Namely, G = (V,E,w), where V and E are as defined
in subsection V-C. The weight of each edge (m,n) ∈ E is
w(m,n) defined as

w(m,n) ,ϕ∗1([am, an)).

If all edge weights are available, which is the case since they
were computed at the previous steps, then Step 4) can be
solved in O(|V |+ |E|) = O(K2) operations.

E. Time Complexity

Clearly, Step 2) is the most computationally intensive. In
conclusion, the time complexity of the proposed solution algo-
rithm to the problem (6) is O(LK2P

(L−1)
max (logP

(L−1)
max +K))

time. If logP
(L−1)
max ≤ K, which is expected to hold in

practical scenarios, then the overall time complexity becomes
O(LK3P

(L−1)
max ) = O(L2K3P

(1)
max), which is essentially only

a factor of O(L2) higher than the time complexity for L = 2.

VI. EXPERIMENTAL RESULTS

This section assesses the practical performance of the pro-
posed EC-SRUPQ design algorithm for L = 3 and compares it
with the theoretical rate-distortion bounds, with the entropy-
coded FR-SRUPQ of [7] and with the single-level optimal
ECUPQ of [17]. The experiments are conducted for a two-
dimensional random vector (X1, X2), where X1 and X2 are
i.i.d. Gaussian variables with zero-mean and unit-variance,
with the following joint pdf in polar coordinates

p(r, θ) =
r

2π
exp

(
−r

2

2

)
, 0 ≤ r <∞, 0 ≤ θ < 2π,

where r =
√
x21 + x22, and θ = tan−1(x2/x1). It then follows

that g(r) = r exp(−r2/2).
The set of possible thresholds A is obtained by dividing

the range [0, 6] into subintervals of size 0.05. In other words,
K = 120 and ai = 0.05i, for 0 ≤ i ≤ K. In this
section, the notations Dl and Rl are utilized in place of
D(Ql), respectively R(Ql), for l = 1, 2, 3. Additionally,
R(Dl) denotes the rate-distortion function for the Gaussian
source, i.e., R(Dl) = −0.5 log2(Dl).

We have implemented and run the proposed algorithm using
the weight vectors (φ1, φ2, φ3)= (0.1, 0.1, 0.8), (0.1, 0.8, 0.1),
(0.8, 0.1, 0.1), (0.1, 0.45, 0.45), (0.45, 0.1, 0.45),
(0.45, 0.45, 0.1), (0.2, 0.6, 0.2), (0.33, 0.33, 0.34),
(0.9, 0.05, 0.05), (0.05, 0.9, 0.05) and (0.05, 0.05, 0.9).

Let us first visualize the output of the proposed algorithm
and the structure of the corresponding three-level EC-SRUPQ
for an example. Figure 2 shows the MWPs in the WDAGs
GP,3 (with red solid arcs), GP,2 (blue dotted arcs) and
G (black dashed arcs), respectively, when (φ1, φ2, φ3) =
(0.33, 0.33, 0.34) and (λ1, λ2, λ3) = (0.2, 0.1, 0.059).
The optimal values P ∗3 ([am, an), P ), P ∗2 ([am, an), P ) and
P ∗1 ([am, an)) are also shown along the corresponding edges.
Figure 3 plots the partitions of the component UPQs of the
corresponding EC-SRUPQ. The triples of rates and distor-
tions (in dB) are (R1, R2, R3) = (0.461, 1.394, 1.979) and
(D1, D2, D3) = (−1.950,−6.767,−10.093), respectively.
The sequences of thresholds of the magnitude quantizers are
(0, 2.0,∞), (0, 2.0, 4.4,∞) and (0, 1.25, 2.0, 3.4, 4.4, 6.0,∞)
for Q1, Q2 and Q3, respectively. The numbers of phase regions
associated to the magnitude bins are 1 and 6 for Q1, 4, 12 and
16 for Q2 and 4, 8, 12, 24, 18 and 36 for Q3.

Next we compare the performance of the proposed EC-
SRUPQ design with the theoretical rate-distortion bounds
for the Gaussian source. It is known that the Gaussian
source with squared-error distortion is successively refinable,
which implies that any triple of distortions (D1, D2, D3) is
achievable by a successively refinable code with rate triple
(R(D1), R(D2), R(D3)) as the block length approaches in-
finity [24]. Note that since the proposed scheme uses scalar
quantization, the existence of a rate gap to the rate-distortion
function (R(D1), R(D2), R(D3)) is expected. In particular,
the rate gap between the optimal single-level ECUPQ and
the rate-distortion limit was proved in [6] to be 1

2 log2
2πe
12 =

0.2546 bits/sample as the rate approaches infinity. On the other
hand, an asymptotical analysis of performance is not available
for EC-SRUPQ. However, the results of [17, Table II] suggest
that the optimal ECUPQ is not successively refinable at finite
rates. In other words, the optimal ECUPQ for some rate R′2 is
not necessarily a refinement of the optimal ECUPQ at another
rate R′1, where R′1 < R′2. This implies that the component
ECUPQs of an EC-SRUPQ cannot achieve the optimal single-
level performance simultaneously. Therefore, it is expected for
the rate gap Rl − R(Dl), l = 1, 2, 3, at finite rates in the
EC-SRUPQ framework to be larger than the value of 0.2546
bits/sample.

Figures 4(a)–4(c) illustrate the performance of the proposed
EC-SRUPQ with L = 3, in terms of the rate-gap pair
(R2−R(D2), R1−R(D1)), (R3−R(D3), R2−R(D2)) and

10
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Fig. 2. Visualization of the MWPs in the WDAGs GP,3 (with red solid edges), GP,2 (blue dotted edges) and G (black dashed edges), respectively, when
(φ1, φ2, φ3) = (0.33, 0.33, 0.34) and (λ1, λ2, λ3) = (0.2, 0.1, 0.059); discussed in Section VI.
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Fig. 3. The partitions of the EC-SRUPQ Q3 with the parameters in Figure 2. The dashed black lines represent the boundaries of the quantization regions of
Q1, while the dotted blue lines and the solid red lines represent the boundaries corresponding to the refinement at the second and third level, respectively, as
described in Section VI.

(R3−R(D3), R1−R(D1)), respectively. Additionally, the per-
formance of the achieved distortion pair (D2, D1), (D3, D2)
and (D3, D1) are plotted in Figures 5(a)–5(c), respectively.

It can be noticed from Figures 4(a)–4(c) that in most cases
the gaps Rl −R(Dl), l = 1, 2, 3, are within 0.29 bits/sample,
which is very close to the value of 0.2546 bits/sample.
Moreover, note that there are also cases in which there is
some additional loss, but only either in the second or in
the third refinement level and very rarely in both of them
simultaneously. These cases are represented in Figures 4(a)–
4(c) with triangles (extra loss only in the second level), pluses
(extra loss only in the third level) and hexagrams (extra loss
in both second and third levels), respectively. It should be
noted that the cases with extra loss occur mostly when the
corresponding distortion is small, i.e., mostly less than 0.1
as shown in Figures 5(a)–5(c). As explained in [20], the
existence of this additional loss could be attributed to the
additional tension induced in the optimization by competing
requirements simultaneously at the three decoders, instead of
only one decoder.

Let us now discuss the impact of the weights φl, l ∈
[1 : L]. As mentioned earlier, it is generally not possible
for all components (Q1, · · · , QL) of an EC-SRUPQ to si-
multaneously achieve their corresponding optimal single-level
performance. This motivates the inclusion in the objective
function of a weighted sum of the distortions at all levels.

The weight φl assigned to level l can be interpreted as the
relative importance of that level. The higher φl, the higher
the emphasis on the minimization of distortion D(Ql) is.
In particular, if for some l0 ∈ [1 : L], φl0 is very high in
comparison with the other values φl, then the UPQ at level l0
should be very close to the optimal single-level ECUPQ. To
verify the above claim we have implemented the proposed
algorithm for L = 3 and (φ1, φ2, φ3) = (0.9, 0.05, 0.05),
(0.05, 0.9, 0.05), (0.05, 0.05, 0.9). In order to better assess
the impact of the weights φl, we have also considered
(φ1, φ2, φ3) = (0.33, 0.33, 0.34). For each of the above triples
(φ1, φ2, φ3), several different triples (λ1, λ2, λ3) were used in
order to obtain different rates. The results are presented in
Table I. The table also illustrates the comparison between the
performance achieved at each refinement level with the optimal
ECUPQ performance for the corresponding rate. For this we
chose to compare against the ECUPQ designed in [17], since,
according to the experimental results reported in [17, Tables
II and IV], it outperforms all existing practical UPQ schemes
for rates up to about 5.9 bits/sample. More specifically, the
ECUPQ of [17] is superior to the practical uniform ECUPQ
proposed in [6] based on the asymptotic analysis and to the
entropy-coded FRUPQ of [3].

In Table I, the triple (R1, R2, R3) is utilized to denote the
rates for our scheme, while the corresponding distortion triple
in dB is denoted by (D1, D2, D3). Further, for l = 1, 2, 3, the
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Fig. 4. Gap in rate versus the theoretical lower bounds for the proposed
EC-SRUPQ with L = 3; discussed in Section VI.

notation ∆l = Dl−D[17]
l represents the gap in dB between the

performance of our scheme at level l and the optimal ECUPQ
designed using the algorithm of [17], for a rate R[17]

l such that
|Rl − R[17]

l | ≤ 0.0011. We observe that when the weight φl
for one level is very high in comparison with the other levels,
the performance at that level is very close to the optimum,
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(c) D1 versus D3

Fig. 5. Distortion performance of the proposed EC-SRUPQ with L = 3;
discussed in Section VI.

i.e., ∆l is very low. Additionally, for fixed triple (φ1, φ2, φ3)
and l = 2, 3, ∆l generally increases as Rl − Rl−1 decreases.
Similarly to [20], the above observation may be explained by
the fact that the requirement that the partitions of Ql−1 and
Ql are embedded becomes more restrictive when Rl − Rl−1
is small, making it more difficult to design Ql−1 and Ql close

12
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TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED EC-SRUPQ WITH THE ECUPQ OF [17].

(φ1, φ2, φ3) row label (R1, R2, R3) (D1, D2, D3) R2 −R1 R3 −R2 (∆1,∆2,∆3)

(0.33, 0.33, 0.34)

`1 (1.297, 1.995, 2.214) (−6.388,−10.226,−11.538) 0.698 0.219 (0.029, 0.292, 0.279)

`2 (1.827, 2.621, 3.614) (−9.514,−14.019,−20.095) 0.794 0.993 (0.008, 0.234, 0.114)

`3 (0.553, 1.393, 2.290) (−2.366,−6.726,−12.109) 0.840 0.897 (0.015, 0.245, 0.159)

`4 (0.497, 1.423, 2.066) (−2.115,−6.939,−10.705) 0.926 0.643
(1.127× 10−10,

0.207, 0.234)

`5 (0.656, 1.936, 2.009) (−2.869,−10.143,−10.524) 1.280 0.073 (0.004, 0.025, 0.072)

(0.90, 0.05, 0.05)

`6 (0.574, 1.228, 2.222) (−2.474,−5.674,−11.689) 0.654 0.994 (0.004, 0.335, 0.177)

`7 (0.535, 1.459, 3.073) (−2.290,−7.146,−16.862) 0.924 1.614 (0.004, 0.207, 0.103)

`8 (0.742, 2.054, 3.398) (−3.299,−10.856,−18.759) 1.312 1.344
(2.227× 10−5,
0.018, 0.159)

(0.05, 0.90, 0.05)

`9 (1.393, 1.713, 2.749) (−6.673,−8.834,−14.901) 0.32 1.036 (0.298, 0.011, 0.114)

`10 (0.742, 2.045, 3.444) (−3.299,−10.803,−19.047) 1.303 1.399
(9.448× 10−5,
0.008, 0.098)

`11 (0.393, 1.717, 2.488) (−1.648,−8.867,−13.159) 1.324 0.771
(3.061× 10−7,
0.002, 0.299)

(0.05, 0.05, 0.90)

`12 (0.959, 1.738, 2.296) (−4.427,−8.382,−12.274) 0.779 0.558 (0.027, 0.617, 0.033)

`13 (0.240, 1.280, 2.707) (−0.990,−6.108,−14.737) 1.040 1.427 (0.006, 0.203, 0.016)

`14 (0.535, 1.733, 2.954) (−2.290,−8.895,−16.224) 1.198 1.221 (0.004, 0.067, 0.025)

to the corresponding optimal ECUPQs. On the other hand, if
Rl − Rl−1 is too small for the refinement made by Ql to be
remarkable, we expect ∆l to be close to ∆l−1. This is how
the small value of ∆3 = 0.072 dB seen in row `5 could be
explained, even if R3 − R2 is also small (0.073), since the
structures of Q2 and Q3 are very similar and ∆2 is also very
low (0.025 dB).

It can also be observed from Table I that for fixed
(φ1, φ2, φ3), ∆1 tends to decrease as R2−R1 increases, but at
a faster rate than the decrease of ∆l in response to the increase
of Rl − Rl−1 when l = 2, 3. In particular, ∆1 < 0.03 when
R2 −R1 ≥ 0.698, while for ∆2 or ∆3 to become that small,
the rate difference R2 −R1, respectively R3 −R2, has to be
much higher. Finally, another important observation is that ∆l

can achieve very small values even if φl is not larger than
the weights corresponding to the other levels, provided that
Rl−Rl−1 is large enough for l = 2, 3, respectively, R2−R1

is large enough for l = 1. Thus, values of ∆l smaller than 0.1
dB can be obtained even when φl is moderate or low as can
be seen in rows `5, `8, `14 for l = 2, in rows `5, `10 for l = 3,
and in all rows except for `9 for l = 1.

Even though Table I demonstrates that the performance of
the proposed EC-SRUPQ at each level can be made very
close to its single-level counterpart, some small performance
degradation still remains. This raises the question of what
is the advantage of EC-SRUPQ over the switched ECUPQ,
which uses the optimal single-level ECUPQ for each desired
rate, in situations where the rate adaptation is needed. The
answer is that with EC-SRUPQ, if during the transmission
of a bitstream its rate has to be changed at an intermediate
network node, this can be done easily simply by dropping a
suffix or appending a suffix to the current bitstream. On the

other hand, with the switched ECUPQ, a new bitstream has
to be generated from scratch, operation which requires more
computing resources and hence is more energy consuming
than in the SRUPQ case. Using techniques that enable energy
savings is of utter importance nowadays and is in accordance
with the efforts of reducing the carbon footprint of modern
communication systems.

Next, the performance of the proposed EC-SRUPQ is com-
pared with the entropy-coded FR-SRUPQ of [7]. Recall that
the UPQ at the l-th level in the latter scheme contains exactly
2l quantization bins and, since it is an FRUPQ, it has the
rate R(l) = l/2 bits/sample. The design of [7] is greedy,
i.e., Q(1) is the optimal FRUPQ with two cells, and for each
l ∈ [2 : L], Q(l) is the (asymptotically) best one-bit refinement
of Q(l−1). This is achieved by refining either the magnitude
(i.e., dividing the magnitude cell into two) or the phase (i.e.,
doubling the number of phase regions) for each magnitude
region of Q(l−1). Since our EC-SRUPQ uses entropy coding,
we will also apply entropy coding to the FR-SRUPQ of [7]
for the purpose of the comparison. Thus, we will compute
the rate of Q(l) as H(l), which is half of the entropy of the
output of Q(l). Note that the design procedure implies that
for each l ≥ 1, the pair (H(l), D(l)) is fixed. The only way
of achieving other rates and distortions at the L levels is by
constructing the FR-SRUPQ with a larger number of levels
L′ > L and then selecting L of its components. However,
this method is still very restrictive since the rate-distortion
pairs achievable at a refinement level are confined to the set
RD = {(H(l), D(l))|l ≥ 1}. Our scheme does not have such a
limitation and, as it can be inferred from Figures 4(a)–4(c) and
5(a)–5(c), it can achieve a dense set of rate-distortion pairs at
each refinement level.
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TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED EC-SRUPQ WITH THE ENTROPY-CODED FR-SRUPQ OF [7].

(R1, R2, R3) (N1, N2, N3) (D1, D2, D3) (N1, N2, N3)[7] (H1, H2, H3)[7] (D1, D2, D3)[7] (∆′1,∆
′
2,∆

′
3)

(0.461, 1.394, 1.979) (7, 34, 102) (−1.950,−6.767,−10.093) (2, 8, 16) (0.5, 1.482, 1.979) (−1.664,−6.043,−8.882) (0.286, 0.725, 1.211)

(0.497, 1.838, 2.926) (7, 98, 412) (−2.115− 9.577,−15.904) (2, 16, 64) (0.5, 1.979, 2.947) (−1.664,−8.882,−14.783) (0.451, 0.695, 1.121)

(0.965, 1.969, 2.810) (20, 100, 431) (−4.493,−10.168,−15.207) (4, 16, 64) (1.0, 1.979, 2.948) (−4.396,−8.882,−14.783) (0.097, 1.286, 0.424)

(1.924, 2.398, 3.409) (106, 285, 797) (−10.039,−12.597,−18.850) (16, 32, 128) (1.979, 2.476, 3.435) (−8.882,−11.430,−17.241) (1.157, 1.167, 1.609)

Table II illustrates the performance comparison of the
proposed three-level EC-SRUPQ with the entropy-coded FR-
SRUPQ of [7]. We implemented the scheme of [7] for L = 7
(a brief description of our implementation of the algorithm
of [7] can be found in [20, Section V]) and selected several
triples of component UPQs. For each case, the triple of rates
is denoted by (H1, H2, H3)[7] and the triple of distortions by
(D1, D2, D3)[7]. In each case, the proposed EC-SRUPQ used
for comparison was obtained by running our algorithm for the
weights (φ1, φ2, φ3) = (0.33, 0.33, 0.34) (so that no particular
level is favored by the objective function) and various triples
(λ1, λ2, λ3) such that Rl is smaller than or equal to H [7]

l , for
each l ∈ [1 : 3]. Table II also shows the triples of numbers of
quantization regions for the two schemes and the difference
in distortion ∆′l = D

[7]
l −Dl in dB at each level l, l ∈ [1 : L].

It can be noted from Table II that the performance im-
provement over the entropy-coded FR-SRUPQ of [7] is rather
significant at all refinement levels. For instance, our scheme
achieves an improvement of ∆′1 = 0.451 dB at the first
refinement level when the rate is 0.5 bits/sample, even if
the corresponding UPQ of the scheme of [7] is the optimal
two-cell FRUPQ. Notably, the performance improvement over
[7] has the tendency to increase with the increase of the
refinement level, reaching a peak of 1.609 dB in Table II. The
superiority of the proposed scheme comes from the following
aspects. First, the entropy-constrained optimization used in
the proposed design does not impose a fixed number of
quantization regions, thus generating more quantization cells
than the scheme of [7] for the same (or even smaller) rates. As
Table II shows, the difference in the number of quantization
cells between the two schemes is quite substantial. To illustrate
graphically this dramatic difference we have depicted in Figure
6 the quantizer partitions of the FR-SRUPQ considered in the
first row of Table II, i.e. formed of (Q(1), Q(3), Q(4)). The
partitions of the EC-SRUPQ used for comparison are depicted
in Figure 3. Second, due to the greedy design method used in
[7], the construction of the FRUPQs at higher refinement levels
is severely constrained by the fixed partitions at the lower
levels, fact which limits the performance considerably. On the
other hand, no such constraints are imposed in our design,
leading to more freedom in the choice of the partitions.

In summary, the proposed EC-SRUPQ outperforms substan-
tially the FR-SRUPQ of [7] at each refinement level, even
when entropy coding is applied to the latter scheme. It is
true that the proposed scheme has higher design complexity
than the FR-SRUPQ of [7], but this is not an insurmountable
problem since the design can be performed offline for various
values of the parameters and the results stored in tables. It pays

off to do this since considerable performance improvement can
be achieved. A possible design strategy to be used in practice
is as follows. For a given source and a desired total rate, an
EC-SRUPQ with a large number L of refinement levels can be
designed such that to produce a decent rate increment for each
level, which is required only once. After doing so, the EC-
SRUPQ can be tailored with any number of refinement levels
that is smaller than L, for various applications, depending
on the bitrate and reconstruction quality requirements. There
may be some degradation at individual refinement levels in
comparison with the optimal ECUPQ for the corresponding
rate, but this small loss is offset by the advantages vested by
the successive refinement property, which allows for a fast
adaptation of the bitstream rate and a graceful degradation of
performance when the channel conditions deteriorate.

VII. CONCLUSION

This paper presents an algorithm for the design of general
entropy-constrained successively refinable unrestricted polar
quantizer (EC-SRUPQ), with an arbitrary number L of re-
finement levels. The cost to be minimized is a weighted sum
of distortions and rates. We consider the constrained problem
where the thresholds of the magnitude quantizers are confined
to some predefined finite set and present a globally optimal
solution. The proposed algorithm consists of L stages and the
solution to each stage is based on solving the minimum-weight
path problem for multiple node pairs in multiple weighted
directed acyclic graphs. Moreover, for each refinement level of
the EC-SRUPQ, we develop a corresponding upper bound on
the possible number of phase regions of the phase quantizers.
Additionally, the time complexity of the proposed approach
is only a factor of O(L2) higher than that for the case of
L = 2. Finally, the experimental results performed on a
bivariate circularly symmetric Gaussian source in the case of
L = 3 refinement levels show the excellent performance in
practice.
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APPENDIX

Proof of Proposition 1: Let us assume, for the sake of
contradiction, that there is no optimal EC-SRUPQ that satisfies
condition (21). Let us consider now an optimal EC-SRUPQ
and let l0 be the smallest value for which there is an il0 such
that

P̃il0
= Πl0

j=1Pij > P (l0)
max. (41)

Then either l0 = 1, in which case Pil0
≥ 2 since P (1)

max ≥ 1,
or l0 > 1 and

P̃il = Πl
j=1Pij ≤ P (l)

max, for all 1 ≤ l < l0. (42)

Note that, when l0 > 1, relations (41) and (42) imply that

Pil0
> P (l0)

max/P̃il0−1
≥ P (l0)

max/P
(l0−1)
max > 1, (43)

which further leads to Pil0
≥ 2, since Pil0

is an integer.
Next, we show that by replacing Pil0

by P ′ = Pil0
−1 in the

optimal EC-SRUPQ, the cost does not increase. To this end, let
us first introduce the following notation. For each l, l ∈ [1 : L],
each P ∈ Z+ and each interval C = [c, d) ⊆ [0,∞), let

αl(C,P ) = q(C)
(
− φl sinc2

(
1

P

)
x2(C) + λl log2 P

)
.

Moreover, let us denote by β(Pil) the portion of the cost
function (20), which depends on Pil . It can be easily seen
that β(Pil) can be written as follows,

β(Pil) =
1

2
αl(Cil , P̃il) +

1

2

Ml+1,il∑
il+1=1

(
αl+1(Cil+1

, P̃il+1
)+

· · ·+
ML,iL−1∑
iL=1

(
αL(CiL , P̃iL)

)
· · ·
)

︸ ︷︷ ︸
L−l parentheses

.

For each k, l0 + 1 ≤ k ≤ L, let P ′k = P̃il0−1
Πk
j=l0+1Pij ,

where P̃i0 = 1 by convention (to acount for the case when
l0 = 1). Then, αk(Cik , P̃ik) = αk(Cik , P

′
kPil0

). Next we will
prove that

αk(Cik , P
′
kPil0

) ≥ αk(Cik , P
′
kP
′), (44)

for any k, l0+1 ≤ k ≤ L. Let us fix some arbitrary k, l0+1 ≤
k ≤ L. Notice that

αk(Cik , P
′
kPil0

) =

φkq(Cik)x2(Cik)
(
f(P ′kPil0

) + δ′kh(P ′kPil0
)
)
,

(45)

where δ′k = λk
φkx2(Cik

) ln 2 . Recall that the interval Cik has the
boundaries in the set Ā. Then its largest possible left bound
is aK and its largest possible right bound is aK+1 =∞. Also

recall that δ′k = λk
φkx2([aK ,∞)) ln 2 . By applying [20, Proposition

3], one obtains

Popt(1, δ
′
k) ≤ Popt(1, δk). (46)

Additionally, relations (41), (42) and the definition of P (l0)
max,

with the convention that P (0)
max = 0, imply that P̃il0

>

P0,l0 + P
(l0−1)
max ≥ P0,l0 + P̃il0−1

, which leads to P̃il0−1
P ′ =

P̃il0−1
(Pil0

− 1) ≥ P0,l0 . Since P ′kP
′ ≥ P̃il0−1

P ′, it fur-
ther follows that P ′kP

′ ≥ P0,l0 . Next, based on the above
inequality, on the fact that P0,l0 ≥ Popt(1, δk) and on (46),
one obtains that P ′kPil0

> P ′kP
′ ≥ Popt(1, δ

′
k). Recall that

Popt(1, δ
′
k) is the value of P that minimizes f(P ) + δ′kh(P ).

Using further Lemma 5 of [20, Appendix A], one obtains that
f(P ′kPil0

)+δ′kh(P ′kPil0
) ≥ f(P ′kP

′)+δ′kh(P ′kP
′), which im-

mediately implies (44) and further leads to β(Pil0
) ≥ β(P ′).

It follows that the cost of the new EC-SRUPQ is no larger than
the cost of the initial one. If the new EC-SRUPQ still does
not satisfy condition (21), we start all over again a similar
substitution process, i.e., by finding the smallest value l0 such
that there is an il0 satisfying (41) and then replacing Pil0

by
P ′ = Pil0

− 1. This way, we obtain another EC-SRUPQ with
a cost no larger than the previous one. Eventually, after a
finite number of such substitutions, the EC-SRUPQ obtained
must satisfy condition (21). Since its cost is no higher than
the initial one, which was optimal, the new EC-SRUPQ must
also be optimal, which contradicts the assumption made at
the beginning of the proof. With this observation, the proof is
completed.
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