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Abstract—We study the problem of optimal design of balanced showed that the problem is equivalent to the minimum-weight
two-description fixed-rate scalar quantizer DSQ) under the path problem in a weighted directed acyclic graph. This
constraint of convex codecells. Using a graph-based approachﬁnding leads to polynomial time algorithms which ensure
to model the problem, we show that the minimum expected . . . .
distortion of the 2DSQ is a convex function of the number of global optlmall_ty under the imposed constraint of convex
codecells in the side quantizers. This property allows the problem codecells. Their treatment covers the case of more than two,
to be solved by Lagrangian minimization for which the optimal and unbalanced descriptions. Soon after, we proposed in [7]
Lagrangian multiplier exists. Given a trial multiplier, we exploita  refinements to the graph theoretical approach for the fixed-
monotonicit.y of the obje_ctive fun;tion, and develop a simple _and rate case and two description2DSQ), which led to much
fast dynamic programming technlque_ to solv_e'the parameterized faster desi lqorith A totical Ivsis of ltio|
problem. To further improve the algorithm efficiency, we propose as er_ _eS|gn algori m_s. _sympqlca analysis ol mu 'Pe
an RD-guided search strategy to find the optimal Lagrangian description scalar quantization at high rates was also provided
multiplier. In our experiments on distributions of interest for  in [20].
signal compression applications the proposed algorithm improves  This paper reexamines the optimal 2DSQ design problem
the speed of the fastest algorithm so far, by a factor of ¢4 the case of discrete distributions, fixed-rate and balanced
O(K/log K), where K is the number of codecells in each side . L . .
quantizer. side glescrlptlo_ns, under the constraint of convex code_:c_ell_s in

We also assess the impact on the optimality of the convex the side quantizers. The optimization problem is to minimize
codecell constraint. Using a published performance analysis of the expected distortion or, equivalently, a weighted sum of the
2DSQ at high rates, we show that asymptotically this constraint djstortions of the side and central quantizers. By balanced or
does not preclude optimality for L. distortion measure, when gy mmetric descriptions we mean that the two descriptions have
channels have a higher than0.12 loss rate. . - .

the same rate and are weighted equally in the cost function.

Index Terms—Multiple description quantization, distributed  As proved in [7] the symmetry of the side descriptions allows
source codlng, Lagrangian optimization, minimum-weightk-edge for a simpler graph model for the problem. Relying on this
path, convexity of quantizer cells. . . . .

model we prove an interesting property of the optimal fixed-
rate balance@DSQ with convex codecells, namely, that its
. INTRODUCTION expected distortion is a convex function of the number of

The problem of multiple description coding (MDC) was firsside quantizers codecells. This property enables us to solve
posed at the 1979 IEEE Information Theory Workshop by Ahe problem through Lagrangian minimization in conjunction
D. Wyner. Early results appeared in [2], [10], [17], [21], [22]with a search for the optimal Lagrangian multiplier. The
[25]. The research on MDC has intensified in recent yeasppeal of this method is twofold. First, we show that the
particularly in design algorithms, driven by the applicationsagrangian minimization for a given trial multiplier can be
of networked media streaming and sensor networks, whigblved very efficiently by exploiting a monotonicity property
require robust source coding. of the cost function. Second, the performance analysis of

Multiple description scalar quantization (MDSQ) is an ex2DSQ at high rates provides us with an approximation of the
tensively studied MDC technique. MDSQ holds the promissptimal Lagrangian multiplier as a function of the number of
of being a practical solution to networked source coding for itodecells in the side partitions. Based on this approximation
simple, inexpensive implementations. Optimal MDSQ desigwe derive an RD-guided search technique for the optimal La-
however, turns out to be nontrivial. The problem was firgjrangian multiplier. In our experiments on several distributions
considered by Vaishampayan in the fixed-rate setting [18f interest for signal compression applications, this technique
and then for the entropy-constrained case [19]. The proposgshverges in at most.5log, K iterations, achieving a speed
algorithm is of generalized Lloyd-type and can guarantee orilyprovement over the fastest existing algorithm by a factor of
a locally optimal solution in general. Recently, Muresan ang/log, K, where K is the number of codecells.

Effros proposed a graph-based approach to solve the probleriThe convexity of codecells is apparently a limitation of our
in the case when the probability distribution is discrete andksign approach. It was shown in [9], [16] that imposing the
the side quantizers have convex codecells [15], [16]. Thewpnvexity of side quantizer codecells may result in perfor-

. . , mance loss. Using the performance analysi@D8SQ at high
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the necessary definitions, notations and the problem Side

.
lation. Also, a brief historical review of the existing Z Decoder g
. . . . . Encoder Channel 1

design algorithms is given. In section Ill we present the f. T ]
representation of the problem of optimal fixed-rate be L Conral ,
2DSQ design, under the constraint of convex codet Source Decoder g 1 ReCeVer

- _ ) N Y%
the side quantizers. In section IV the graph-based con
optimization problem is transformed to an unconstrain Encoder 1 Channel 2—
via Lagrangian multiplier method. This leads to a f2 Ll side
approach of finding the minimum-weight path in a pe Decoder g,|
terized graphG()\) in conjunction with a guided searc
A, until the desired number of edges on the path is ol Fig. 1. Source coding scheme for communication over two channels.
The central result of this section is that such a Lagi
multiplier always exists. Section V develops an algoritl . _ . _
the minimum-weight path problem i6()\), which is m partition of the central quantizer (central partition) is the
efficient than the standard solutions. The speed imprc intersection of the side partitions (i.e., the partitions of the

is due to a strong monotonicity of the cost functior side quantizers). Consider a suitable quantization distortion
following section discusses the search strategy of finc ~ Measurel(z, Q(z)) > 0. Then each quantizepy, k =0, 1,2,

optimal Lagrangian multiplied and its efficiency is asse 1S @ssociated a distortioP(Q;) defined as:
analytically and/or empirically. In Section VIl the effect
constraint of convex codecells on the optimality of the D(Qk) = E{d(X, gr(fx(X)))}.

solution is analyzed for the case oth power distortion,
corroborating empirical evidence is also presented.
VIII concludes the paper.

We measure the performance of the 2DSQ by the expected
distortion between the source and its reconstruction at the
receiver side. Letv;, be the probability that only the channel
k transmits successfullyk(= 1, 2), andwy be the probability
Il. PROBLEM FORMULATION AND EXISTING ALGORITH! that both channels succeed. In case no description is received,
the source is reconstructed at some high distorfignThus,

_Let X be a random variable over an alphabeic R. A 5 eypected distortion of the 2DSQ can be expressed as
fixed-rate two-description scalar quantizer (2DSQ for short)

is designed for communication over two channels (Fig. 1). _
It consists of two encoderg; and f», called side encoders, D(Q) = (1 —wi —ws —wo) Do + Zka(Qk)' @)

and three decoderg andgs (the side decoders), angd (the k=0

central decoder). Each source symbois encoded into two If the two channels are independent with success probabilities
indicesi; = fi(z) andi, = fo(z), and sent over the two ¢1 and g2, we havew; = ¢i(1 — ¢2), w2 = g2(1 — ¢1) and
side channels, one per channel. If only one channel transmits= q192.

successfully, then only one index arrives at destination andThe goal of optimal fixed-rate 2DSQ design is to construct a
can be decoded by the corresponding side decoder. WHén, K2)-level 2DSQQ = (Q1, @2, Qo) of minimal expected
both indicesiy, i, arrive, they are jointly decoded by thedistortion D(Q).

central decoder. Formally, the side encoders are two functionsl he problem of optimal fixed-rate 2DSQ design was first ad-
fi: A= {1l K1}, fo : A — {1,---, Ky}, for some dressed in [18]. The initial optimization criterion was slightly
integersK, K, < N. The side decoders are two one-to-ongifferent, namely to minimize the distortion of the central
mappingsg; : {1,--- , K1} — C1, g2 : {1,---, Ky} — Co, Quantizer subject to given upper bounds on the distortions of
where(C;,C, C R are two sets of reproduction values calle#he side quantizers. This constrained optimization problem was
codebooks. The central decodgr maps each pair of indices solved in the classic Lagrangian forf(Q, A1, A2):

(i1,42), for which £ (i) N f5 '(i2) # 0, into a value in B

the central codebocl)K’o Cc R. 2LetI = {(i1,d0)|f; 1 (i1) N LQAsAz) = D(Qo) + M D(Ch) + 2 D(Q2) - (2)
f5 (i2) # 0} and letK be the cardinality off. ThenC, has with A\; > 0 and X, > 0, which is equivalent to minimizing
size K, too. We refer to this 2DSQ as(d, K»)-level 2DSQ. D(Q), specifically when),, = wy/wo, k = 1,2. Vaisham-

A (K, K,)-level 2DSQ can also be regarded as a systepayan showed that for a continuous pdf and the squared differ-
of three quantizer€) = (Q1, Q2, Qo), consisting of two side ence distortion measure the optimal 2DSQ must have convex
guantizers; and(@-, and a central quantiz€p,. Each side codecells in the central partition. He introduced the notion
quantizerQy, k = 1,2, is specified by the encoder-decodeof index assignment as the mapping: {1,2,--- K} —
pair fi, gx. The central quantizer has the decogerand an {1,2,--- ,K;} x {1,2,--- , K>}, defined byh(l) = (4,7),
implicit encoderf, : A — Z, such thatfy(z) = (fi(x), fo(x)) where £ (i) N f5'(4) equals thel'™ codecell (from left
for any alphabet symbat. Each encoder generates a partitioto right) of the central partition. This breaks the problem
of the source alphabet into codecells, a codecell being timo two parts: choosing an index assignment and minimizing
set of all alphabet symbols mapped into the same indthe Lagrangian given the index assignment. For the balanced
(or pair of indices). Thus, the three quantize&ps, @2,y case, wherek; = K, and the distortions of the two side
have, respectivelyK;, K5 and K codecells. Note that the quantizers are approximately equal, it was conjectured from
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the experimental observations that the Langrangian mt
A1 and A\, should be equal in the optimal 2DSQ. Giw
number K of codecells in the central partition, good
assignments were proposed. Given the index assigni
Lagrangian was minimized by iteratively optimizing, ir
the decoder and the encoder. The algorithm can be
to a discrete source as well, but as in the continuous
cannot guarantee the global optimum, not even with
to a fixed index assignment.

As in [18] we also focus on the case of balanced 2D.
call a 2DSQK-level balanced if and only if{; = Ky =
and the weights of the side distortions In(Q) are eq
i.e.,w; = wy = w. This situation arises, for instance, wh
independent channels operate at the samdasgiel and e
has the same success probabilityThe problem of opt
K-level balanced 2DSQ design is to minimize the e»
distortion

D(Q) = (1 —2w—w)Do+w(D(Q1)+ D(Q2)) +woD(Q

or equivalently minimize the Lagrangiab(Q, A\, \), as ¢
sidered in [18], forA = w/wy.

In pursuing an efficient and globally optimal soluti
the problem, we consider a discrete source and res

solution space to 2DSQs with convex codecells in the si
guantizers (we call such a 2DSQ, convex 2DSQ). This setting
was first addressed by Muresan and Effros in [15], [16]. Th
treated the multiple description quantizer design for arbitra@z
number of descriptions, the descriptions not being necessaj
balanced. Both the fixed-rate and entropy-constrained ca
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Fig. 2. K-level balanced convex 2DSQ with alternating thresholds of side
quantizers.

the descriptions and the monotonicity of the distortion measure
(4).

Assume the source alphabet is finite, i.ed =
{xl,xg,--- ,ZL’N} c R, with z; < Tit1, forall1 <i <
N — 1. Let the probability mass function (pmf) ok be
p; = p(X = x;), 1 < i < N. For integersa, b such that
0 <a<b< N, denotec(a,b] = {z;la < i < b}. Note that
c(a,a] = 0. A codecell is said to be convex if it is of the
form c(a, b]. Such a codecell will be simply denoted ly;, b].

A scalar quantizer) is a K-level convex scalar quantizer,
if its encoder partitions the source alphabet idfocodecells
(¢j,4j+1], 0 < j < K — 1, for some integerg;, 0 < j < K,

such thatd = g0 < 1 <---gx-1 < gx = N. The valuegy;,
e

4 < j < K, are called the quantizer’'s thresholds.

For each codecella, b], let u(a,b] denote its reproduction

§Alue. The contribution of codecelh, b] to the quantizer's

lstortion isZ;’:aJrl d(x;, p(a, b])p;. We consider only quan-

[2ers with the decoder optimized for the given encoder,
Werefore ideally the following relation should hold

were addressed. They showed that the problem can be modeled
as a minimum-weight path problem in a weighted directed b

acyclic graph, and hence polynomially solvable. Their algo-
rithm requiresO (K, K> N?3) time andO (K, K>N?) space. In
[7] the time complexity for optimal fixed-rate convex 2DS
design is reduced t®(K;K,N?) for monotone distortion d

measuresi(z, Q(z)) that satisfy the condition

d(xz,y1) < d(z,y2), for all real valuesz,y;,yo
such thatx < y; < ys OF > y; > yo.

(4)

Note that all known distortion measures used in practice Zb

7b = i d (2 7.
p(a,b] arggggi;l (i, y)p

QNhen the distortion function is the squared distance, i.e.,

(x,y) = (x — y)?, there is a closed form available for
the minimum in the above equation, which makeg:, b]
computable in a finite number of operations,

b
o) = Zes (5)

i=a+1Pi

are monotone. It was also proved in [7] that for balanced

descriptions the time and space complexities of the algorititowever, for general distortion functiof(-, -) a closed form
can be further reduced t0(K N?) by exploiting additional is not known for the minimum in (5), and a continuous
properties of the solution conferred by the symmetry of thgptimization algorithm cannot guarantee convergence in a

descriptions.

finite number of steps. To have the algorithm terminate in

This paper reexamines the above problem aiming for #initely many steps we need to resort to some approximation,
improved balanced convex 2DSQ design algorithm. We prof@r example to stop at some level of precision or restrict the
the convexity of the optimization problem and exploit it tesearch for the minimum to a finite grid. All previous work
develop a fresh algorithmic approach to solve it. Towangthich claims optimal quantizer design [23], [24], [15], [16]
presenting the new approach we start from the graph modes$ort to such approximations. This approximation can be

established in [7], which is detailed in the next section.

IIl. GRAPH REPRESENTATION

modeled by restricting the possible reconstruction values to
a finite alphabet, where B can be a finite grid of some
required precision. Then the reproduction vajue, b] must

To develop the new 2DSQ design algorithm, we use Slisfy the relation
graph representation of the problem. This graph model is b

different and simpler than the graph proposed in [15], [16].

pla,b] = argmin | d(wi, y)pi- 6)

The simplification is achieved by exploiting the symmetry of imatl



In this work we use the definition qgf(a, b] givel
the case of squared distance as distortion meas
the definition of (6) otherwise.

Further denote the distortion of the code
D(a,b]. Then

0 A Vv, A N
b
D(a,b] = Z d(z;, p(a, b])pi. Fig. 3. Path in the WDAGG corresponding to a4-level bal-
i=a+1 anced convex 2DSQ with alternating thresholds. The nodes are repre-
. . . sented by dotted segment lines which connect quantizer thresholds. The
The distortion of the quantizer becomes: edges are represented by arrowed arcs. Precisely, the path illustrated is

K—1 00, 0uy, urv1, v1uz, ugv2, v2us, u3v3, v3N, NN.
D(Q) = Z D(qj, qj+1]-
§=0

the source to each node, being computed. In this paper we

We are concerned with the problem of or develop a Lagrangian-type algorithm for the globally optimal
balanced convex 2DSQ design, i.e., the probler solution of the same problem.

the expected distortion (3) among all 2DSQ’s \
codecells in each side quantizer.

. IV. LAGRANGIAN SOLUTION
We denote byug, u1, - - - ug, respectivelypg, v1,

thresholds of the first, respective|y second, si The graph problem formulated above is a constrained Opti-
a K-level balanced convex 2DSQ. Since the ¢ mization problem. The constraint is on the number of edges
is the intersection of the side partitions, it fo in the minimum weight path. A standard technique to solve
thresholds of the central partition are actually constrained optimization problems is the Lagrangian method.

of the two side partitions ordered in increasit., <..... ...l0deed, the Lagrangian method is ubiquitous in the literature
that0) = ug < uy < --- <up =N and0 =vy < v; < --- < Of entropy-constrained optimal quantizer design, including the
v = N. multiple description variants [6], [19], [15]. However, strictly
The following proposition was proved in [7, Proposition 2]speaking, in the entropy-constrained case this strategy can
Proposition 1. There is an optimalk-level balanced con- lead to solutions only for some instances of the original
vex 2DSQ such that the side quantizers thresholds alterngit@ntizer design problem, namely, those rate-distortion pairs

(Fig. 2): on the lower convex hull of the operationally achievable rate-
distortion region. The Lagrangian-based approach was also

Up SV S U S VIS U SV S applied to fixed-rate scalar quantization [1], [12] and what is

- <ugo1 <wvg_1 <ug <vk. (7) remarkable in this case is that it leads to the globally optimal

solution to any instance of the constrained problem. We prove

Proposition 1 converts the optimization problem into a graph this section that this property holds in the case of optimal
problem as follows. Consider the weighted directed acycliixed-rate balanced convex 2DSQ design as well.
graph (WDAG)G = (V, E), whose nodes (or vertices) are LetP denote the set of all paths from the source node to the
all ordered pairs of integers and b such that0 < a < b < final node, in the grapty. For any pathP € P let W (P) be its
N. We denote such a pair simply . The set of edges weight andL(P) its length (the number of component edges).
is E = {(ab,bc)|0 < a <b<ec¢< N,a < c}. Let00 be Consider the set of planar poirts = {(L(P), W(P))|P €
the source node an@/ N the final node of the graph. TheP}.
weight of the edge from nodeb to nodebc is defined as  Then the problem of minimum-weigltK-edge path inG
w(ab, bc) = wD(a, c] +woD(a, b]. We can associate with anycan be formulated as
K-level balanced convex 2DSQ of alternating thresholds (7), L
a 2K-edge path (i.e., a path withK edges) from the source minimizepep W (P)
to the final node: subject toL(P) = 2K. (9)

00, Ouy, u1v1, ViU, UaV2, - - - , Vi —1N, NN. (8) The underlying Lagrangian i(\, P) = W(P)+AL(P), over
all pathsP € P and all real values\.. A path P* minimizes

Fig. 3 illustrates the above path. tge Lagrangian for somg, i.e., the relation

As shown in [7] this mapping is one-to-one. Moreover, th
weight of the path associated with a 2D&Yas above (i.e., the J(A\, P*) = minJ(\, P) (10)
sum of weights of its edges) equdl¥ Q) — (1 — 2w — wg) Dy. pep

Consequently, minimizingD(Q) is equivalent to the holds, if and only if the planar pointZ(P*), W (P*)) is on
minimum-weight2 K -edge path problem in the gragh (i.e. the lower convex hull of/ and the line of slope-\ passing
finding the path of minimum weight among all paths fronthrough this point is a support line @@ [14], [11]. Thus, if
the source to the final node, which have exa@ly edges). (10) holds then the patR* is also a minimum-weighk (P*)-
This problem was solved i®(K N?) time [7]. Precisely, the edge path because the lower boundary/ofs not below its
algorithm presented in [7] runs iRK — 1 iterations, at the lower convex hull. Consequently, if a Lagrangian multiplier
k-th iteration the minimum-weightk + 1)-edge paths from can be found for which there isH<-edge pathP* satisfying



(10, then this path is a solution of the constrained [ N
(9). Due to the following proposition, whose proof is gi 0 | i [ L w(ab) 0 | W,(ab)
Appendix A, such a multiplie\ is guaranteed to exist. (1% 4 =
Proposition 2. The inequality / ' W, (a+1,b)

QW) <W(I—-1)+W(l+1) ( T N ]

B W,(a,b-1) —

holds for all integerd,3 <1 < 2N — 1, whereW(l) is
weight of the minimum-weight-edge path from the sou Fig. 4. Matrix Wy (-, ). Left: the shaded squares represent the locations of
the final node inG entriesWy (a,b — 1) and Wy (a + 1,b); they have to be known in order to

apply the recursive formula with reduced search rangé¥ar(a, b). Right:
the shaded squares represent the values already computed by the algorithm

The above proposition implies that any pofhti¥/ (1)) is before the evaluation iV (a, b).

the lower convex hull of{. Let P, be a minimum we
2K-edge path, then the poifil( Pk ), W(Psx)) coinci

with (2K, W (2K)), hence the following relation holds: Recall that the weight of any eddeb, bc) in G()\) equals
w(ab, bc) + A. Then for any node:b other than the source
J(\, Pac) = }r)neigj()\,P) ( (i.e. with b > 1), we have
if and only if A satisfies the relation Wi(a,b) = O<£H<1}Ln£<b{WA(€7a) +w(a,ab) + A}, (14)

WQE2K)-W(2K-1) < A <W(Q2K +1) - W(2K). ( Let &, (a, b) be the value of where the minimum of (14) is
attained (in case of multiple points, the largest one is picked).
is a support line ta/ if and only if its slope is at The following proposition, which is proved in Appendix A,

equal to the slope of the convex hull edge to the le enables us 1o decrease the search range of (14).

W (2K) — W (2K — 1)) and at most equal to the slope Proposition 3. For any nodesb anda’b’ other than the source,
convex hull edge to the right (i.el¥’ (2K + 1) — TV (2K and such thai < o’ andb < ¥, the following inequality
e holds:

Denote byl the range of the optimal Lagrangian muli
A, i.e., those for which (13) holds. Consequently,; —

This is because a line passing throudh( Pog ), W (Ps;

Ex(a,b) < &x(d, V).

[(W(2K)-W(Q2K +1),W(2K —1) - W(2K)]. The interval  Proposition 3 in conjunction with relation (14) immediately
I, reduces to a single value if the pointsk — 1, W (2K — imply the following result.
1)), 2K,W(2K)) and (2K + 1, W (2K + 1)) are collinear. Corollary. For all0 < a < b < N, we have
For any A in the interior of the interval,,;, any pathP* ]
satisfying (10) has the lengttk.. If \ equals the boundary to Wx(a:b) = Ex(eb1) <t a1 b),5<a{WA(f’ a)Fw(Ea, ab)+A}.
the left, respectively right, of,,, then there is also a path of o T (15)
length2K + 1, respectively2 K — 1, satisfying (10).
Therefore, the2 K-edge minimum-weight path, or equiv-
alently the globally optimal convex balancéd-level 2DSQ,
can be found by solving (10) in conjunction with a search\on
until the number of the edges on the minimizing path becom
exactly 2K. To this end we derive fronz a parameterized
graph G(\) by adding A to the weight of each edge af.
In the resulting parameterized gragi(\) the minimization
E;ct)ﬁ I(Fa)rrr:)&f e%?)Trr(?iguize; ggair;;?fg;sggsjﬁg Pgénlvv(;gmhrvs;gweight path vyith the Iargest number of links, which is proved
the pathP in G()). in Lemma 4 in A_ppendlx A. _ _
The computations are organized in such a way that the
Remark 1. An immediate corollary of Proposition 2 is theentries of the upper triangular matiiX, (-, -) are filled column
convexity of the minimum expected distortion of fixed-ratéy column from left to right as illustrated in Fig. 4. For each
balanced convex 2DSQ, as a function of the number oblumnb we first compute the entri¥, (b — 1,b) using (14),
codecells in each side partition. and then proceed toward the top of the column, by applying
recursion (15). Note that this recursion can be applied only
V. THE COMPUTATION OF THEMINIMUM -WEIGHT PATH if the entries immediately to the left and immediately below
IN G(\) the current position are known. After reaching the top of
the column, we finally comput&/, (b, b), the element at the
bottom, again using (14), because this entry depends on all
Ythe other elements of the column.
In the above procedure computing all entries on the main
INote that a pathP* satisfying (10) is not necessarily unique. Moreover,dif"gonalI and the superdiagonalléh -, -) needSO(N2) time
different such paths may have different lengths. since each entry on these diagonals takesV) time. But

In order to find a minimum-weight path i&'(\) we com-
pute Wy (a, b) for increasing values of,b, 0 < a < b < N,
using the recursive relations (14) and (15) until reaching

§(N’ N). The path is then traced back by using the values

A(a,b). Note that there may be several paths of minimum
weight inG(\). These paths may even have different numbers
of links (in the case wher ) is the slope of a convex hull edge
?]f[ U). The path constructed by our algorithm is a minimum

In the parameterized grap&()\), for any nodead other
than the source, 16V, (a, b) denote the smallest weight of an
path from00 to the nodeab. By convention,I¥,(0,0) = 0.



computing all entries on any of the othar — 2 diagonals of level balanced convex 2DSQ. Recall that the algorithm of [7]
the upper triangular matrix of Fig. 4 collectively needs onlgonsists 02K — 1 iterations. Thek-th iteration computes the
O(N) time. Indeed, let us call thg-th superdiagonal, the setminimum (; + 1)-edge path in the grap& from the source to
of entriesWy(a,b) withb=a+j,0 < a < N —j. The entry each graph nodéa,b) based on the minimurk-edge paths.
Wi(a,a+7) is computed irD(&x(a+1,a+j) —&r(a,a+j— That procedure also solves a series of minimization problems
1) 4+ 1) time. Hence, the total time for thgth superdiagonal in order to fill an upper triangular matrix of the same size as
is our Wy (+,-). The evaluation of each quantity inspected in the
N—j ] ) minimization process needs only one operation (one addition)
O =g Exla+1La+j) =&(aa+j-1)+1)) =  and the total number of quantities inspected is at |@gst
OEAN —j+1,N) = &0, —1) + N —j+1) = O(N). (because at least?/2 quantities have to be inspected in order
. . . . 5, to fill the main diagonal and at leasf — j + 1 for the j-th
'!" conclu3|on,2 evaluating the whole matrix require¢.N~) superdiagonal, for each> 1). Therefore the total number of
tlmgnagdszégng fgf?e(:;}on however, it is unnecessary to eVgPerations 's at leasty + 1)N®.
’ ’ < H 2 2
uate the entire matri¥¥,(-,-) to arrive atW, (N, N). The S_lnc_ey =1t follows thgt2(7 +2)N = 3(7.4_ I)N ’

i . which implies that the algorithm proposed in this section for
entries of a colum, W (a,b) with b—1 > a > 0, are only minimum-weight path in the graph()) requires at most
ngeded to compute the entrl_es on the rb;\{v!.e., Wa(b,c) as many computations as three iterations of the algorithm of
with b < ¢ < N. But, according to Proposition 3, we hav%]_

&(b,c) > £x(b—1,b — 1). Consequently, only the entries When evaluating the time complexity of the proposed

of cocljumnl()jup to ths Flowfa(b —_bb _th1'> are neeged. T_he aljgorithm, we have assumed that each valdg,b] can be
PSEeUdo code given below describes this Improved VErsion fleassed in constant time. It was showed in [24], [8] that for

. a
the algorithm. all monotone distortion measurés:, ), the distortion values

D(a,b] over all possible intervaléa,b], 0 <a <b < N, can
be precomputed i® (M N) time, whereM is the size of the
alphabetB. Since M = O(N), the required precomputation

Minimum-weight path in G(}\).

€(0,1) = 0; WA (0,1) = w(00,01) + X;

Ex(1,1) = 0; W (1,1) = w(00,01) + w(01,11) + 2X;
for b=2to N do

a:=b-—1,

Wi (a, b) =

mbff,?l%ggga{wk(f’ a) +w(€a, ab) + A};
&r(a,b) :=max  argmin

{Wa(€, a) + w(€a, ab) + AL
Ex(b—1,b—1)<é<a
for a =b—2 down to&x(b—1,b— 1) do

takesO(N?) time, not affecting the time complexity of the
proposed algorithm. Furthermore, if the distortion measure
is the ubiquitous mean-square error, the preprocessing time
reduces taO(N) [23]. Thus, by using a reproduction values’
alphabetB of size O(IN?), the overall complexity result still

= i 4%
Wa(a,b) &A(a,b—1>§£g<a+1,b>;5§a{ & a)t holds.
w(a,ab) + \};
£x(a,b) = max arg min {Wa(€, o)+
€x(ab—1)<€<Ex (at+1,b);6<a VI. RD-GUIDED SEARCH OF THELAGRANGIAN

w(&a, ab) + A},
end for MULTIPLIER

Wa(b,b) := min
Ex(b—1,b—1)<£<hb

&x(b,b) ;= max  argmin
Ex(b—1,b—1)<E<h

{Wx(&,b) + w(&b, bb) + A};
{Wi(€,b) + w(&b, bb) + A};

Having developed an efficient algorithm to compute the
minimum-weight path inG(\) for a given Lagrangian mul-
tiplier A, our attention is turned to reduce the number of
iterations in finding a Lagrangian multiplier to meet the
targeted numbe2 K of edges.

For a better comparison with the previous work it is useful For each), denote byP,, the path which minimizes the
to provide a more precise assessment of the computatiobafrangian.J(\, P) over all P € P, and has the largest
requirement of the above algorithm. The algorithm solvesraimber of edges among all paths with this property (i.e., the
series of minimization problems. To find the minimum ovepath computed by the algorithm of the previous section). The
n gquantities, each of them has to be inspected. Assuming tkatgth of P, is non-increasing im\. Explained briefly, this is
all n quantities are already computed, letlenote the average because as increases, the intersection of the support line of
number of operations per quantity (henge> 1). Then the slope—\ with the seti/, either remains the same or moves to
minimization requires/n operations. In our algorithm we needthe left.
two extra operations (two additions) to evaluate each quantityThis monotonicity can be exploited to expedite the search
inspected in the minimization. Following the analysis in thas follows. At any time a search intervéh, \;) for the
previous paragraphs we conclude that at n¥d$t quantities optimal Lagrangian multiplier is maintained, with the property
are inspected in order to solve all the minimizations (becauseat I,,; C (A1, A2), i.e. L(Py,) > 2K > L(P,,). At the
at most2(N — j + 1) quantities have to be inspected to fillbeginning of each iteration, a valug,., is picked from
the j-th superdiagonal otV,(-,-), for eachj > 2, and at the interval (A1, \2) according to a rule for updating.
most N2 + N, to fill the rest). Therefore, the whole algorithmThen Py is computed. If its length equaBK then the
requires at mose(y + 2) N2 operations. algorithm stops, otherwise, the current search intefval \2)

Next we evaluate the number of operations required byisiupdated to( A1, Anew) if 2K > L(Py,.,) OF 10 (Apew, A2)
single iteration of the algorithm of [7] for the optimdl- if 2K < L(Py,_, ).

end for



Initially, the search interva{\;, \2) is set to(0,~), where
v = (2w + wo)D(0, N]. (16)

1800

1600

This ensures tha{0,~) contains I,,;. The reason is the
following. The planar point(2N, W (2N)) is the rightmost
point of intersection between the support line of siépand 1200¢
U (because the functiofl/ (1) is non-increasing). Therefore,
for A\ = 0 we have L(P\) = 2N. On the other side,
v = W(2) > W(2) — W(3). Thus, the support line of
slope —v intersectd/ at the point(2, W (2)), which implies 600
that L(P,) = 2. Further, sincel(P,) is non-increasing as
increases, our claim follows. 400f
In the above search framework, we propose two techniques ,q,|
for choosing the next trialA value. The first technique,
called RD-QUIded SearCh, is derived from the fact that _20500 —-2000 -1500 _1060 -500 0 500 1000 152)0 2000 2500
represents the slope of the rate-distortion function. Consider Sample values
2DSQ design for a pdff(z) defined on a compact interval
under distortion metrial(x,y) =| = —y |". Let D(")(R) be Fig.5. Histogram of DPCM residuals to be quantized.
the minimum expected distortion among 2fi-level balanced
convex 2DSQ’s. As proved in Appendix B (Eqg. (46)) with
arguments along the lines of [4], [3], we have

1400

=
o
o
o

800

Frequency

Figs. 6-9 plot the average number of iterations (averaged
w over q), versusk, for the zero-mean unit-variance Gaussian

- 2wy + 27" ian distributi i ian mix-

DO(R) ~ w1 + wo) (/ FYCD (2)da) ™+ (17) and Laplacian distributions, and the following Gaussian mix
1%

T omr=rR(r 41 tures
as R — oo. Consequently}¥ (1) is proportional tol% asl filz) =1/2g(—1,1) 4+ 1/2¢(1,4), (18)
becomes very large, and its derivative is proportiona};ﬁg. o) = 3/4g(—1,1) + 1/4g(1, 4) (19)

Based on this property di/ (/) we use the following interpo-
lation technique to updatg in the Lagrangian optimization. whereg(u, o?) is the normal pdf of meap and variancer?.

First we find the real valuea and 3 such that Each figure contains plots for different values. Fig. 10 plots
o ) the results for the real sample p.m.f.
Ai = L(Py, )+t +6, i=L2 One can observe in Figs. 6- 10 that the average number of

iterations is not monotonic ik, but it has a general tendency
of increase withK at a growth rate close t@(log K'). To
guantify this we include in the figures 6-10 a plot of the func-
tion alog, K, with an«a chosen for each case approximately
Clearly, the number of iterations required to find the optimals the smallest positive value such thdbg, K is an upper
Lagrangian multiplier by the RD-guided search depends on theund for the average number of iterations for &ll > 6.
quality of the approximation (17). If (17) held with equality theNote thatl.5 log, K is an absolute upper bound for all the five
number of iterations would be The better the approximationcases, for allK' > 2. Other interesting observations are: the
the smaller the number of iterations. Bounding the error imumber of iterations has a tendency to decreasgiasreases
(21) seems very difficult. But we do have empirical evidendsee Figs. 11 and 12), and very importantly, it does not exhibit
to support the high efficiency of the RD-guided search.  a dependency withV (i.e., independent of the precision of
We tested the RD-guided search on several source distrilqurantizer thresholds).
tions: Gaussian, Laplacian, and the mixture of two GaussiansRecall from the previous section that the number of opera-
These distributions are widely used to model real data fions required by one iteration of the Lagrangian-based 2DSQ
signal compression applications. We have also included in alesign algorithm is at most as three iterations of the algorithm
test set a real p.m.f. of DPCM residuals obtained from af [7]. Since the latter runs iBK — 1 iterations, we conclude
audio signal (Fig. 5). Most data to be quantized in practicthat for the tested pmf’'s the RD-guided search is faster than
such as transform coefficients (wavelet, DCT, etc.) and DPCike algorithm of [7] by a factor OW
residuals, have a p.m.f. like Fig. 5, obeying Laplacian or Next we discuss another search strategy, the so-called secant
generalized Gaussian distribution. Experiments are conducssérch. This search technique also allows us to deal with the
for three values ofN: 500, 1000 and 2000, various channel pathological case wheh,,; consists of a single value.
success probabilitieg = 0.5,0.6,0.7,0.8,0.9, and all K In the secant search is updated as follows\,., =
values ranging froml to 49. The distortion measure used iSW (Py,) — W(Py,))/(L(Py,) — L(Py,)). Note that—X\,,c.,
the squared distance. The number of iterations in relationito the slope of the line passing through the planar points
K, N, andq are presented in Figs. 6-12. Before running théL(Py,), W(Py,)) and (L(P»,), W(Py,)). If this line is not
algorithm a continuous p.d.f. is first discretized via uniforma support line of the setf, i.e., it does not include a
prequantization. convex hull edge, then the support line of the same slope

Then update the value to

(6]
)\new = (2K)7+1 +ﬂ
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unit variance Laplacian distribution.

Gaussian distribution of pdf of (19).

intersects the set/ at some different point (because twaof L(Py,) + L(P,) — 2K edges such that the sum of the

parallel lines may not have points in common). Then theeights of P; and P, in G
planar point(L(Px,., ), W(Px,.,)) is different from both
(L(Py,), W(Py,)) and (L(P»,), W(Py,)). Therefore, it is
guaranteed thal(Py,) > L(Py,.,) > L(P,) with both
inequalities strict. This implies that the length &} is

new

different from all path lengths obtained previously.

If the line passing through the poirt&(Py, ), W(Py,)) and
(L(Py,), W(P,)) is a support line to the sét, then the point
(2K, W (2K)) is on this line as well, hencé,,; = {\new}
output by our algo-
rithm will have the length equal tb(Py, ), not2K. Further, in

according to (13). Thus, the path,

new

o 1S @t most equal to the sum of
weights of P, and P,,. Since bothPy, and P,, are minimum
weight paths inGy,,..,, P; and P, are minimum weight paths
in Gy, too. ThenP, is our desired path and the algorithm
stops. The number equals the smallest of.(Py,)—2K| and
|2K — L(P»,)|. This additional step required to construct the
optimal path takes at mo&)(K?) time. Consequently, it does
not change the (N?) time complexity per iteration.

To bound the number of iterations required by the secant
search, note that the length of the paths_  is different for

Tew

different iterations (possibly except the last one). Since in total

order to construct the desiref{-edge path we use Lemmathere are only2N — 1 possible path lengths, the number of
2 which is stated and proved in Appendix A. Specificallyiterations cannot be larger thatv. But this bound is too loose
we apply iteratively this lemma times to obtain from the without taking into account the specifics of our optimization

paths Py, and P,,, two other pathsP] of 2K edges andP;

problem. We prove as Proposition 4 in Appendix C that for
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Fig. 10. The number of iterations (average oyer 0.5,0.6,---0.9) as a Fig. 12. Comparison of the number of iterations for various channel success
function of K, for three values ofV, for the real data of the histogram in probabilities ¢ = 0.5,0.7,0.9), for the real data of histogram in Fig. 5, and

Fig. 5. N = 2000.
10 ‘ ‘ ‘ ‘ O(N?) while the algorithms of [15], [16], respectively of [7]
ot — 5] | have space complexities 6f( K2N?), respectivelyO(K N?).
N ey a=07| | For modern computers, such a drastic reduction in working
- - -g=09 space of the algorithm will greatly reduce the probability of
s il cache misses and hence reduce the algorithm running time in
6l 1 practice.

The worst-case time complexity of the proposed
Lagrangian-based algorithm seems higher than that of
our earlier algorithm [7]. But in all our experiments such
worst case behaviour never occurs. Instead, the new algorithm
H 4K—-2
is faster by a factor om.

Nnumber of iterations

0 10 20 30 20 50 VIl. CODECELL CONVEXITY AND OPTIMALITY

The new 2DSQ design algorithm developed in this paper
Fig. 11. Comparison of the number of iterations for various channel succegss; mes the convexity of codecells. We now assess the impact
probabilities § = 0.5,0.7,0.9), for a discretized zero mean unit variance . . . . . .
Gaussian distribution and/ — 2000. of this constraint on the optimality. It is known that the opti-
mal fixed-rate single description quantizer must have convex
codecells [9]. On the other hand, this condition may preclude
discretizations of continuous distributions arig distortion optimality for 2DSQ’s [9].
measure, the number of iterations of the secant search is aAssume a continuous probability distribution with ptifr)
mMost8K + [logs o N| for K << N. defined on a compact interv@l, W] and let the distortion
In practice one can adopt a hybrid method that uses theeasure bel(z,y) =| z — y |”. We will use the performance
two search techniques in combination: start with the RIxnalysis o2DSQ at high rates, provided in [20] for a family of
guided search and then switch to the secant search, onlynilex assignments with increasing number of diagonals (i.e.,
the desired path length is still not found after some numbgircreasing number of codecells in the central partition). The
of iterations (e.g., afte? log, K iterations). According to the analysis of [20] is based on modeling the central quantizer as
results mentioned above, for pmf’'s obtained by discretizirgy compander. Consid&”™ to be the number of codecells in
continuous pdf’s, and., distortion measure, the running timeeach side partition, lét denote the number of diagonals of the
of this hybrid method i) ((K +log N)N?) in the worst case index assignment matrix, and letoe a number ir{0, 1) such
if K << N (as is the case in practice).2This suggests ahat k = 2F¢, Let D(()”)(a), respectiverDY)(a), Dér)(a),
improvement in speed by a factor ﬁ(%) over the denote the central, respectively side 1 and side 2 distortions
algorithm of [15], [16]. under ther-th power difference distortion measure, for a
In addition, the new algorithm is more efficient in us€DSQ with an index assignment matrix witf¢ diagonals
of memory than the previous ones. Its space complexity and optimal companding function. According to [20, Eg.
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%3]

. . . r | min = | maxgq
(18),(19)], whenR — oo, the following approximations hold I
—or w
(") 2 o rR(ta) 1/(r+1) r1 21 Oz | 09%
Dy (a) = 2 ( f (x)dx)™". (20) 3 [ 0.0625 | 0.941
r+1 v R
w
D(a) = DY (a) ~ 57.2477-1%(17(1)(/ PV () dg)
14
for a € (0,1), whereg, was defined as
D ST
B, = lim 17;1 .
koo k 1]2 1|36
Note that 3lals 515719
k . 1
1.4, . 1 5(7]8 418 (1012 14
ﬂ_khi{lozgg(g) _/O‘de_r+1' 9 1012 11 13]15 |17 20
, - 12 (14 16| [19]22] 24
Thus, relation (21) becomes
131516 18 [21 24 127 |28
” . 9—rR(1-a)
DE )( ) D( )( ) / fl/(r+1)< )dx)r+] 17118 |20 23126 129 |31
27(r+1) 19 |21 3032 |33

(2
Using (20) and (22), we obtain the expected distortior
balanced2DSQ at high rates

Fig. 13. Modified linear index assignment considered by Vaishampayan [18]
for two values of the parametér (2k is the number of diagonals used, other
than the main diagonal). Lefk = 1. Right: &k = 2.

B 2w2T’Ra +w0277"27rRa w
DO () ~ 1/(+1) () g )
@~ ey S @
_ _ _ (2 assignments of different spreads were tested. The spread of
for a € (0,1). The analysis provided in [20] doe:  the index assignment is defined in [18] as the largest number

directly apply to the case with convex codecells. Hc
as proved in Appendix B (Eq. (46)) with arguments alc
lines of [4], [3], relation (23) holds in the case of ¢
side quantizers, too, with the corresponding value=
Consequently, the conveXDSQ is optimum at high 1
if and only if min,eo,1) D™ (a) = D (0). Minimizi
D) (a) is equivalent to minimizing the functiof'(a)

of central codecells situated between the extreme points of a
side codecell. We have considered the modified linear index
assignment proposed by Vaishampayan [18], with parameter
k=1,2,---6, where2k is the number of diagonals other than
the main diagonal used in the index assignment (Fig. 13). As
k increases the spread of the index assignment increases, or
further deviates from convexity.

For eachy we minimizedD(Q) for eachk and then took the
minimum over allk. Our results showed that fgre (0, 0.925]
on the interval [0,1). F(a) is a convex function the minimal expected distortion was always achievedifer
[0,1), and its uniqgue minimum is achieved at the ....l. Note that the algorithm of [18] can change the initial index
ap = max{0, 55 log, 74— }. It follows that the necessary assignment in the iterative design process. It may start with
and sufficient condition foray to be 0 is 7%= < 1, or a certain assignment and end up in a different one, because
w/wy > 1/2"F1 In the case when the 2DSQ is designegome of the index pairs may be allocated empty codecells
for communication over two independent channels, each withthe central partition (also some of index pairs may change
probability of successg , we havew = ¢(1 —¢) andwy = ¢, their order). We observed that fgre (0,0.925], when starting
hence the above inequality is equivalentgtec 2r+1++1 with the modified index assignment of sprelad= 1, which

In conclusion, the above arguments show that asymptas-not convex as shown in Fig. 13, the algorithm consistently
cally in R, the convex-codecell condition does not precludeonverged to an assignment yielding a convex 2DSQ.
opt|mal|ty when the channel probability of success is at mostWe have also applied the proposed algorithm to a discretized
%, for continuous distributions andth power distortion version of a memoryless, unit-variance Gaussian source. For
measure. Table 1 lists the value of this maximum bound fgr € (0,0.925] the minimum values ofD(Q) match those
several values of. For » = 2 the codecell convexity will obtained by applying the iterative algorithm of Vaishampayan
not preclude optimality if the channel has a failure rate ¢18] for a series of index assignments of various spreads and
12% or higher. The larger the value of the more relaxed taking the minimum over all these index assignments (Fig. 14).
the condition for the side quantizers of optimal 2DSQ to bBut for ¢ € (0.925,1], assignments of higher spreads lead
convex. to lower expected distortion (see Fig. 15). As expected, the

Next we present experimental evidence to the intuitiotodecell convexity compromises the optimality when channel
that for poor channels codecell convexity does not preverdnditions are very good.
optimality. We applied the algorithm of [18] to a memory- However, there are also cases where the proposed algorithm
less, unit-variance Gaussian source to optimize 8Hevel outperforms the locally optimal algorithm of [18]. Let us
balanced 2DSQ. As a measure of codecell convexity, indegnsider three examples of mixed Gaussian distribution. The

F(a) = 202" R 4 2727 Re
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1 distribution | D [18] | D proposed algorithm| relative difference
o omeenvex f1 0.2149 0.1813 18.53%
09 1 fo 0.2338 0.2224 5.12%
0sh f3 0.1900 0.1684 12.82%
TABLE I
07r PERFORMANCE COMPARISON BETWEEN THE ALGORITHM Of18] AND
5 OURS ON THE MIXED GAUSSIAN DISTRIBUTIONS GIVEN BY (24)-(26),
£ osr FORK = 4 AND g = 0.9.
B
A 05¢
kS| — : —
B oar distribution | D [18] | D proposed algorithm| relative difference
53 f1 2.7178 2.5855 5.11%
@ ost fo 2.7349 2.6397 3.6%
oal f3 2.1282 2.0423 4.2%
TABLE IlI
01r PERFORMANCE COMPARISON BETWEEN THE ALGORITHM Of18] AND
OURS ON THE MIXED GAUSSIAN DISTRIBUTIONS GIVEN BY (24)-(26),
or FORK = 4 AND q = 0.5.
0 0‘1 0‘2 0‘3 0‘4 O.‘S 0‘6 0‘7 0‘8 0‘9 1
q
Fig. 14. Minimal expected distortion for memoryless Gaussian source at VIIl. CONCLUSION

side rateR = 3 (K = 8), as a function of; € (0, 1]. The dotted curve is the
performance of the proposed algorithm; the solid curve is the performance of\\e show that optimal balanced fixed-rate two-description

:)r;gtf‘e'g;rﬁg':;g Eé%.(;gglbtﬁzttﬁuclhf\‘/’g grfrig‘znst?éa?f index ass'gr"“e”tss'éa_lar quantizer design can be treated as a Lagrangian-type
optimization problem, if convexity of side quantizer codecells
: ‘ ‘ is assumed. It turns out that for a very large class of distor-
L ety | tion measures and for any given target rate, the Lagrangian
multiplier exists for the globally optimal solution, under the
above specified constraint. By exploiting a monotonicity of
the objective function we develop a fast dynamic program-
ming technique to solve the parameterized problem given a
trial Lagrangian multiplier. Furthermore, an RD-guided search
technique is also proposed. It makes the Lagrangian optimiza-
tion process to converge in a small number of iterations in our
experiments. The relationship between codecell convexity and
optimality is also discussed.

0.025

0.015

Expected Distortion

0.005

Appendix A. Proofs of Propositions 2 and 3

Our development hinges on the Monge propriety satisfied
by the functionD(a, b], namely

D(a,b]+ D(a’,b'] < D(a,b’] + D(d', b],
foralla<ad <b<¥. 27)

0 I I I I I I I I I
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

q

Fig. 15. The magnification of Fig. 14 in the rangec [0.9, 1].

It was proved in [24, Lemma 4] that the above relation holds
for monotone distortion functions as defined by (4). We will
fi(z) =1/2¢(0,1/16) + 1/2g(6,1), (24) also use the following lemma, which was established in [7,
Folz) = 1/29(0,1/4) + 1/2¢(6, 1), (25) Lemm_a 1]. The proof of this lemma can be done _S|mply by

replacing the weights of the edges and then applying (27).

fs(xz) = 1/49(0,1/16) + 3/49(6,1), (26) _

Lemma 1.Let va, ab, v'a’ anda’t’ be nodes in the grap@,
where g(u,0*) denotes the pdf of the normal distribution ofych thaty < /. a < o/, b< ¥, v < b and/ < V. Then the
meany and variances®. We applied the algorithm of [18] fo|iowing assertions hold:
to minimize the expected distortion fak = 4, using the i) if / < aandy < b, thenw(va,ab) + w(v'd,d't') <
modified linear index assignment of spreld= 1. We also w('a, ab) + w(vd,a'¥); ’ ’ -
applied the proposed algorithm to a discretized version o-) it o <’ b and <’b thenw(va, ab) + w(v'a’,a'b') <
each of the three mixtures. The results obtainedgfer 0.9, wva, ab!) + w(v'a’ C’le). ’ ’ -
respectivelyg = 0.5, are recorded in Table 2, respectivelyiii) .y < Janda’ < 7b, th,enw(ua ab) + w(v'd,a'b) <
Table 3. To visualize an example we plot in Fig. 16 the w(u’a_ab’)+w(u;’ a'b). ’ ’ -
histogram of the mixed Gaussian distribution given by (26), ’ ’
and the thresholds of the central partition obtained by the twoln order to prove Proposition 2, we additionally need the
algorithms. following lemma.

pdf's of the three distributions are
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o ﬂ Let the pathsP; and P, be

0.35

Py :apar,araz,a0a3, -+ ,a1_2a;-1,a;104,
Py : boby, b1ba, babs, - - byrby g1, by by 4,

0.3 q
0.25- 1 where0 = a9 = a1 < az < - < a1 < a < N and
0:b0=b1 <b2 < - <bl/+1 Sbl’+2 SN
ozr | Let i be the largest integer betweénand! — 1 for which
both inequalitiesa; < b4y —1y1,a0;41 < birr—i142 hold.
oer 1 Such an integer exists because the inequalities are satisfied
ol | fori = 0. Clearly,i < I — 2. Let alsoj be the smallest
' integer betweer) and! — 1 — ¢ for which both inequalities
oosk | it > b¢+j+l/_l+1,ai+j+1 > bi+j+l/—l+2 hold. ObViOUS'y,
such an integer exists because fot [ —1 —1 the inequalities
A Ay 7 PN are satisfied. We distinguish between three cages0, j = 1
2 4 6 8

0 . .

-2 0 1 andj > 2. We start with the most general cage> 2.
Fig. 16. The mixed Gaussian distribution (26) and the thresholds of the 1 h€ definitions ofi and j imply, on one hand, that; <
central partition obtained by the algorithm of [18] (triangles) and our algorithy 1/ _j41, @41 < b —142, Qipj > bi+j+l/_l+1, Aitjr1 =
(stars). In both case& = 4. bitjt—1+2, and on the other hand, that,; < biiy_i42,

Aiv2 > bipr 143, aiy3 < biqr_i1va, Giga > by s,
Q-1 < bi—&-j—&-l’—l- In other WOde,ai+1 < bi+l’—l+2

a a
<bipr—i143 < aiyo < aiy3 < bipr_1pa < bigr_14s < Giga
< e < bipjr—i-1 < Qg2 < Qg1 < bipjypr— <
bit+jt+r—i+1 < aitj;. Clearly, 7 must be an even integer.

, We construct the new pattfy of [ edges, and®, of I’ edges,
in the following way. P; connects the source with ;1542
via the nodesa,mH and bi+j+l’—l+1bi+j+l’—l+2- The edges
up to the nodex;a; are the first edges ofP;, and the edges

a a
v Y b b
a a’
from the nodeb; 1 —i+1biyj+1—142 are the last — i — 5
N edges ofP,. The verticesz;a; 1 andb;yj1—i41bitj11—1+2
are connected by the followingredge path:
v v b b
a a/
v b b

/

AjQi41, a¢+1bz‘+lul+3, bi+l/7l+3ai+3, ai+3bi+l’—l+5,
bty 1450545, s bipjrr—1—10545-1,
@iy j—1big =141, bipj 1 —141big 11 —142- (29)

Pj connects the source withy;_1a; via the nodes
bitr—i41bitr—142 anda;4 ;a4 ;41. The edges up to the node
bivy—141bi11—140 are the first + 1’ — 1 + 1 edges ofP;, and

the edges from the nodg ja;1 ;41 are the last —i —1—j

v 1// b b,
edgeS ofP;. The Verticesbi_H/_l+1bi+l/_l+2 and Qi Q541
c) are connected by the followingredge path:
Fig. 17. lllustration of Lemma 1. By replacing the two edges to the left

by the two edges to the right, the total weight decreases. a) Lemma 1 i); b) bigtr—1410i 1 —142, bitr 1420542, Qi 2biv v —i44,

Lemma 1 ii); c) Lemma 1 iii). bi+l'7l+4ai+4, . ,ai+j72bi+j+lul7

it j+1/ —1Qig s Qg j Qi g 1- (30)
Lemma 2. For any integerg,!’ such thatd <! —1 <1 +1,
and any two paths ig7, P, with [ —1 edges, fronD0 to some  Note that the new path®; and P, are obtained from the
vertexa;_a;, and P, with I’ +1 edges from00 to by 1b;/42, old ones by interchanging; o, and b; ox11 141, for all
aj—1 > byy1, ap > by o, there are two other path) with I k1 < k < j/2, and by interchanging; ;1 andb; 4/ —i42.
edges fromD0 to byr1by42, and Py with I” edges fromD0 to  In order to establish (28), it is sufficient to show that the sum
a;—1a;, such that of the weights of the two paths (29) and (30) is at most
, , equal to the sum of weights of the edges Bf between
W(Py) + W(Fz) < W(h) + W(P). (28) a?aiﬂ and a;4;aitjt1, ar?d of the edgegs o, between
Proof. bivr—141bitr—142 and b j i 41biyj1—142. Further, for
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| links I links I-1- (i#) links for all k,2 < k < j — 1. The relation (31) follows from
P, /YY\ Lemma 1 ii), the relation (32) follows from Lemma 1 i), and
88, &8 the relation (33) follows from Lemma 1 iii). Now the proof
of casej > 2 is complete.
Let us consider now the case = 1. This case implies

bi+|’-l+ 1bi+l'-l+ 2 bi+j+|’-|+ lbi+j+|’-l+ 2
P, that a;11 = bjyy—_142. Moreover,a; < birp_ij11 < G401 =
-~ A A bivr—112 < biyr_143 < a;42. The new pathsP] and
i+l'-1+ 1links j links I- (i+)) links P} are constructed in a similar way. The only difference
consists in that the nodega; 1 andb; 11 —i11biyj+1—142
U are connected ir?] by a single edge (this is possible since
i links I- 1- (i+j) links aiv1 = biyjyr—i41 and a; < by —42) and the nodes

bitr—141bitr—14+2 anda;4;a;4,41 are connected i, again

P, o by a single edge (possible becaus;al_/_Hg = Gt ar!d_
B+ Bei1 bitir—1+1 < @i+j+1). In order to establish relation (28) it is
sufficient to show the inequality
P bi+|’-l+ 1bi+|'-|+ 2 bi+j+|’-|+ 1bi+j+|’-l+ 2 w(aiaiﬂ, ai+1bi+l/,l+3) + w(bi+l/,l+1ai+1, ai+1ai+2) <
2

w(aiai+1; ai+1ai+2) + w(bi+lul+1ai+1, ai+1bi+l/7l+3),

i+0-1+ 1 links I- (i+j) links

which follows from Lemma 1, i) (it corresponds to the case
whena = a').

The case; = 0 is the simplest one. In this case the
nodes a;a;+1 and b,y —;11b;+1/—1+2 coincide. Hence the
paths P, and P, have this node in common. This common
node partitions each of the two paths in two subpaths (a prefix
& B 1 Burws & Bispirs g and a suffix). The new pathB] and P, are obtained starting
from the old ones and interchanging the two suffixes. Relation
(28) is trivially satisfied with equality]

I\

Proposition 2. The inequality
QW) <W(I—-1)+W(I+1)
holds for alll,3 <1 < 2N — 1, whereW (l) is the weight of

A Bisrs 2 A3 Bigra buass @i the minimum-weight-edge path from the source to the final
node inG.
a; B 1 Biaes @2 Bise 5 Qiag Proof. Let P, and P, be the minimum weightl — 1)-link path

and the minimum weight/ 4+ 1)-link path, respectively, from
the source to the final node i¥. According to Lemma 2,
there are two path®; and P; both ofl-links, from the source
to the final node in&, such that relation (28) holds. Then the
conclusion of Proposition 2 trivially follow<.]

In order to establish Proposition 3, we need the following

lemma.
Qg Bisrs 2 Qi3 Ps Bupns Qs e a

) ] Lemma 3. The functionW),(a, b) satisfies the Monge condi-
Fig. 19. Change of-edge subpaths - cage= 4. Up: Old subpaths. Down:

New subpaths. tion, i.e.,
Wi(a,b) +Wa(a',0") < Wx(a,b') + Wx(d',b)
this it is enough to show that the following inequalities hold: forall0<a<d <b<d <N. (34)
w(a;@iy1, @ip1bitr—143) + Proof. The nontrivial case is whef < a < o’ < b < b'. The
Wb — 14105417 — 142, bigr —142ai42) < proof proceeds by induction obi. The base case i = 2.
W(aiai1, Qip1aise) + Thena =0 anda’ = b =1, and (34) becomes
W(itr —i41bi4r 142, bitr—142bitr—143); (31) Wx(0,1) + Wi (1,2) < Wx(0,2) + Wi(1,1) (35)
W(bitj 4t —1i+j, QitjQitjr1) + For each of the nodegl, 02 and 11 there is only one path
W(@itj—10igjpv 1415 Digej v —1410igj o —142) < ending in that node, hence that is the minimum-weight path.
W(@i4j—1Qitj, it jQitj+1) + These paths are, respectivey), 01; 00,02; 00,01, 11. It is

Wit gt —1bi 411515 big gt —ta1big g —ia2); (32) sufficient if we prove the inequality in whichV’y(1,2) is

W( @i k105t kt1, Vit k1 Qigr1) +

Wi k1 —1GQit ks Qi kDig g —142) <
S o o o \
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replaced by the weight of some path ending in the nb2le Since the functionWV,(-,-) satisfies the Monge condition

(not necessarily the minimum-weight one), for instance, tffeemma 3), it follows that

path: 00,01, 12. Hence, a sufficient condition for (35) is the , , ,

following Wi(v,a) + Wx(v',a") S W(V',a) + Wi(v,d).

Moreover, Lemma 1, i) can be applied, and combining these
w(00,01) +w(00,01) +w(01,12) + 3 < two observations, yields that the sum of the righthand sides of

w(00,02) +w(00,01) +w(01,11) + 3A, inequalities (42) and (43), which we denote Hy is smaller
which is obviously satisfied with equality. or equal than the sum of the righthand sides of equalities (40)
and (41), which we denote by. Further, we obtain that
Now we show the inductive stef§ — 1 — b’. Denote by ;o ;L
¢, the values, (a, ') and by¢’, the valueé, (a’,b). Applying ~ Wa(a:b) + Wi(a', V) < A< B < Wi(a,b) + Wi(a', b).

the definition ofé, (a,b’) and&y(a’,b), we obtain that The conclusion is that both relations (42) and (43) are satisfied
Wi(a, 1) = Wa(€, a) + w(€a, ab') + A, (36) \éVIt(f;/el()]/L)JaEW. But equality in (43) contradicts the definition of
Wi(d',b) = WA(¢,d') + w(€'a’,a'b) + \. @n

Lemma 4. The path computed by the algorithm of Section 5
Further we need to distinguish between the cases¢’ and  js a minimum-weight path iG(\), with the largest number
§<¢. of edges.
Case ¢ > ¢. Since¢ < a < d, it follows that¢’ < a
and¢ < a’. The definitions ofiV'y (a, b) and Wy (a’, ') imply, Proof. Let
respectively, that

P :apar,araz,aza3, -+ ai-1a1, aiair
Wi(a,b) < Wi(€',a) +w(€'a, ab) + A, (38) pe the path computed by the algorithm of Section 5. It has
Wi(a', b)) < Wy(& a') +w(&a,a'b) + N\ (39) the property thaty; = a1 = N, ap = a; = 0 anda; =

) , . & (ait1,a542) forall 0 < i <1 —1. P clearly hasl edges.
Note thata’ < b < ', hencea” < " — 1. Consequently, since Assume now that there is another pathfrom the source to
§ < <a<d, the inequality the final node, which is also a minimum-weight pathGig)),

WA a) + W€, ') < Wa(E,a) + W' d') and it hasl’ edges withl’ > [. Let P’ be

is valid according to the inductive hypothesis. Also Lemma 1, P" bob1, biba, babs, -+ s by—ibu, burburta,

iif) can be applied forr = ¢" andv’ = £. Combining these \hereb, = b, = 0 and by, = byt = N.

two results, we obtain that the sum of the righthand sides of\ye show first by using an inductive argument, that
inequalities (38) and (39) is smaller or equal than the sum Qfﬂ_j <apyr_j forall 5,0 <j<i+1.

the righthand sides of equalities (36) and (37). This impligsase Step.For j = 0 andj = 1 the inductive hypothesis is
that (34) is satisfied, too. trivially satisfied with equality.

Case ¢ < ¢'. The proof follows the same idea. In (38) anqnductive Step. Let j be an arbitrary integer such that
(39), £ and{’ are interchanged. Then Lemma 1, ii) is applied < j < 7 + 1. Assume that the inductive hypothesis is
to reach the conclusidn. satisfied for all integers fron® to j — 1 inclusively. Since

Proposition 3. For any nodeab anda’b’ other than the source, byi1-(j—2) < @p1—(j—2) AN byy1_(j—1) < ary1—(-1), it

and such that < o’ andb < ¥/, the following relation holds: Tollows by Proposition 3 thag (b +1-(j-1), br1-(j-2)) <
Ex(ar41-(j—1)@41-(j—2)) = ary1—5. The last equality is due

Ex(a,b) < &x(d,b). to the definition of the pathP. Further, since the prefix
of the path P’ up to the nodeb; i_¢j_1)byy1—(j—2) IS @

Proof. Assume that minimum weight path irG(\) from the source to that node, it
follows by the definition of¢ (by 11— (1), br41-(j—2)) that

éx(a,b) > &x(d', ). birpi—j < Ex(bryi-(i-1),bry1-(j—2)). Now the inequality

. . . . by < a1 follows and the inductive proof is over.
We will show that this assumption leads to a contradiction’ T:(l)rjj_:l?lvée have thusby i1 < alp: 0. On the

i / / /!
Letv = &\(a', V) andv’ = €,(a, b). Then other hand,/ > [ implies by1_; > by, > 0, yielding a

Wi (a,b) = W)\(V/,a) + w(u’a,ab) + A, (40) contradiction.[]

W@, ) = Wa(v, @) + wlva, a't) + A “1) " Appendix B. Asymptotic Analysis at High Reso-

Note thaty < o’ andv < . Also v/ < a and+/ < b. lution
Using the inequality < v/, we obtain thatr < ¢ andv < b.

Furthermorey’ < o’ andv < b'. These imply that Assume a probability distribution with continuous pfifz)
defined on the compact intervidl, W]. Any K-level balanced
Wi(a,b) < Wi(v,a) + w(va,ab) + A, (42)  convex 2DSQ satisfying the relation stated by Proposition

Wiy(a', ') < Wy(V,d') +w(/d',a'b) + N (43) 1 is completely specified by the central partition. Following
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the approach of [20] we model the central quantizer asTéen we have that

compander. In other words, the central quantiggr is the DO(Q) ~ 1 ((t1 — to) L) 4
composition of three function§)o = G=1oQ%,_, oG, where VD eR=DT W T 0 (@)
QY is the2K — 1 level uniform quantizer on the interval S (tgin — tzi,l);,((tf;;ll))) -
[0,1], G is an invertible functionG : [V, W] — [0, 1], andh or_1 (11 — tg) £0)

is its inverse,h = G, h : [0,1] — [V, W]. FunctionG is (r+HEK-D)" 0)g7(t0)"

moreover assumed to be strictly increasing and differentiabBy multiplying with K we obtain that

hence its derivativey = G’ is positive. Furthermoregy is A (r K" to
assumed to be continuous. Therefore, the balanced 2-DSQ K'D"(Qu) = (r+1)(2K-1)" [t 7t0)gfr((to)) +
of rate R is defined by the central partition with thresholds S (i — tgi_l)g{((tf;*? ] —
to =V <t] <ty < - < tog_g < tog_1 = W, where (2" —1)K" f(to)
K = 2% andt, — h(i/(2K — 1)) for all 0 < i < 2K — 1. werner—Tr (1~ ) g
Then the thresholds of @, are tg,t1,t3,%5,---, Note that, asK — oo, the last term approachésbecause
tox—3,tark—1, and those of Qo are to,to,ts,- -, t; —1ty — 0, while the expression inside the square brackets
tok—a,tak—o, tarc_1. Consider ther-th power difference as approacheg’w f(“) - dz, thus,
distortion measure, and denote BY,.(Q) the distortion of
a quantizer®, and by D,.(a,b] the distortion of a codecell K'D"(Qy) — / f . (45)
(a,b]. According to [4, Eq. (1.6)] and [3, Eq. (8)], the 7+1 27 (2)
following approximation holds a& — oo This yields the approximation
") (O A ! RC) RN 1 " f)
COR e o A D@ = g,
Further, sincelimpy_, . (”;’,,.1)T = 27 and K = 2% we Similarly, D(")(Q,) can be approximated by the same quantity
approximate(2K — 1)" by 28ror which leads to as above. Using these approximations together with (44) and
f the fact that the 1rr/1(in+ig1um value for the integral is achieved
D"(Qo) ~ QRTQQT ) / dw- (44)  wheng(z) = j’}l/(ﬁ [3], the following approxima-

Similar approximations for the side quantlzers distortions cﬂ?n of the minimal expected distortion is obtained:
not follow directly from [4], [3] because the side quantizers 5O ~ 2w+ 27wy (/ fl/(T+1)( )+
are not companders. Precisely, the functi@hmaps each 2Rror(r 1) '
side quantizer)y, to a quantizer over the interval, 1] e apove result can be put in the following form, which will
which has all codecells except one, of equal length. But suBQ used in Appendix C,

approximations can be derived very easily following the same

ideas as in [4], [3]. We illustrate this for the side quantizer;; | prp() _ 20 +27"wo / FYED (3)dz)7 1 (47)

(46)

Q1. Note that K—oo 2r(r+1)
K—1 Relation (47) follows immediately from (45), together with
D(T) (Ql) = D(T) [to,tl] + Z D(T) (t2i71’t2i+1}. the equalities
=1
Assuming that for highK™ the distribution is approximately lim (2K —1)" D(Qo) = ] 2r/ f

uniform over each codecell, it follows that the representation
point can be approximated by the midpoint and obtain which was proved in [5 Theorem 1] an@( ) =

fl/(r+l)( )
D) (tg;_1,tai41] &~ Jy £ (2)da”
to; . -
fltaicn) [0 o = (aimn + t2ign) /27 = Appendix C. Number of lterations of Secant
ip1—tai )" Search

R
Further, using the mean value theorem and making anothekVe assume here the squared error as distortion measure and
approximation, we obtain a probability mass function obtained by applying a fine pre-

quantizer to a continuous strictly positive pdfz) defined
on a compact intervdlV, W]. The pre-quantizer partitions the

toiv1 — taic1 = h(5555) — h(55=5) ~

W () a1 = 71 " ) total interval[V, W] in N equal sub-intervals and selects the
Thus, we get optimum representation value for each sub-interval. In other
. . Ftas 1) words, we have
D(r) (tZifl,t2i+1] s 2i+1 7 L2¢-—-1 2¢i—1 ) VAi(W—V)/N
(r+1)2K —1)" g"(to;_1) p; = / f(z)dz,
Similarly, it follows that V4+(@E-1)(W-V)/N
V4+i(W-V)/N
DO ftg, 1] ~ . (11— to) LU0 P N T YA S (48)
’ 2(r+1)(2K —1)" 9" (to) ' pi ’
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forall 1 <i < N. We will denote byD (1), respectivelyD;, new search interval is reduced by at Ie@sStarting from the

the smallest expected distortion of atevel balanced convex initial search intervall, 2N], the total number of times this
2DSQ for the pmf defined above, respectively for the fidf). reduction can be applied until the size of the interval becomes
Proposition 4. For a pmf as above andl and K large enough, smaller than6 X is at most [10g3/2(2N/(6Km' Therefore

the number of iterations in the secant search is upper boundad [logs/5(2N/(6K))] < [logg/z NT. O
by 8K + [log3/2 N1, where[-] denotes the ceiling functidn  Proof of Lemma 5.

In order to prove the above proposition we need the follow- According to equation (47) in Appendix B, we have

ing three lemmas. lim 12D, = (51)
Lemma 5. There is a positive constang such that foe

_ _ 3 where
|Di =Dyl < &7 (49) . w
for all N >> 1. co = 152w+ 272“)0)(/‘/ O (@)dz)®. (52)
Lemma 6. There is some positive integéy, such that for all - The proof of this lemma hinges on relation (51), but we
l,lp <1 << N, we have moreover need a way to relatBy(l) to D;. Let us first
Dn (1) > 3Dn/(21). (50) establish a mapping between tlidevel balanced convex

2DSQ's for the pdff(x) and those of the pmp;, 1 <i < N.
Let an [-level balanced convex 2DS@; of the pdf f(x)
have the following thresholds in the central partitigg: =
V <ty <ty < <tgy_og < ty_1 = W. Define now an
l-level balanced convex 2DSQ, of the pmfp;,1 <i < N,
with the following threshold®) = ¢g < ¢1 < -+ < 12 <
Anew = (W(Px;) = W(Py,))/(L(Px,) — L(Py,)), ga1-1 = N, where:

Lemma 7. Assume thaRK << N andL(Py,) < 2K. Then,
if L(Py,) — L(P,) > max3{2ly,L(Py,)}, it follows that
L(Py,..,) — L(Px,) < 2(L(Py,) — L(Py,)), Where X,¢,, is
obtained according to the secant search strategy, i.e.,

andl, is the constant defined in Lemma 6. N(t;—=V)

] (53)
We first prove Proposition 4, then each of the three lemmas. W-V

Proof of Proposition 4We can think of the secant search as Oésa” 0 ,S ngthm _éf The Zaﬁ?ﬁptﬁorrehsplgnds to a convex
search in the interval of integef&(Py, ), L(Py,)]. After each QQj of the pdf f(x) wi € thresholds
iteration the search interval is reduced as follows: (W =V)

’_
Case 1:If L(Py,,,) < 2K then the new search interval is ti=V+ N

[L(Py,...)s L(Px,)]- : : o
) v ! ; . for0 <4 < 2[—1.Itis easy to see that the expected distortions
C 2:1f L(P 2K then th h int I ) . !
ase (Pncu) > en the hew search interva ISof Q, and of Q’f differ only by the distortion of the pre-

[L(Pr ), L(P,e)): quantizer applied tgf(z) in order to obtain the pmf;,1 <
The search stops whel( Py, ., ) = 2K. Note that after each i < N. We will denote this quantity by v. Thus,

iteration the search interval is reduced by at least one unit

sinceL(Py,) < L(PAWU_) < L(PM_) as justified in Section 6. D(Q)) = D(Qp) + An. (55)
The total number of iterations is the sum of three quantities ' B B

q1,q2 and g defined as followsg; is the total number of Nextwe provide an upper bound fob(Q)) — D(Qy)|. Note

iterations when Case 1 happeng. is the total number of first that relation (53) implies that

iterations when the size of the current search interval is smaller N(ti - V) N(ti - V)

%=

(54)

new

than6K and Case 2 happens. Finally, is the total number — < < — + 1 (56)

of iterations when the size of the current search interval is at W=V W=V

least6 K and Case 2 happens. Using further the equality (54), after some algebraical manip-
Since the valued.(P,,, ) corresponding to distinct itera- ulation we obtain

tions are different, and since there are at n¥st-1 different W -V

positive integers smaller tha¥ it follows thatg; < 2K —1. 0<t;—t; < N (57)

By a similar reasoning we obtain that < 6K — 1. )
In order to provide an upper bound far, we assume We assume that the pdf is smooth enough anhd > [ so that

that K > lo. Also assume thaf.(Py,) — L(Py,) > 6K. the optimumi-level balanced convex 2DSQ of the pdfz)
Clearly, L(Py,) — L(Py,) > 6lo. Also, since2K > L(Py,), has t‘t\Vei‘(/:ilstance between any consecutive thresholds_larger
we have L(Py,) — L(Py,) > 3L(P,). By Lemma 7 it thgn - Therefore we will consudgr only 2DsSQ's Wlth.
follows that L(Py .. ) — L(Py,) < %(L(P/\l) — L(Py,)). _thls property. This property together with the above inequality
Consequently, if the length of the current search interval #Ply that

at least6K and situation 2 happens then the length of the Vimtg=th <ty St <oty SH <tipg Sty <

2For any real numbet, [z] is the smallest integer larger or equalito s < tgpo < tlQl—Q <tgoi_1 = tél_l =W. (58)
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Let Qo, respectively))y, denote the central quantizer@fy, the pdf). Also we havepu(t;, ti41) — p(t;_1,t)| < W = V.

respectivelyQ’;. For anyu < u’ € [V, W] we denote Then the following inequalities hold
’ —
, f: xf(z)dx 22 2|N(twtz+1) (1, )| (i1 — tia ft z)de <
plu,u') = TPV (59) Mo(W=V)? 20-2
[ f(z)dz N img (i —tic) =
—_V)? _v)3

Then W(tzld —to+ty_1 —t1) < W (64)

D(Q’) D(Qo) = In order to find an upper bound for the first sum in relation

(63) naotice that
SN (= ]y £))? F()da —

l(ti_q,t7) — ptiz1, )| <
[t 1, 15) — p(tima, )]+ [p(tizr, 8) — pu(ti1, 2:)|(65)
Using the definition ofu(-,-) in (59) and the inequalities

ftt,l(l’ — pu(tiz1,t:))? f(x)d). (60)
Applying the inequalities (58) we further obtain

D(Q)) — D(Qo) = ti—1 <t,_, <t; from (58), we obtain the following sequence
SIS (=t 6)? of relations |
(2 = plti1,8))°) f(a)da + i) 1L, Fa)da = Ji7 2 (o) =
S I =ty 1) — ft?:: zf(a) dw+fff f(2)de =
2171(xt:u(ti7ti+l)) )f (@ )dx/: , u(ti_l’t;%)ﬁiij Fl@)de + p(t_,, ¢ ft’ - ”,
izt Ju_ Hpltim b) =t 1) - which further imply the equality
(¢ — MO £ () dir + S f @) S p)d
A2 t'Z(M(ti,tHl)—u(t; L) - p(tioi, ) = p(tioi, ti_q) @7%(&71%2) tgrl
( — M=t FRtin) ) 0 g (61) o J(@)de oo f(a)de

The above relation leads to

Using the fact that the absolute value of a sum is smaller or

equal than the sum of absolute values and the fact fthat [tz 15) = pltic 1’t1)| B

is positive we further obtain that P f - fa)de

|M(t; 17t;> :u(t% 1,tl 1)‘1 I <
|D(Q) — D(Qo)| < - v )M e V)
20— —ti— 1 0
2555 Ity ) — (i, )] - o T (66)
N(t1717t1)+lt(tz—lati)
fti T |f (@)de + Moreover, using the deflnltlon ofu(-,-) in (59) and the
222l 2 \ulti, tisr) — p(ti_y 8] - inequalitiest; ; < ¢; < ¢/ from (58), it follows that
ftt,f o Pl z);rﬂ(t itit1) |f (z)dz. (62) ti—1,t ft dx:“fttig—l vf(z)dr =
Using the following property of the centrojd(u, u') € [u,u'], ftt L zf(x)dx + ftt; xf(z)dr =
. plti_y ) +e(ti-1ts) / o
it follows that T )Jreu(t[tl1 13ti]. Then for ft ft )z + plts, ¢) ft v
x € [th_,,t;] we have|z — ©o= 1t P u L—ti1 further lead
Likewise ”(t“l’ti)“(ti’““) € [th_,,tis1]. Since[t;,t}] C urther leading to
-, tisa] foro € [tz,m we havelg— sl < e oy J S @i
tiz1 —t,_, < tiy1 — t;_q. By applying these observations tgf!(fi-1 ti) = ulti-1, t:) 5= +”( i)
i1 = I f( )dw’ I, f( )dw
(62) we obtain: i1 it
. Using the above relation we obtain
ID(Qb) ~ D(Qu)| < o
22 oy, ) il iy
’ ¢ f(z)dz
; | <
- ft’ . dl‘+ |,U'(tlvtz) ,U(tz—l,tz”{t f(w) N
23 i1 [tz tiva) — M(t§71,t§)|(ti+1 —ti—1) - (Fita 1) Mo(W V) 67)
5 f(a)da. (63) NI, S
Next we will treat each sum separately In order to deal Wlt%y replacing (66) and (67) in (65), it follows that
the second sum notice thaft” f(z)dz < Mo(t, — t;) < |p(ti— 1,t;) p(ti-1,ti)| <
My(W — V)/N, where M, denotes the maximum value of 2Mo(W—V)(ti—ti—1) o 2Mo(W=V)?

f(x) over [V, W] (this value is finite due to the continuity of N rt f@yde T N [t f(a)dz
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which further implies the following inequality which further implies that

_ ; — ¢ C
S (i) = pltia )| (8 — tio) fy | f(@)da < D1~ 5| < 155 (73)
W SN — 1) < W, (68)According to Lemma 5 there is a positive constagtsuch
) . . that the following inequality is valid for all << N,
Further, by replacing (64) and (68) in (63) it follows that - } cs
@) - pige) = EEIEETE 6o sy "
0 o= N ' Relations (74) and (73) further imply that
According to the above relation there is some positive const Co = = = co c3 co
: X - =< - —Zl< =24 =
c1 (i.e., which does not depend a¥i) such that ?%N(l) l2| < 1Dn() = Dif + 1D 12‘ - N + 14127
c which lead to
ID(Q) - D(Qo)l < =
N 13c¢co _c3 “h ) < 15¢y n c3 (75)
A similar result can be obtained for the difference of dis- ue NN =2 TN

tortions of corresponding side quantizers fo and Qy. forall [, N with [ > Iy and N >> [. When! > [, it follows
Therefore we conclude that there is some constant- 0 that 21 > [y, consequently, relation (75) also holdsifis
such that replaced by2l, i.e.,

. D C2 13¢ c _ 15¢ c
ID(Q}) - D(Qp)l < = (70) 03 < Dy(2) < 0 4= 7
d ! N TR AR veuToRi (76)
From relation (55) we obtain that Letc =, /33‘;3. Letly <1 << N. Assume that the condition
1D(Q}) — D(Qp)| = Ay = I << N implies that! < ¢v'N. Then we havet$ < 2o,
SN “//:(?(V‘;)—(“//V)/f‘\;)/]v(x —2,)2f(z)dz < which further leads to
) . L B 15¢ c 13¢ c
(W-V)2 <N [V+i(W=V)/N B 0 By 20 53
T 2lim1 V4 (i-1)(W=V)/N fla)de = 3(14 - 4]2 + N) — 1412 N (77
(VVJ§2V)2 < %7 Finally, from (75), (76) and (77) it follows that
for some suitable positive constasit Further, 3Dy (21) < Dn(1).
D(Qf) - D(Q,)]| < 1D(Qy) — D(Q))| + H
= = ca+c! Proof of Lemma 7.
D(Q,) - D < ete
1D(Qf) Q)= =5 Let ¢ denoteL (P, ), k denoteL(Py,)—L(P»,), and denote
Let c3 = c2 + ¢4, then the above relation implies that ¢ denoteL(Py,,.,,)-
_ 3 _ _ s Consider the pointgl, B, C, D and E on the lower convex
D(Qp) - N < D(Qy) < D(Qp) + N hull of ¢, corresponding to the following abscisa respectively:

1 2 /
The above sequence of inequalities remains valid if we aprﬁa/wj %kt'u’ LE;{ ikJégﬁt kzﬁ ,;vh_ere}j ?Znoiesvtf?e ;Ioor
infimum over all possibleQ;, i.e., nction®. Hence,A = (¢, W(()), B = ([{+3k+1], W([{+

1 - 2 1 2 — 1

D@ — < D(Q) < D) - ;ﬁJE”i (Cz V_é%fkj,w(mskj), D = ({+k, W (l+k))
Qs N~ q ' Qs N Our development hinges on the following relation

which implies slope(BC) > slope(AD), (78)

_ _ c
|iélfD(Qf) - iélffD(Qpﬂ < Ng whereslope(BC) andslope(AD) denote the slope of the line
. ) . BC, respectivelyAD. After proving the above relation our
Note thatQ, is a function ofQ; and asQ; varies over the argument proceeds as follows. Any support lindgassing
whole set ofi-level balanced convex 2DSQ's of(x), Q, through a point to the right of has the slope at least equal
varies over the whole set dflevel balanced convex 2DSQ'Stg gjope( BC), therefore strictly larger thaslope(AD). Since
of the pmfp;, 1 < i < N. Thereforeinfq, D(Q,) = Dn(l), there is a support line passing throughof slope equal to

which further implies our claim(] —Anew = slope(AD), it follows that E has to be situated to
Proof of Lemma 6. the left of C'. This implies that?’ < ¢+ 2k, which proves our

According to equation (47) in Appendix B, we have claim. o

B We proceed now to prove (78). By the definition of a slope,
Jim I?D; = co, (71)  we have
T 2 —W 1

wherec, is given by (52). Relation (71) implies that there is slope(BC) = W(szrf;,ij,gﬂgjﬁ“]) =
some integel, such that for all integerg> [, the following Dy (164 2k])— D (L0+1k+1]) (79)
inequality holds [+ Zk]—[6+Lk+1]

12Dy — co| < co/14, (72) 3For any real valuer, |z| is the largest integer smaller or equalao



We show next that the denominator of the above ratio is
smaller thank/3. According to the definition of the floor [1]
function (/-]) we have:

(80)

2 2 2
—k — — < —
£+3k 1<L€+3kjfé+3k 2]

and 3]

1 1 1
€+§k<LE+§k+1J§£+§k+1 (4]

(81)
By multiplying by —1 the sequence of inequalities (81) and!®!
then adding it to (80), we obtain

[6]

o4 2k~ k1 < Lk (82)
3 3 3 3 [7]
Relations (79) and (82) imply that
_ _ (8]
Dn([€+ 2k]) — Dn([€+ 1k 41
slope(BC) > N(Lf+ 3k]) 1kN(L TEh J) (83) 9
3
Since [10]
slope(AD) = Dy(et k) — Dn(6) (84)

k )

in order to prove (78) it is sufficient to show that

(11]

[12]
Dn(|¢+ 2k]) — Dn([£+ 2k + 1)) N Dyl + k) — Dn(0)

(13]
ik k

(14]

which after some algebra becomes equivalent to [15]
_ _ 2 _ 1 =

Dn(0)+3Dn([£+5k]) > 3Dn(|[€+ sk+1])+Dn(£+k).

3 3 (85)

In order to prove the above inequality we first establish tha[t17

(16]

Dn(£) > 3Dy (£ + %k +1]). (86) 18]

~ [19]
Since Dy (+) is decreasing it follows that

D (6) > Dy (max{?,1o}). @7 O

Since ¢/ < 2K and 2K << N, it follows that ¢ << N. [21]

Consequently, we can apply Lemma 6, which implies that
[22]

DN(max{ﬁ,lo}) Z 31—)1\[(2II121X{£7 lo}) (88)

(23]
From k > 3max{2ly,¢} we obtain¢ + 1k > max{2l, +
0,20} > max{2ly,2¢}. Since |{ + 1k + 1] > ¢+ Lk, we
further obtain thaf/+ £k + 1] > max{2lo, 2(}. Using again
the decreasing monotonicity @y (-) it follows that

(24]

(25]

Dy (max{2¢,2ly}) > Dy (£ + %k‘ +1]). (89)
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