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Abstract—We study the problem of optimal design of balanced
two-description fixed-rate scalar quantizer (2DSQ) under the
constraint of convex codecells. Using a graph-based approach
to model the problem, we show that the minimum expected
distortion of the 2DSQ is a convex function of the number of
codecells in the side quantizers. This property allows the problem
to be solved by Lagrangian minimization for which the optimal
Lagrangian multiplier exists. Given a trial multiplier, we exploit a
monotonicity of the objective function, and develop a simple and
fast dynamic programming technique to solve the parameterized
problem. To further improve the algorithm efficiency, we propose
an RD-guided search strategy to find the optimal Lagrangian
multiplier. In our experiments on distributions of interest for
signal compression applications the proposed algorithm improves
the speed of the fastest algorithm so far, by a factor of
O(K/ log K), where K is the number of codecells in each side
quantizer.

We also assess the impact on the optimality of the convex
codecell constraint. Using a published performance analysis of
2DSQ at high rates, we show that asymptotically this constraint
does not preclude optimality for L2 distortion measure, when
channels have a higher than0.12 loss rate.

Index Terms—Multiple description quantization, distributed
source coding, Lagrangian optimization, minimum-weightk-edge
path, convexity of quantizer cells.

I. I NTRODUCTION

The problem of multiple description coding (MDC) was first
posed at the 1979 IEEE Information Theory Workshop by A.
D. Wyner. Early results appeared in [2], [10], [17], [21], [22],
[25]. The research on MDC has intensified in recent years
particularly in design algorithms, driven by the applications
of networked media streaming and sensor networks, which
require robust source coding.

Multiple description scalar quantization (MDSQ) is an ex-
tensively studied MDC technique. MDSQ holds the promise
of being a practical solution to networked source coding for its
simple, inexpensive implementations. Optimal MDSQ design,
however, turns out to be nontrivial. The problem was first
considered by Vaishampayan in the fixed-rate setting [18]
and then for the entropy-constrained case [19]. The proposed
algorithm is of generalized Lloyd-type and can guarantee only
a locally optimal solution in general. Recently, Muresan and
Effros proposed a graph-based approach to solve the problem
in the case when the probability distribution is discrete and
the side quantizers have convex codecells [15], [16]. They
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showed that the problem is equivalent to the minimum-weight
path problem in a weighted directed acyclic graph. This
finding leads to polynomial time algorithms which ensure
global optimality under the imposed constraint of convex
codecells. Their treatment covers the case of more than two,
and unbalanced descriptions. Soon after, we proposed in [7]
refinements to the graph theoretical approach for the fixed-
rate case and two descriptions (2DSQ), which led to much
faster design algorithms. Asymptotical analysis of multiple
description scalar quantization at high rates was also provided
in [20].

This paper reexamines the optimal 2DSQ design problem
for the case of discrete distributions, fixed-rate and balanced
side descriptions, under the constraint of convex codecells in
the side quantizers. The optimization problem is to minimize
the expected distortion or, equivalently, a weighted sum of the
distortions of the side and central quantizers. By balanced or
symmetric descriptions we mean that the two descriptions have
the same rate and are weighted equally in the cost function.
As proved in [7] the symmetry of the side descriptions allows
for a simpler graph model for the problem. Relying on this
model we prove an interesting property of the optimal fixed-
rate balanced2DSQ with convex codecells, namely, that its
expected distortion is a convex function of the number of
side quantizers codecells. This property enables us to solve
the problem through Lagrangian minimization in conjunction
with a search for the optimal Lagrangian multiplier. The
appeal of this method is twofold. First, we show that the
Lagrangian minimization for a given trial multiplier can be
solved very efficiently by exploiting a monotonicity property
of the cost function. Second, the performance analysis of
2DSQ at high rates provides us with an approximation of the
optimal Lagrangian multiplier as a function of the number of
codecells in the side partitions. Based on this approximation
we derive an RD-guided search technique for the optimal La-
grangian multiplier. In our experiments on several distributions
of interest for signal compression applications, this technique
converges in at most1.5 log2 K iterations, achieving a speed
improvement over the fastest existing algorithm by a factor of
K/ log2 K, whereK is the number of codecells.

The convexity of codecells is apparently a limitation of our
design approach. It was shown in [9], [16] that imposing the
convexity of side quantizer codecells may result in perfor-
mance loss. Using the performance analysis of2DSQ at high
rates provided by [20], we show, however, that asymptotically
this constraint does not preclude optimality for channels of
a failure rate higher than0.12, in the case ofL2 distortion
measure.

The paper is structured as follows. The next section presents
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the necessary definitions, notations and the problem formu-
lation. Also, a brief historical review of the existing 2DSQ
design algorithms is given. In section III we present the graph
representation of the problem of optimal fixed-rate balanced
2DSQ design, under the constraint of convex codecells in
the side quantizers. In section IV the graph-based constrained
optimization problem is transformed to an unconstrained one
via Lagrangian multiplier method. This leads to a design
approach of finding the minimum-weight path in a parame-
terized graphG(λ) in conjunction with a guided search on
λ, until the desired number of edges on the path is obtained.
The central result of this section is that such a Lagrangian
multiplier always exists. Section V develops an algorithm for
the minimum-weight path problem inG(λ), which is more
efficient than the standard solutions. The speed improvement
is due to a strong monotonicity of the cost function. The
following section discusses the search strategy of finding the
optimal Lagrangian multiplierλ and its efficiency is assessed
analytically and/or empirically. In Section VII the effect of the
constraint of convex codecells on the optimality of the 2DSQ
solution is analyzed for the case ofr-th power distortion, and
corroborating empirical evidence is also presented. Section
VIII concludes the paper.

II. PROBLEM FORMULATION AND EXISTING ALGORITHMS

Let X be a random variable over an alphabetA ⊂ R. A
fixed-rate two-description scalar quantizer (2DSQ for short)
is designed for communication over two channels (Fig. 1).
It consists of two encodersf1 and f2, called side encoders,
and three decodersg1 andg2 (the side decoders), andg0 (the
central decoder). Each source symbolx is encoded into two
indices i1 = f1(x) and i2 = f2(x), and sent over the two
side channels, one per channel. If only one channel transmits
successfully, then only one index arrives at destination and
can be decoded by the corresponding side decoder. When
both indicesi1, i2 arrive, they are jointly decoded by the
central decoder. Formally, the side encoders are two functions
f1 : A → {1, · · · ,K1}, f2 : A → {1, · · · ,K2}, for some
integersK1,K2 < N . The side decoders are two one-to-one
mappingsg1 : {1, · · · ,K1} → C1, g2 : {1, · · · , K2} → C2,
whereC1, C2 ⊂ R are two sets of reproduction values called
codebooks. The central decoderg0 maps each pair of indices
(i1, i2), for which f−1

1 (i1) ∩ f−1
2 (i2) 6= ∅, into a value in

the central codebookC0 ⊂ R. Let I = {(i1, i2)|f−1
1 (i1) ∩

f−1
2 (i2) 6= ∅} and letK be the cardinality ofI. ThenC0 has

sizeK, too. We refer to this 2DSQ as a(K1,K2)-level 2DSQ.
A (K1,K2)-level 2DSQ can also be regarded as a system

of three quantizersQ = (Q1, Q2, Q0), consisting of two side
quantizers:Q1 andQ2, and a central quantizerQ0. Each side
quantizerQk, k = 1, 2, is specified by the encoder-decoder
pair fk, gk. The central quantizer has the decoderg0 and an
implicit encoderf0 : A → I, such thatf0(x) = (f1(x), f2(x))
for any alphabet symbolx. Each encoder generates a partition
of the source alphabet into codecells, a codecell being the
set of all alphabet symbols mapped into the same index
(or pair of indices). Thus, the three quantizersQ1, Q2, Q0

have, respectively,K1,K2 and K codecells. Note that the
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Fig. 1. Source coding scheme for communication over two channels.

partition of the central quantizer (central partition) is the
intersection of the side partitions (i.e., the partitions of the
side quantizers). Consider a suitable quantization distortion
measured(x,Q(x)) ≥ 0. Then each quantizerQk, k = 0, 1, 2,
is associated a distortionD(Qk) defined as:

D(Qk) = E{d(X, gk(fk(X)))}.
We measure the performance of the 2DSQ by the expected

distortion between the source and its reconstruction at the
receiver side. Letωk be the probability that only the channel
k transmits successfully (k = 1, 2), andω0 be the probability
that both channels succeed. In case no description is received,
the source is reconstructed at some high distortionD0.Thus,
the expected distortion of the 2DSQ can be expressed as

D̄(Q) = (1− ω1 − ω2 − ω0)D0 +
2∑

k=0

ωkD(Qk). (1)

If the two channels are independent with success probabilities
q1 and q2, we haveω1 = q1(1 − q2), ω2 = q2(1 − q1) and
ω0 = q1q2.

The goal of optimal fixed-rate 2DSQ design is to construct a
(K1,K2)-level 2DSQQ = (Q1, Q2, Q0) of minimal expected
distortion D̄(Q).

The problem of optimal fixed-rate 2DSQ design was first ad-
dressed in [18]. The initial optimization criterion was slightly
different, namely to minimize the distortion of the central
quantizer subject to given upper bounds on the distortions of
the side quantizers. This constrained optimization problem was
solved in the classic Lagrangian formL(Q, λ1, λ2):

L(Q, λ1, λ2) = D(Q0) + λ1D(Q1) + λ2D(Q2) (2)

with λ1 ≥ 0 and λ2 ≥ 0, which is equivalent to minimizing
D̄(Q), specifically whenλk = ωk/ω0, k = 1, 2. Vaisham-
payan showed that for a continuous pdf and the squared differ-
ence distortion measure the optimal 2DSQ must have convex
codecells in the central partition. He introduced the notion
of index assignment as the mappingh : {1, 2, · · · ,K} →
{1, 2, · · · ,K1} × {1, 2, · · · ,K2}, defined byh(l) = (i, j),
where f−1

1 (i) ∩ f−1
2 (j) equals thelth codecell (from left

to right) of the central partition. This breaks the problem
into two parts: choosing an index assignment and minimizing
the Lagrangian given the index assignment. For the balanced
case, whereK1 = K2 and the distortions of the two side
quantizers are approximately equal, it was conjectured from



3

the experimental observations that the Langrangian multipliers
λ1 and λ2 should be equal in the optimal 2DSQ. Given the
numberK of codecells in the central partition, good index
assignments were proposed. Given the index assignment the
Lagrangian was minimized by iteratively optimizing, in turn,
the decoder and the encoder. The algorithm can be applied
to a discrete source as well, but as in the continuous case, it
cannot guarantee the global optimum, not even with respect
to a fixed index assignment.

As in [18] we also focus on the case of balanced 2DSQ. We
call a 2DSQK-level balanced if and only ifK1 = K2 = K
and the weights of the side distortions in̄D(Q) are equal,
i.e.,ω1 = ω2 = ω. This situation arises, for instance, when the
independent channels operate at the same ratelog2 K and each
has the same success probabilityq. The problem of optimal
K-level balanced 2DSQ design is to minimize the expected
distortion

D̄(Q) = (1−2ω−ω0)D0 +ω(D(Q1)+D(Q2))+ω0D(Q0),
(3)

or equivalently minimize the LagrangianL(Q, λ, λ), as con-
sidered in [18], forλ = ω/ω0.

In pursuing an efficient and globally optimal solution to
the problem, we consider a discrete source and restrict the
solution space to 2DSQs with convex codecells in the side
quantizers (we call such a 2DSQ, convex 2DSQ). This setting
was first addressed by Muresan and Effros in [15], [16]. They
treated the multiple description quantizer design for arbitrary
number of descriptions, the descriptions not being necessarily
balanced. Both the fixed-rate and entropy-constrained cases
were addressed. They showed that the problem can be modeled
as a minimum-weight path problem in a weighted directed
acyclic graph, and hence polynomially solvable. Their algo-
rithm requiresO(K1K2N

3) time andO(K1K2N
2) space. In

[7] the time complexity for optimal fixed-rate convex 2DSQ
design is reduced toO(K1K2N

2) for monotone distortion
measuresd(x,Q(x)) that satisfy the condition

d(x, y1) ≤ d(x, y2), for all real valuesx, y1, y2

such thatx ≤ y1 < y2 or x ≥ y1 > y2. (4)

Note that all known distortion measures used in practice
are monotone. It was also proved in [7] that for balanced
descriptions the time and space complexities of the algorithm
can be further reduced toO(KN2) by exploiting additional
properties of the solution conferred by the symmetry of the
descriptions.

This paper reexamines the above problem aiming for an
improved balanced convex 2DSQ design algorithm. We prove
the convexity of the optimization problem and exploit it to
develop a fresh algorithmic approach to solve it. Toward
presenting the new approach we start from the graph model
established in [7], which is detailed in the next section.

III. G RAPH REPRESENTATION

To develop the new 2DSQ design algorithm, we use a
graph representation of the problem. This graph model is
different and simpler than the graph proposed in [15], [16].
The simplification is achieved by exploiting the symmetry of

u0=0 u1 u2 uK-1 uK=N…

…

v0=0 v1 v2 vK-1 vK=N…

u1 v1 u2 v2 uK-1 vK-10 N

Q1

Q2

Q0

Fig. 2. K-level balanced convex 2DSQ with alternating thresholds of side
quantizers.

the descriptions and the monotonicity of the distortion measure
(4).

Assume the source alphabet is finite, i.e.,A =
{x1, x2, · · · , xN} ⊂ R, with xi < xi+1, for all 1 ≤ i ≤
N − 1. Let the probability mass function (pmf) ofX be
pi = p(X = xi), 1 ≤ i ≤ N . For integersa, b such that
0 ≤ a ≤ b ≤ N , denotec(a, b] = {xi|a < i ≤ b}. Note that
c(a, a] = ∅. A codecell is said to be convex if it is of the
form c(a, b]. Such a codecell will be simply denoted by(a, b].
A scalar quantizerQ is a K-level convex scalar quantizer,
if its encoder partitions the source alphabet intoK codecells
(qj , qj+1], 0 ≤ j ≤ K − 1, for some integersqj , 0 ≤ j ≤ K,
such that0 = q0 < q1 < · · · qK−1 < qK = N . The valuesqj ,
1 ≤ j ≤ K, are called the quantizer’s thresholds.

For each codecell(a, b], let µ(a, b] denote its reproduction
value. The contribution of codecell(a, b] to the quantizer’s
distortion is

∑b
i=a+1 d(xi, µ(a, b])pi. We consider only quan-

tizers with the decoder optimized for the given encoder,
therefore ideally the following relation should hold

µ(a, b] = arg min
y∈R

b∑

i=a+1

d(xi, y)pi.

When the distortion function is the squared distance, i.e.,
d(x, y) = (x − y)2, there is a closed form available for
the minimum in the above equation, which makesµ(a, b]
computable in a finite number of operations,

µ(a, b] =
∑b

i=a+1 xipi∑b
i=a+1 pi

. (5)

However, for general distortion functiond(·, ·) a closed form
is not known for the minimum in (5), and a continuous
optimization algorithm cannot guarantee convergence in a
finite number of steps. To have the algorithm terminate in
finitely many steps we need to resort to some approximation,
for example to stop at some level of precision or restrict the
search for the minimum to a finite grid. All previous work
which claims optimal quantizer design [23], [24], [15], [16]
resort to such approximations. This approximation can be
modeled by restricting the possible reconstruction values to
a finite alphabetB, whereB can be a finite grid of some
required precision. Then the reproduction valueµ(a, b] must
satisfy the relation

µ(a, b] = arg min
y∈B

b∑

i=a+1

d(xi, y)pi. (6)
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In this work we use the definition ofµ(a, b] given in (5) for
the case of squared distance as distortion measure, respectively
the definition of (6) otherwise.

Further denote the distortion of the codecell(a, b] by
D(a, b]. Then

D(a, b] =
b∑

i=a+1

d(xi, µ(a, b])pi.

The distortion of the quantizer becomes:

D(Q) =
K−1∑

j=0

D(qj , qj+1].

We are concerned with the problem of optimalK-level
balanced convex 2DSQ design, i.e., the problem of minimizing
the expected distortion (3) among all 2DSQ’s withK convex
codecells in each side quantizer.

We denote byu0, u1, · · ·uK , respectively,v0, v1, · · · vK , the
thresholds of the first, respectively second, side quantizer in
a K-level balanced convex 2DSQ. Since the central partition
is the intersection of the side partitions, it follows that the
thresholds of the central partition are actually the thresholds
of the two side partitions ordered in increasing order. Note
that 0 = u0 < u1 < · · · < uK = N and0 = v0 < v1 < · · · <
vK = N .

The following proposition was proved in [7, Proposition 2].
Proposition 1. There is an optimalK-level balanced con-
vex 2DSQ such that the side quantizers thresholds alternate
(Fig. 2):

u0 ≤ v0 ≤ u1 ≤ v1 ≤ u2 ≤ v2 ≤ · · ·
· · · ≤ uK−1 ≤ vK−1 ≤ uK ≤ vK . (7)

Proposition 1 converts the optimization problem into a graph
problem as follows. Consider the weighted directed acyclic
graph (WDAG) G = (V, E), whose nodes (or vertices) are
all ordered pairs of integersa and b such that0 ≤ a ≤ b ≤
N . We denote such a pair simply byab. The set of edges
is E = {(ab, bc)|0 ≤ a ≤ b ≤ c ≤ N, a < c}. Let 00 be
the source node andNN the final node of the graph. The
weight of the edge from nodeab to node bc is defined as
w(ab, bc) = ωD(a, c] + ω0D(a, b]. We can associate with any
K-level balanced convex 2DSQ of alternating thresholds (7),
a 2K-edge path (i.e., a path with2K edges) from the source
to the final node:

00, 0u1, u1v1, v1u2, u2v2, · · · , vK−1N,NN. (8)

Fig. 3 illustrates the above path.
As shown in [7] this mapping is one-to-one. Moreover, the

weight of the path associated with a 2DSQQ as above (i.e., the
sum of weights of its edges) equals̄D(Q)− (1−2ω−ω0)D0.

Consequently, minimizingD̄(Q) is equivalent to the
minimum-weight2K-edge path problem in the graphG (i.e.
finding the path of minimum weight among all paths from
the source to the final node, which have exactly2K edges).
This problem was solved inO(KN2) time [7]. Precisely, the
algorithm presented in [7] runs in2K − 1 iterations, at the
k-th iteration the minimum-weight(k + 1)-edge paths from

0 u1 u2 u3 N

0 v1 v2 v3 N

Fig. 3. Path in the WDAG G corresponding to a4-level bal-
anced convex 2DSQ with alternating thresholds. The nodes are repre-
sented by dotted segment lines which connect quantizer thresholds. The
edges are represented by arrowed arcs. Precisely, the path illustrated is
00, 0u1, u1v1, v1u2, u2v2, v2u3, u3v3, v3N, NN.

the source to each node, being computed. In this paper we
develop a Lagrangian-type algorithm for the globally optimal
solution of the same problem.

IV. L AGRANGIAN SOLUTION

The graph problem formulated above is a constrained opti-
mization problem. The constraint is on the number of edges
in the minimum weight path. A standard technique to solve
constrained optimization problems is the Lagrangian method.
Indeed, the Lagrangian method is ubiquitous in the literature
of entropy-constrained optimal quantizer design, including the
multiple description variants [6], [19], [15]. However, strictly
speaking, in the entropy-constrained case this strategy can
lead to solutions only for some instances of the original
quantizer design problem, namely, those rate-distortion pairs
on the lower convex hull of the operationally achievable rate-
distortion region. The Lagrangian-based approach was also
applied to fixed-rate scalar quantization [1], [12] and what is
remarkable in this case is that it leads to the globally optimal
solution to any instance of the constrained problem. We prove
in this section that this property holds in the case of optimal
fixed-rate balanced convex 2DSQ design as well.

LetP denote the set of all paths from the source node to the
final node, in the graphG. For any pathP ∈ P let W (P ) be its
weight andL(P ) its length (the number of component edges).
Consider the set of planar pointsU = {(L(P ),W (P ))|P ∈
P}.

Then the problem of minimum-weight2K-edge path inG
can be formulated as

minimizeP∈PW (P )
subject toL(P ) = 2K. (9)

The underlying Lagrangian isJ(λ, P ) = W (P )+λL(P ), over
all pathsP ∈ P and all real valuesλ. A path P ∗ minimizes
the Lagrangian for someλ, i.e., the relation

J(λ, P ∗) = min
P∈P

J(λ, P ) (10)

holds, if and only if the planar point(L(P ∗),W (P ∗)) is on
the lower convex hull ofU and the line of slope−λ passing
through this point is a support line toU [14], [11]. Thus, if
(10) holds then the pathP ∗ is also a minimum-weightL(P ∗)-
edge path because the lower boundary ofU is not below its
lower convex hull. Consequently, if a Lagrangian multiplierλ
can be found for which there is a2K-edge pathP ∗ satisfying
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(10)1, then this path is a solution of the constrained problem
(9). Due to the following proposition, whose proof is given in
Appendix A, such a multiplierλ is guaranteed to exist.

Proposition 2. The inequality

2W̄ (l) ≤ W̄ (l − 1) + W̄ (l + 1) (11)

holds for all integersl, 3 ≤ l ≤ 2N − 1, whereW̄ (l) is the
weight of the minimum-weightl-edge path from the source to
the final node inG.

The above proposition implies that any point(l, W̄ (l)) is on
the lower convex hull ofU . Let P2K be a minimum weight
2K-edge path, then the point(L(P2K),W (P2K)) coincides
with (2K, W̄ (2K)), hence the following relation holds:

J(λ, P2K) = min
P∈P

J(λ, P ) (12)

if and only if λ satisfies the relation

W̄ (2K)−W̄ (2K−1) ≤ −λ ≤ W̄ (2K +1)−W̄ (2K). (13)

This is because a line passing through(L(P2K),W (P2K))
is a support line toU if and only if its slope is at least
equal to the slope of the convex hull edge to the left (i.e.,
W̄ (2K)− W̄ (2K − 1)) and at most equal to the slope of the
convex hull edge to the right (i.e.,̄W (2K + 1) − W̄ (2K)).
Denote byIopt the range of the optimal Lagrangian multipliers
λ, i.e., those for which (13) holds. Consequently,Iopt =
[W̄ (2K)− W̄ (2K + 1), W̄ (2K − 1)− W̄ (2K)]. The interval
Iopt reduces to a single value if the points(2K− 1, W̄ (2K−
1)), (2K, W̄ (2K)) and (2K + 1, W̄ (2K + 1)) are collinear.

For anyλ in the interior of the intervalIopt, any pathP ∗

satisfying (10) has the length2K. If λ equals the boundary to
the left, respectively right, ofIopt, then there is also a path of
length2K + 1, respectively,2K − 1, satisfying (10).

Therefore, the2K-edge minimum-weight path, or equiv-
alently the globally optimal convex balancedK-level 2DSQ,
can be found by solving (10) in conjunction with a search onλ
until the number of the edges on the minimizing path becomes
exactly 2K. To this end we derive fromG a parameterized
graph G(λ) by addingλ to the weight of each edge ofG.
In the resulting parameterized graphG(λ) the minimization
problem of (10) reduces to an unconstrained minimum-weight
path problem. This is becauseJ(λ, P ) equals the weight of
the pathP in G(λ).

Remark 1. An immediate corollary of Proposition 2 is the
convexity of the minimum expected distortion of fixed-rate
balanced convex 2DSQ, as a function of the number of
codecells in each side partition.

V. THE COMPUTATION OF THEM INIMUM -WEIGHT PATH

IN G(λ)

In the parameterized graphG(λ), for any nodeab other
than the source, letWλ(a, b) denote the smallest weight of any
path from00 to the nodeab. By convention,Wλ(0, 0) = 0.

1Note that a pathP ∗ satisfying (10) is not necessarily unique. Moreover,
different such paths may have different lengths.

Wλ(a,b)

Wλ(a+1,b)

Wλ(a,b-1)

0  1  2       … N

0

N

…

0  1  2       … N

0

N

…

Wλ(a,b)

Fig. 4. Matrix Wλ(·, ·). Left: the shaded squares represent the locations of
entriesWλ(a, b− 1) andWλ(a + 1, b); they have to be known in order to
apply the recursive formula with reduced search range forWλ(a, b). Right:
the shaded squares represent the values already computed by the algorithm
before the evaluation ofWλ(a, b).

Recall that the weight of any edge(ab, bc) in G(λ) equals
w(ab, bc) + λ. Then for any nodeab other than the source
(i.e. with b ≥ 1), we have

Wλ(a, b) = min
0≤ξ≤a,ξ<b

{Wλ(ξ, a) + w(ξa, ab) + λ}. (14)

Let ξλ(a, b) be the value ofξ where the minimum of (14) is
attained (in case of multiple points, the largest one is picked).
The following proposition, which is proved in Appendix A,
enables us to decrease the search range of (14).
Proposition 3.For any nodesab anda′b′ other than the source,
and such thata ≤ a′ and b ≤ b′, the following inequality
holds:

ξλ(a, b) ≤ ξλ(a′, b′).

Proposition 3 in conjunction with relation (14) immediately
imply the following result.
Corollary. For all 0 ≤ a < b ≤ N , we have

Wλ(a, b) = min
ξλ(a,b−1)≤ξ≤ξλ(a+1,b);ξ≤a

{Wλ(ξ, a)+w(ξa, ab)+λ}.
(15)

In order to find a minimum-weight path inG(λ) we com-
puteWλ(a, b) for increasing values ofa, b, 0 ≤ a ≤ b ≤ N ,
using the recursive relations (14) and (15) until reaching
Wλ(N,N). The path is then traced back by using the values
ξλ(a, b). Note that there may be several paths of minimum
weight inG(λ). These paths may even have different numbers
of links (in the case when−λ is the slope of a convex hull edge
of U). The path constructed by our algorithm is a minimum
weight path with the largest number of links, which is proved
in Lemma 4 in Appendix A.

The computations are organized in such a way that the
entries of the upper triangular matrixWλ(·, ·) are filled column
by column from left to right as illustrated in Fig. 4. For each
columnb we first compute the entryWλ(b− 1, b) using (14),
and then proceed toward the top of the column, by applying
recursion (15). Note that this recursion can be applied only
if the entries immediately to the left and immediately below
the current position are known. After reaching the top of
the column, we finally computeWλ(b, b), the element at the
bottom, again using (14), because this entry depends on all
the other elements of the column.

In the above procedure computing all entries on the main
diagonal and the superdiagonal ofWλ(·, ·) needsO(N2) time
since each entry on these diagonals takesO(N) time. But



6

computing all entries on any of the otherN − 2 diagonals of
the upper triangular matrix of Fig. 4 collectively needs only
O(N) time. Indeed, let us call thej-th superdiagonal, the set
of entriesWλ(a, b) with b = a+ j, 0 ≤ a ≤ N − j. The entry
Wλ(a, a+j) is computed inO(ξλ(a+1, a+j)−ξλ(a, a+j−
1) + 1) time. Hence, the total time for thej-th superdiagonal
is

O(
∑N−j

a=0 (ξλ(a + 1, a + j)− ξλ(a, a + j − 1) + 1)) =
O(ξλ(N − j + 1, N)− ξλ(0, j − 1) + N − j + 1) = O(N).

In conclusion, evaluating the whole matrix requiresO(N2)
time andO(N2) space.

On a second reflection, however, it is unnecessary to eval-
uate the entire matrixWλ(·, ·) to arrive atWλ(N, N). The
entries of a columnb, Wλ(a, b) with b− 1 ≥ a ≥ 0, are only
needed to compute the entries on the rowb, i.e., Wλ(b, c)
with b ≤ c ≤ N . But, according to Proposition 3, we have
ξλ(b, c) ≥ ξλ(b − 1, b − 1). Consequently, only the entries
of column b up to the rowξλ(b − 1, b − 1) are needed. The
pseudo code given below describes this improved version of
the algorithm.

Minimum-weight path in G(λ).
ξλ(0, 1) = 0; Wλ(0, 1) = w(00, 01) + λ;
ξλ(1, 1) = 0; Wλ(1, 1) = w(00, 01) + w(01, 11) + 2λ;
for b = 2 to N do

a := b− 1;
Wλ(a, b) := min

ξλ(b−1,b−1)≤ξ≤a
{Wλ(ξ, a) + w(ξa, ab) + λ};

ξλ(a, b) := max arg min
ξλ(b−1,b−1)≤ξ≤a

{Wλ(ξ, a) + w(ξa, ab) + λ};
for a = b− 2 down toξλ(b− 1, b− 1) do

Wλ(a, b) := min
ξλ(a,b−1)≤ξ≤ξλ(a+1,b);ξ≤a

{Wλ(ξ, a)+

w(ξa, ab) + λ};
ξλ(a, b) := max arg min

ξλ(a,b−1)≤ξ≤ξλ(a+1,b);ξ≤a

{Wλ(ξ, a)+

w(ξa, ab) + λ};
end for
Wλ(b, b) := min

ξλ(b−1,b−1)≤ξ<b
{Wλ(ξ, b) + w(ξb, bb) + λ};

ξλ(b, b) := max arg min
ξλ(b−1,b−1)≤ξ<b

{Wλ(ξ, b) + w(ξb, bb) + λ};
end for

For a better comparison with the previous work it is useful
to provide a more precise assessment of the computational
requirement of the above algorithm. The algorithm solves a
series of minimization problems. To find the minimum over
n quantities, each of them has to be inspected. Assuming that
all n quantities are already computed, letγ denote the average
number of operations per quantity (henceγ ≥ 1). Then the
minimization requiresγn operations. In our algorithm we need
two extra operations (two additions) to evaluate each quantity
inspected in the minimization. Following the analysis in the
previous paragraphs we conclude that at most2N2 quantities
are inspected in order to solve all the minimizations (because
at most2(N − j + 1) quantities have to be inspected to fill
the j-th superdiagonal ofWλ(·, ·), for eachj ≥ 2, and at
mostN2 +N , to fill the rest). Therefore, the whole algorithm
requires at most2(γ + 2)N2 operations.

Next we evaluate the number of operations required by a
single iteration of the algorithm of [7] for the optimalK-

level balanced convex 2DSQ. Recall that the algorithm of [7]
consists of2K − 1 iterations. Thek-th iteration computes the
minimum (k+1)-edge path in the graphG from the source to
each graph node(a, b) based on the minimumk-edge paths.
That procedure also solves a series of minimization problems
in order to fill an upper triangular matrix of the same size as
our Wλ(·, ·). The evaluation of each quantity inspected in the
minimization process needs only one operation (one addition)
and the total number of quantities inspected is at leastN2

(because at leastN2/2 quantities have to be inspected in order
to fill the main diagonal and at leastN − j + 1 for the j-th
superdiagonal, for eachj ≥ 1). Therefore the total number of
operations is at least(γ + 1)N2.

Since γ ≥ 1 it follows that 2(γ + 2)N2 ≤ 3(γ + 1)N2,
which implies that the algorithm proposed in this section for
the minimum-weight path in the graphG(λ) requires at most
as many computations as three iterations of the algorithm of
[7].

When evaluating the time complexity of the proposed
algorithm, we have assumed that each valueD(a, b] can be
accessed in constant time. It was showed in [24], [8] that for
all monotone distortion measuresd(·, ·), the distortion values
D(a, b] over all possible intervals(a, b], 0 ≤ a ≤ b ≤ N , can
be precomputed inO(MN) time, whereM is the size of the
alphabetB. SinceM = O(N), the required precomputation
takesO(N2) time, not affecting the time complexity of the
proposed algorithm. Furthermore, if the distortion measure
is the ubiquitous mean-square error, the preprocessing time
reduces toO(N) [23]. Thus, by using a reproduction values’
alphabetB of sizeO(N2), the overall complexity result still
holds.

VI. RD-GUIDED SEARCH OF THELAGRANGIAN

MULTIPLIER

Having developed an efficient algorithm to compute the
minimum-weight path inG(λ) for a given Lagrangian mul-
tiplier λ, our attention is turned to reduce the number of
iterations in finding a Lagrangian multiplier to meet the
targeted number2K of edges.

For eachλ, denote byPλ, the path which minimizes the
LagrangianJ(λ, P ) over all P ∈ P, and has the largest
number of edges among all paths with this property (i.e., the
path computed by the algorithm of the previous section). The
length ofPλ is non-increasing inλ. Explained briefly, this is
because asλ increases, the intersection of the support line of
slope−λ with the setU , either remains the same or moves to
the left.

This monotonicity can be exploited to expedite the search
as follows. At any time a search interval(λ1, λ2) for the
optimal Lagrangian multiplier is maintained, with the property
that Iopt ⊂ (λ1, λ2), i.e. L(Pλ1) > 2K > L(Pλ2). At the
beginning of each iteration, a valueλnew is picked from
the interval (λ1, λ2) according to a rule for updatingλ.
Then Pλnew is computed. If its length equals2K then the
algorithm stops, otherwise, the current search interval(λ1, λ2)
is updated to(λ1, λnew) if 2K > L(Pλnew) or to (λnew, λ2)
if 2K < L(Pλnew).
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Initially, the search interval(λ1, λ2) is set to(0, γ), where

γ = (2ω + ω0)D(0, N ]. (16)

This ensures that(0, γ) contains Iopt. The reason is the
following. The planar point(2N, W̄ (2N)) is the rightmost
point of intersection between the support line of slope0 and
U (because the function̄W (l) is non-increasing). Therefore,
for λ = 0 we have L(Pλ) = 2N . On the other side,
γ = W̄ (2) > W̄ (2) − W̄ (3). Thus, the support line of
slope−γ intersectsU at the point(2, W̄ (2)), which implies
that L(Pγ) = 2. Further, sinceL(Pλ) is non-increasing asλ
increases, our claim follows.

In the above search framework, we propose two techniques
for choosing the next trialλ value. The first technique,
called RD-guided search, is derived from the fact that−λ
represents the slope of the rate-distortion function. Consider
2DSQ design for a pdff(x) defined on a compact interval
under distortion metricd(x, y) =| x − y |r. Let D̄(r)(R) be
the minimum expected distortion among all2R-level balanced
convex 2DSQ’s. As proved in Appendix B (Eq. (46)) with
arguments along the lines of [4], [3], we have

D̄(r)(R) ≈ 2ω1 + 2−rω0

2−r−rR(r + 1)
(
∫ W

V

f1/(r+1)(x)dx)r+1 (17)

as R → ∞. Consequently,W̄ (l) is proportional to 1
lr as l

becomes very large, and its derivative is proportional to1lr+1 .
Based on this property of̄W (l) we use the following interpo-
lation technique to updateλ in the Lagrangian optimization.
First we find the real valuesα andβ such that

λi =
α

L(Pλi)r+1
+ β, i = 1, 2.

Then update theλ value to

λnew =
α

(2K)r+1
+ β.

Clearly, the number of iterations required to find the optimal
Lagrangian multiplier by the RD-guided search depends on the
quality of the approximation (17). If (17) held with equality the
number of iterations would be1. The better the approximation
the smaller the number of iterations. Bounding the error in
(21) seems very difficult. But we do have empirical evidence
to support the high efficiency of the RD-guided search.

We tested the RD-guided search on several source distribu-
tions: Gaussian, Laplacian, and the mixture of two Gaussians.
These distributions are widely used to model real data in
signal compression applications. We have also included in our
test set a real p.m.f. of DPCM residuals obtained from an
audio signal (Fig. 5). Most data to be quantized in practice,
such as transform coefficients (wavelet, DCT, etc.) and DPCM
residuals, have a p.m.f. like Fig. 5, obeying Laplacian or
generalized Gaussian distribution. Experiments are conducted
for three values ofN : 500, 1000 and 2000, various channel
success probabilitiesq = 0.5, 0.6, 0.7, 0.8, 0.9, and all K
values ranging from1 to 49. The distortion measure used is
the squared distance. The number of iterations in relation to
K, N , andq are presented in Figs. 6-12. Before running the
algorithm a continuous p.d.f. is first discretized via uniform
prequantization.
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Fig. 5. Histogram of DPCM residuals to be quantized.

Figs. 6-9 plot the average number of iterations (averaged
over q), versusK, for the zero-mean unit-variance Gaussian
and Laplacian distributions, and the following Gaussian mix-
tures

f1(x) = 1/2g(−1, 1) + 1/2g(1, 4), (18)

f2(x) = 3/4g(−1, 1) + 1/4g(1, 4), (19)

whereg(µ, σ2) is the normal pdf of meanµ and varianceσ2.
Each figure contains plots for differentN values. Fig. 10 plots
the results for the real sample p.m.f.

One can observe in Figs. 6- 10 that the average number of
iterations is not monotonic inK, but it has a general tendency
of increase withK at a growth rate close toO(log K). To
quantify this we include in the figures 6-10 a plot of the func-
tion α log2 K, with anα chosen for each case approximately
as the smallest positive value such thatα log2 K is an upper
bound for the average number of iterations for allK ≥ 6.
Note that1.5 log2 K is an absolute upper bound for all the five
cases, for allK ≥ 2. Other interesting observations are: the
number of iterations has a tendency to decrease asq increases
(see Figs. 11 and 12), and very importantly, it does not exhibit
a dependency withN (i.e., independent of the precision of
quantizer thresholds).

Recall from the previous section that the number of opera-
tions required by one iteration of the Lagrangian-based 2DSQ
design algorithm is at most as three iterations of the algorithm
of [7]. Since the latter runs in2K − 1 iterations, we conclude
that for the tested pmf’s the RD-guided search is faster than
the algorithm of [7] by a factor of 4K−2

9 log2 K .
Next we discuss another search strategy, the so-called secant

search. This search technique also allows us to deal with the
pathological case whenIopt consists of a single value.

In the secant searchλ is updated as follows:λnew =
(W (Pλ2) −W (Pλ1))/(L(Pλ1) − L(Pλ2)). Note that−λnew

is the slope of the line passing through the planar points
(L(Pλ1),W (Pλ1)) and (L(Pλ2),W (Pλ2)). If this line is not
a support line of the setU , i.e., it does not include a
convex hull edge, then the support line of the same slope
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Fig. 6. The number of iterations (average overq = 0.5, 0.6, · · · 0.9) as a
function of K, for three values ofN , in the case of a discretized zero mean
unit variance Gaussian distribution.
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Fig. 7. The number of iterations (average overq = 0.5, 0.6, · · · 0.9) as a
function of K, for three values ofN , in the case of a discretized zero mean
unit variance Laplacian distribution.

intersects the setU at some different point (because two
parallel lines may not have points in common). Then the
planar point (L(Pλnew),W (Pλnew)) is different from both
(L(Pλ1),W (Pλ1)) and (L(Pλ2),W (Pλ2)). Therefore, it is
guaranteed thatL(Pλ1) > L(Pλnew) > L(Pλ2) with both
inequalities strict. This implies that the length ofPλnew is
different from all path lengths obtained previously.

If the line passing through the points(L(Pλ1), W (Pλ1)) and
(L(Pλ2),W (Pλ2)) is a support line to the setU , then the point
(2K, W̄ (2K)) is on this line as well, henceIopt = {λnew}
according to (13). Thus, the pathPλnew output by our algo-
rithm will have the length equal toL(Pλ1), not2K. Further, in
order to construct the desired2K-edge path we use Lemma
2 which is stated and proved in Appendix A. Specifically,
we apply iteratively this lemmas times to obtain from the
pathsPλ2 andPλ1 , two other pathsP ′1 of 2K edges andP ′2
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Fig. 8. The number of iterations (average overq = 0.5, 0.6, · · · 0.9) as a
function of K, for three values ofN , in the case of the discretized mixed
Gaussian distribution of pdf of (18).

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

K

A
ve

ra
ge

 n
um

be
r 

of
 it

er
at

io
ns

N=500
N=1000
N=2000
0.85log

2
K

Fig. 9. The number of iterations (average overq = 0.5, 0.6, · · · 0.9) as a
function of K, for three values ofN , in the case of the discretized mixed
Gaussian distribution of pdf of (19).

of L(Pλ1) + L(Pλ2) − 2K edges such that the sum of the
weights ofP ′1 andP ′2 in Gλnew is at most equal to the sum of
weights ofPλ1 andPλ2 . Since bothPλ1 andPλ2 are minimum
weight paths inGλnew , P ′1 andP ′2 are minimum weight paths
in Gλnew , too. ThenP ′1 is our desired path and the algorithm
stops. The numbers equals the smallest of|L(Pλ1)−2K| and
|2K − L(Pλ2)|. This additional step required to construct the
optimal path takes at mostO(K2) time. Consequently, it does
not change theO(N2) time complexity per iteration.

To bound the number of iterations required by the secant
search, note that the length of the pathsPλnew is different for
different iterations (possibly except the last one). Since in total
there are only2N − 1 possible path lengths, the number of
iterations cannot be larger than2N . But this bound is too loose
without taking into account the specifics of our optimization
problem. We prove as Proposition 4 in Appendix C that for
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Fig. 10. The number of iterations (average overq = 0.5, 0.6, · · · 0.9) as a
function of K, for three values ofN , for the real data of the histogram in
Fig. 5.
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Fig. 11. Comparison of the number of iterations for various channel success
probabilities (q = 0.5, 0.7, 0.9), for a discretized zero mean unit variance
Gaussian distribution andN = 2000.

discretizations of continuous distributions andL2 distortion
measure, the number of iterations of the secant search is at
most8K + dlog3/2 Ne for K << N .

In practice one can adopt a hybrid method that uses the
two search techniques in combination: start with the RD-
guided search and then switch to the secant search, only if
the desired path length is still not found after some number
of iterations (e.g., after2 log2 K iterations). According to the
results mentioned above, for pmf’s obtained by discretizing
continuous pdf’s, andL2 distortion measure, the running time
of this hybrid method isO((K +log N)N2) in the worst case
if K << N (as is the case in practice). This suggests an
improvement in speed by a factor ofO( K2N

K+log N ) over the
algorithm of [15], [16].

In addition, the new algorithm is more efficient in use
of memory than the previous ones. Its space complexity is
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Fig. 12. Comparison of the number of iterations for various channel success
probabilities (q = 0.5, 0.7, 0.9), for the real data of histogram in Fig. 5, and
N = 2000.

O(N2) while the algorithms of [15], [16], respectively of [7]
have space complexities ofO(K2N2), respectivelyO(KN2).
For modern computers, such a drastic reduction in working
space of the algorithm will greatly reduce the probability of
cache misses and hence reduce the algorithm running time in
practice.

The worst-case time complexity of the proposed
Lagrangian-based algorithm seems higher than that of
our earlier algorithm [7]. But in all our experiments such
worst case behaviour never occurs. Instead, the new algorithm
is faster by a factor of 4K−2

9 log2 K .

VII. C ODECELL CONVEXITY AND OPTIMALITY

The new 2DSQ design algorithm developed in this paper
assumes the convexity of codecells. We now assess the impact
of this constraint on the optimality. It is known that the opti-
mal fixed-rate single description quantizer must have convex
codecells [9]. On the other hand, this condition may preclude
optimality for 2DSQ’s [9].

Assume a continuous probability distribution with pdff(x)
defined on a compact interval[V, W ] and let the distortion
measure bed(x, y) =| x− y |r. We will use the performance
analysis of2DSQ at high rates, provided in [20] for a family of
index assignments with increasing number of diagonals (i.e.,
increasing number of codecells in the central partition). The
analysis of [20] is based on modeling the central quantizer as
a compander. Consider2R to be the number of codecells in
each side partition, letk denote the number of diagonals of the
index assignment matrix, and leta be a number in(0, 1) such
that k = 2Ra. Let D

(r)
0 (a), respectivelyD

(r)
1 (a), D

(r)
2 (a),

denote the central, respectively side 1 and side 2 distortions
under ther-th power difference distortion measure, for a
2DSQ with an index assignment matrix with2Ra diagonals
and optimal companding function. According to [20, Eq.
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(18),(19)], whenR →∞, the following approximations hold

D
(r)
0 (a) ≈ 2−2r

r + 1
2−rR(1+a)(

∫ W

V

f1/(r+1)(x)dx)r+1. (20)

D
(r)
1 (a) = D

(r)
2 (a) ≈ βr2

−r−rR(1−a)(

∫ W

V

f1/(r+1)(x)dx)r+1, (21)

for a ∈ (0, 1), whereβr was defined as

βr = lim
k→∞

∑k
i=1 ir

kr+1
.

Note that

βr = lim
k→∞

k∑

i=1

1
k

(
i

k
)r =

∫ 1

0

xrdx =
1

r + 1
.

Thus, relation (21) becomes

D
(r)
1 (a) = D

(r)
2 (a) ≈ 2−rR(1−a)

2r(r + 1)
(
∫ W

V

f1/(r+1)(x)dx)r+1,

(22)
Using (20) and (22), we obtain the expected distortion of the
balanced2DSQ at high rates

D̄(r)(a) ≈ 2ω2rRa + ω02−r2−rRa

2r+rR(r + 1)
(
∫ W

V

f1/(r+1)(x)dx)r+1,

(23)
for a ∈ (0, 1). The analysis provided in [20] does not
directly apply to the case with convex codecells. However,
as proved in Appendix B (Eq. (46)) with arguments along the
lines of [4], [3], relation (23) holds in the case of convex
side quantizers, too, with the corresponding valuea = 0.
Consequently, the convex2DSQ is optimum at high rates
if and only if mina∈[0,1) D̄(r)(a) = D̄(r)(0). Minimizing
D̄(r)(a) is equivalent to minimizing the functionF (a)

F (a) = 2ω2rRa + ω02−r2−rRa,

on the interval [0, 1). F (a) is a convex function in
[0, 1), and its unique minimum is achieved at the point
a0 = max{0, 1

2rR log2
ω0

2r+1ω}. It follows that the necessary
and sufficient condition fora0 to be 0 is ω0

2r+1ω ≤ 1, or
ω/ω0 ≥ 1/2r+1. In the case when the 2DSQ is designed
for communication over two independent channels, each with
probability of successq , we haveω = q(1− q) andω0 = q2,
hence the above inequality is equivalent toq ≤ 2r+1

2r+1+1 .
In conclusion, the above arguments show that asymptoti-

cally in R, the convex-codecell condition does not preclude
optimality when the channel probability of success is at most

2r+1

2r+1+1 , for continuous distributions andr-th power distortion
measure. Table 1 lists the value of this maximum bound for
several values ofr. For r = 2 the codecell convexity will
not preclude optimality if the channel has a failure rate of
12% or higher. The larger the value ofr, the more relaxed
the condition for the side quantizers of optimal 2DSQ to be
convex.

Next we present experimental evidence to the intuition
that for poor channels codecell convexity does not prevent
optimality. We applied the algorithm of [18] to a memory-
less, unit-variance Gaussian source to optimize the8-level
balanced 2DSQ. As a measure of codecell convexity, index

r min ω
ω0

max q

1 0.25 0.800
2 0.125 0.888
3 0.0625 0.941
4 0.03125 0.969

TABLE I
M INIMUM VALUE OF THE RATIO OF WEIGHTS ω

ω0
AND MAXIMUM VALUE

OF CHANNEL PROBABILITY OF SUCCESS FOR WHICH THE OPTIMAL

FIXED-RATE BALANCED 2-DSQ MUST BE CONVEX, IN THE CASE OF

CONTINUOUS DISTRIBUTION ANDr-TH POWER DISTORTION MEASURE.
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Fig. 13. Modified linear index assignment considered by Vaishampayan [18]
for two values of the parameterk (2k is the number of diagonals used, other
than the main diagonal). Left:k = 1. Right: k = 2.

assignments of different spreads were tested. The spread of
the index assignment is defined in [18] as the largest number
of central codecells situated between the extreme points of a
side codecell. We have considered the modified linear index
assignment proposed by Vaishampayan [18], with parameter
k = 1, 2, · · · 6, where2k is the number of diagonals other than
the main diagonal used in the index assignment (Fig. 13). As
k increases the spread of the index assignment increases, or
further deviates from convexity.

For eachq we minimizedD̄(Q) for eachk and then took the
minimum over allk. Our results showed that forq ∈ (0, 0.925]
the minimal expected distortion was always achieved fork =
1. Note that the algorithm of [18] can change the initial index
assignment in the iterative design process. It may start with
a certain assignment and end up in a different one, because
some of the index pairs may be allocated empty codecells
in the central partition (also some of index pairs may change
their order). We observed that forq ∈ (0, 0.925], when starting
with the modified index assignment of spreadk = 1, which
is not convex as shown in Fig. 13, the algorithm consistently
converged to an assignment yielding a convex 2DSQ.

We have also applied the proposed algorithm to a discretized
version of a memoryless, unit-variance Gaussian source. For
q ∈ (0, 0.925] the minimum values ofD̄(Q) match those
obtained by applying the iterative algorithm of Vaishampayan
[18] for a series of index assignments of various spreads and
taking the minimum over all these index assignments (Fig. 14).
But for q ∈ (0.925, 1], assignments of higher spreads lead
to lower expected distortion (see Fig. 15). As expected, the
codecell convexity compromises the optimality when channel
conditions are very good.

However, there are also cases where the proposed algorithm
outperforms the locally optimal algorithm of [18]. Let us
consider three examples of mixed Gaussian distribution. The



11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

xp
ec

te
d 

D
is

to
rt

io
n

q

convex 
non−convex

Fig. 14. Minimal expected distortion for memoryless Gaussian source at
side rateR = 3 (K = 8), as a function ofq ∈ (0, 1]. The dotted curve is the
performance of the proposed algorithm; the solid curve is the performance of
the algorithm of [18] (the best result over a large set of index assignments is
plotted). Forq ∈ (0, 0.925] the two curves are identical.
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Fig. 15. The magnification of Fig. 14 in the rangeq ∈ [0.9, 1].

pdf’s of the three distributions are

f1(x) = 1/2g(0, 1/16) + 1/2g(6, 1), (24)

f2(x) = 1/2g(0, 1/4) + 1/2g(6, 1), (25)

f3(x) = 1/4g(0, 1/16) + 3/4g(6, 1), (26)

whereg(µ, σ2) denotes the pdf of the normal distribution of
meanµ and varianceσ2. We applied the algorithm of [18]
to minimize the expected distortion forK = 4, using the
modified linear index assignment of spreadk = 1. We also
applied the proposed algorithm to a discretized version of
each of the three mixtures. The results obtained forq = 0.9,
respectivelyq = 0.5, are recorded in Table 2, respectively
Table 3. To visualize an example we plot in Fig. 16 the
histogram of the mixed Gaussian distribution given by (26),
and the thresholds of the central partition obtained by the two
algorithms.

distribution D̄ [18] D̄ proposed algorithm relative difference
f1 0.2149 0.1813 18.53%
f2 0.2338 0.2224 5.12%
f3 0.1900 0.1684 12.82%

TABLE II
PERFORMANCE COMPARISON BETWEEN THE ALGORITHM OF[18] AND

OURS ON THE MIXED GAUSSIAN DISTRIBUTIONS GIVEN BY (24)-(26),
FOR K = 4 AND q = 0.9.

distribution D̄ [18] D̄ proposed algorithm relative difference
f1 2.7178 2.5855 5.11%
f2 2.7349 2.6397 3.6%
f3 2.1282 2.0423 4.2%

TABLE III
PERFORMANCE COMPARISON BETWEEN THE ALGORITHM OF[18] AND

OURS ON THE MIXED GAUSSIAN DISTRIBUTIONS GIVEN BY (24)-(26),
FOR K = 4 AND q = 0.5.

VIII. C ONCLUSION

We show that optimal balanced fixed-rate two-description
scalar quantizer design can be treated as a Lagrangian-type
optimization problem, if convexity of side quantizer codecells
is assumed. It turns out that for a very large class of distor-
tion measures and for any given target rate, the Lagrangian
multiplier exists for the globally optimal solution, under the
above specified constraint. By exploiting a monotonicity of
the objective function we develop a fast dynamic program-
ming technique to solve the parameterized problem given a
trial Lagrangian multiplier. Furthermore, an RD-guided search
technique is also proposed. It makes the Lagrangian optimiza-
tion process to converge in a small number of iterations in our
experiments. The relationship between codecell convexity and
optimality is also discussed.

Appendix A. Proofs of Propositions 2 and 3

Our development hinges on the Monge propriety satisfied
by the functionD(a, b], namely

D(a, b] + D(a′, b′] ≤ D(a, b′] + D(a′, b],
for all a ≤ a′ ≤ b ≤ b′. (27)

It was proved in [24, Lemma 4] that the above relation holds
for monotone distortion functions as defined by (4). We will
also use the following lemma, which was established in [7,
Lemma 1]. The proof of this lemma can be done simply by
replacing the weights of the edges and then applying (27).

Lemma 1. Let νa, ab, ν′a′ anda′b′ be nodes in the graphG,
such thatν ≤ ν′, a ≤ a′, b ≤ b′, ν < b andν′ < b′. Then the
following assertions hold:

i) if ν′ ≤ a and ν′ < b, thenw(νa, ab) + w(ν′a′, a′b′) ≤
w(ν′a, ab) + w(νa′, a′b′);

ii) if a′ ≤ b and ν′ < b, thenw(νa, ab) + w(ν′a′, a′b′) ≤
w(νa, ab′) + w(ν′a′, a′b);

iii) if ν′ ≤ a and a′ ≤ b, thenw(νa, ab) + w(ν′a′, a′b′) ≤
w(ν′a, ab′) + w(νa′, a′b).

In order to prove Proposition 2, we additionally need the
following lemma.
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Fig. 16. The mixed Gaussian distribution (26) and the thresholds of the
central partition obtained by the algorithm of [18] (triangles) and our algorithm
(stars). In both casesK = 4.
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Fig. 17. Illustration of Lemma 1. By replacing the two edges to the left
by the two edges to the right, the total weight decreases. a) Lemma 1 i); b)
Lemma 1 ii); c) Lemma 1 iii).

Lemma 2. For any integersl, l′ such that0 ≤ l− 1 < l′ + 1,
and any two paths inG, P1 with l−1 edges, from00 to some
vertexal−1al, andP2 with l′+1 edges from00 to bl′+1bl′+2,
al−1 ≥ bl′+1, al ≥ bl′+2, there are two other pathsP ′1 with l
edges from00 to bl′+1bl′+2, andP ′2 with l′ edges from00 to
al−1al, such that

W (P ′1) + W (P ′2) ≤ W (P1) + W (P2). (28)

Proof.

Let the pathsP1 andP2 be

P1 : a0a1, a1a2, a2a3, · · · , al−2al−1, al−1al,

P2 : b0b1, b1b2, b2b3, · · · , bl′bl′+1, bl′+1bl′+2,

where 0 = a0 = a1 < a2 < · · · < al−1 ≤ al ≤ N and
0 = b0 = b1 < b2 < · · · < bl′+1 ≤ bl′+2 ≤ N .

Let i be the largest integer between0 and l − 1 for which
both inequalitiesai ≤ bi+l′−l+1, ai+1 ≤ bi+l′−l+2 hold.
Such an integer exists because the inequalities are satisfied
for i = 0. Clearly, i < l − 2. Let also j be the smallest
integer between0 and l − 1 − i for which both inequalities
ai+j ≥ bi+j+l′−l+1, ai+j+1 ≥ bi+j+l′−l+2 hold. Obviously,
such an integer exists because forj = l−1− i the inequalities
are satisfied. We distinguish between three cases:j = 0, j = 1
and j ≥ 2. We start with the most general case:j ≥ 2.

The definitions ofi and j imply, on one hand, thatai ≤
bi+l′−l+1, ai+1 < bi+l′−l+2, ai+j > bi+j+l′−l+1, ai+j+1 ≥
bi+j+l′−l+2, and on the other hand, thatai+1 < bi+l′−l+2,
ai+2 > bi+l′−l+3, ai+3 < bi+l′−l+4, ai+4 > bi+l′−l+5,
· · · , ai+j−1 < bi+j+l′−l. In other words,ai+1 < bi+l′−l+2

≤ bi+l′−l+3 ≤ ai+2 ≤ ai+3 < bi+l′−l+4 < bi+l′−l+5 < ai+4

< · · · < bi+j+l′−l−1 < ai+j−2 < ai+j−1 < bi+j+l′−l <
bi+j+l′−l+1 < ai+j . Clearly, j must be an even integer.

We construct the new pathsP ′1 of l edges, andP ′2 of l′ edges,
in the following way.P ′1 connects the source withbl′+1bl′+2

via the nodesaiai+1 and bi+j+l′−l+1bi+j+l′−l+2. The edges
up to the nodeaiai+1 are the firsti edges ofP1, and the edges
from the nodebi+j+l′−l+1bi+j+l′−l+2 are the lastl − i − j
edges ofP2. The verticesaiai+1 andbi+j+l′−l+1bi+j+l′−l+2

are connected by the followingj-edge path:

aiai+1, ai+1bi+l′−l+3, bi+l′−l+3ai+3, ai+3bi+l′−l+5,

bi+l′−l+5ai+5, · · · , bi+j+l′−l−1ai+j−1,

ai+j−1bi+j+l′−l+1, bi+j+l′−l+1bi+j+l′−l+2. (29)

P ′2 connects the source withal−1al via the nodes
bi+l′−l+1bi+l′−l+2 andai+jai+j+1. The edges up to the node
bi+l′−l+1bi+l′−l+2 are the firsti + l′− l + 1 edges ofP2, and
the edges from the nodeai+jai+j+1 are the lastl− i− 1− j
edges ofP1. The verticesbi+l′−l+1bi+l′−l+2 andai+jai+j+1

are connected by the followingj-edge path:

bi+l′−l+1bi+l′−l+2, bi+l′−l+2ai+2, ai+2bi+l′−l+4,

bi+l′−l+4ai+4, · · · , ai+j−2bi+j+l′−l,

bi+j+l′−lai+j , ai+jai+j+1. (30)

Note that the new pathsP ′1 and P ′2 are obtained from the
old ones by interchangingai+2k and bi+2k+l′−l+1, for all
k, 1 ≤ k ≤ j/2, and by interchangingai+j+1 andbi+j+l′−l+2.
In order to establish (28), it is sufficient to show that the sum
of the weights of the two paths (29) and (30) is at most
equal to the sum of weights of the edges ofP1 between
aiai+1 and ai+jai+j+1, and of the edges ofP2 between
bi+l′−l+1bi+l′−l+2 and bi+j+l′−l+1bi+j+l′−l+2. Further, for
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j links
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⇒
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bi+l’-l+ 1bi+l’-l+ 2
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ai+j ai+j +1

bi+l’-l+ 1bi+l’-l+ 2 bi+j+l’-l+ 1bi+j+l’-l+ 2

i+l’-l+ 1 links

Fig. 18. Construction of the new pathsP ′1 and P ′2 starting fromP1 and
P2: the old j-edge subpaths betweenaiai+1 and ai+jai+j+1, respec-
tively bi+l′−l+1bi+l′−l+2 and bi+j+l′−l+1bi+j+l′−l+2, are removed;
aiai+1 and bi+j+l′−l+1bi+j+l′−l+2, respectivelybi+l′−l+1bi+l′−l+2
andai+jai+j+1, are connected by newj-edge subpaths.

ai bi+l’-l+ 1 bi+l’-l+ 3 ai+2 ai+4bi+l’-l+ 5

ai+1 bi+l’-l+ 2 ai+3 ai+5bi+l’-l+ 4 bi+l’-l+ 6

ai+1 bi+l’-l+ 2 ai+3 ai+5bi+l’-l+ 4 bi+l’-l+ 6

ai bi+l’-l+ 1 bi+l’-l+ 3 ai+2 ai+4bi+l’-l+ 5

Fig. 19. Change ofj-edge subpaths - casej = 4. Up: Old subpaths. Down:
New subpaths.

this it is enough to show that the following inequalities hold:

w(aiai+1, ai+1bi+l′−l+3) +
w(bi+l′−l+1bi+l′−l+2, bi+l′−l+2ai+2) ≤

w(aiai+1, ai+1ai+2) +
w(bi+l′−l+1bi+l′−l+2, bi+l′−l+2bi+l′−l+3); (31)

w(bi+j+l′−lai+j , ai+jai+j+1) +
w(ai+j−1bi+j+l′−l+1, bi+j+l′−l+1bi+j+l′−l+2) ≤

w(ai+j−1ai+j , ai+jai+j+1) +
w(bi+j+l′−lbi+j+l′−l+1, bi+j+l′−l+1bi+j+l′−l+2); (32)

w(ai+k−1bi+k+1, bi+k+1ai+k+1) +
w(bi+k+l′−lai+k, ai+kbi+k+l′−l+2) ≤

w(ai+k−1ai+k, ai+kai+k+1) +
w(bi+k+l′−lbi+k+l′−l+1, bi+k+l′−l+1bi+k+l′−l+2) (33)

for all k, 2 ≤ k ≤ j − 1. The relation (31) follows from
Lemma 1 ii), the relation (32) follows from Lemma 1 i), and
the relation (33) follows from Lemma 1 iii). Now the proof
of casej ≥ 2 is complete.

Let us consider now the casej = 1. This case implies
that ai+1 = bi+l′−l+2. Moreover,ai ≤ bi+l′−l+1 < ai+1 =
bi+l′−l+2 < bi+l′−l+3 ≤ ai+2. The new pathsP ′1 and
P ′2 are constructed in a similar way. The only difference
consists in that the nodesaiai+1 andbi+j+l′−l+1bi+j+l′−l+2

are connected inP ′1 by a single edge (this is possible since
ai+1 = bi+j+l′−l+1 and ai < bi+j+l′−l+2) and the nodes
bi+l′−l+1bi+l′−l+2 andai+jai+j+1 are connected inP ′2 again
by a single edge (possible becausebi+l′−l+2 = ai+j and
bi+l′−l+1 < ai+j+1). In order to establish relation (28) it is
sufficient to show the inequality

w(aiai+1, ai+1bi+l′−l+3) + w(bi+l′−l+1ai+1, ai+1ai+2) ≤
w(aiai+1, ai+1ai+2) + w(bi+l′−l+1ai+1, ai+1bi+l′−l+3),

which follows from Lemma 1, i) (it corresponds to the case
whena = a′).

The casej = 0 is the simplest one. In this case the
nodes aiai+1 and bi+l′−l+1bi+l′−l+2 coincide. Hence the
pathsP1 and P2 have this node in common. This common
node partitions each of the two paths in two subpaths (a prefix
and a suffix). The new pathsP ′1 andP ′2 are obtained starting
from the old ones and interchanging the two suffixes. Relation
(28) is trivially satisfied with equality.¤
Proposition 2. The inequality

2W̄ (l) ≤ W̄ (l − 1) + W̄ (l + 1)

holds for all l, 3 ≤ l ≤ 2N − 1, whereW̄ (l) is the weight of
the minimum-weightl-edge path from the source to the final
node inG.

Proof. Let P1 andP2 be the minimum weight(l−1)-link path
and the minimum weight(l + 1)-link path, respectively, from
the source to the final node inG. According to Lemma 2,
there are two pathsP ′1 andP ′2 both of l-links, from the source
to the final node inG, such that relation (28) holds. Then the
conclusion of Proposition 2 trivially follows.¤

In order to establish Proposition 3, we need the following
lemma.

Lemma 3. The functionWλ(a, b) satisfies the Monge condi-
tion, i.e.,

Wλ(a, b) + Wλ(a′, b′) ≤ Wλ(a, b′) + Wλ(a′, b)
for all 0 ≤ a ≤ a′ ≤ b ≤ b′ ≤ N. (34)

Proof. The nontrivial case is when0 ≤ a < a′ ≤ b < b′. The
proof proceeds by induction onb′. The base case isb′ = 2.
Thena = 0 anda′ = b = 1, and (34) becomes

Wλ(0, 1) + Wλ(1, 2) ≤ Wλ(0, 2) + Wλ(1, 1) (35)

For each of the nodes01, 02 and 11 there is only one path
ending in that node, hence that is the minimum-weight path.
These paths are, respectively,00, 01; 00, 02; 00, 01, 11. It is
sufficient if we prove the inequality in whichWλ(1, 2) is
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replaced by the weight of some path ending in the node12
(not necessarily the minimum-weight one), for instance, the
path: 00, 01, 12. Hence, a sufficient condition for (35) is the
following

w(00, 01) + w(00, 01) + w(01, 12) + 3λ ≤
w(00, 02) + w(00, 01) + w(01, 11) + 3λ,

which is obviously satisfied with equality.

Now we show the inductive stepb′ − 1 → b′. Denote by
ξ, the valueξλ(a, b′) and byξ′, the valueξλ(a′, b). Applying
the definition ofξλ(a, b′) andξλ(a′, b), we obtain that

Wλ(a, b′) = Wλ(ξ, a) + w(ξa, ab′) + λ, (36)

Wλ(a′, b) = Wλ(ξ′, a′) + w(ξ′a′, a′b) + λ. (37)

Further we need to distinguish between the casesξ ≥ ξ′ and
ξ < ξ′.
Case ξ ≥ ξ′. Since ξ ≤ a < a′, it follows that ξ′ ≤ a
andξ < a′. The definitions ofWλ(a, b) andWλ(a′, b′) imply,
respectively, that

Wλ(a, b) ≤ Wλ(ξ′, a) + w(ξ′a, ab) + λ, (38)

Wλ(a′, b′) ≤ Wλ(ξ, a′) + w(ξa′, a′b′) + λ. (39)

Note thata′ ≤ b < b′, hencea′ ≤ b′ − 1. Consequently, since
ξ′ ≤ ξ ≤ a < a′, the inequality

Wλ(ξ′, a) + Wλ(ξ, a′) ≤ Wλ(ξ, a) + Wλ(ξ′, a′)

is valid according to the inductive hypothesis. Also Lemma 1,
iii) can be applied forν = ξ′ and ν′ = ξ. Combining these
two results, we obtain that the sum of the righthand sides of
inequalities (38) and (39) is smaller or equal than the sum of
the righthand sides of equalities (36) and (37). This implies
that (34) is satisfied, too.
Case ξ < ξ′. The proof follows the same idea. In (38) and
(39), ξ andξ′ are interchanged. Then Lemma 1, ii) is applied
to reach the conclusion.¤

Proposition 3.For any nodesab anda′b′ other than the source,
and such thata ≤ a′ andb ≤ b′, the following relation holds:

ξλ(a, b) ≤ ξλ(a′, b′).

Proof. Assume that

ξλ(a, b) > ξλ(a′, b′).

We will show that this assumption leads to a contradiction.
Let ν = ξλ(a′, b′) andν′ = ξλ(a, b). Then

Wλ(a, b) = Wλ(ν′, a) + w(ν′a, ab) + λ, (40)

Wλ(a′, b′) = Wλ(ν, a′) + w(νa′, a′b′) + λ. (41)

Note that ν ≤ a′ and ν < b′. Also ν′ ≤ a and ν′ < b.
Using the inequalityν < ν′, we obtain thatν ≤ a andν < b.
Furthermore,ν′ ≤ a′ andν < b′. These imply that

Wλ(a, b) ≤ Wλ(ν, a) + w(νa, ab) + λ, (42)

Wλ(a′, b′) ≤ Wλ(ν′, a′) + w(ν′a′, a′b′) + λ. (43)

Since the functionWλ(·, ·) satisfies the Monge condition
(Lemma 3), it follows that

Wλ(ν, a) + Wλ(ν′, a′) ≤ Wλ(ν′, a) + Wλ(ν, a′).

Moreover, Lemma 1, i) can be applied, and combining these
two observations, yields that the sum of the righthand sides of
inequalities (42) and (43), which we denote byA, is smaller
or equal than the sum of the righthand sides of equalities (40)
and (41), which we denote byB. Further, we obtain that

Wλ(a, b) + Wλ(a′, b′) ≤ A ≤ B ≤ Wλ(a, b) + Wλ(a′, b′).

The conclusion is that both relations (42) and (43) are satisfied
with equality. But equality in (43) contradicts the definition of
ξλ(a′, b′). ¤

Lemma 4. The path computed by the algorithm of Section 5
is a minimum-weight path inG(λ), with the largest number
of edges.

Proof. Let

P : a0a1, a1a2, a2a3, · · · , al−1al, alal+1

be the path computed by the algorithm of Section 5. It has
the property thatal = al+1 = N , a0 = a1 = 0 and ai =
ξλ(ai+1, ai+2) for all 0 ≤ i ≤ l − 1. P clearly hasl edges.
Assume now that there is another pathP ′ from the source to
the final node, which is also a minimum-weight path inG(λ),
and it hasl′ edges withl′ > l. Let P ′ be

P ′ : b0b1, b1b2, b2b3, · · · , bl′−1bl′ , bl′bl′+1,

whereb0 = b1 = 0 andbl′ = bl′+1 = N .
We show first by using an inductive argument, that

bl′+1−j ≤ al+1−j for all j, 0 ≤ j ≤ l + 1.
Base Step.For j = 0 and j = 1 the inductive hypothesis is
trivially satisfied with equality.
Inductive Step. Let j be an arbitrary integer such that
2 ≤ j < l + 1. Assume that the inductive hypothesis is
satisfied for all integers from0 to j − 1 inclusively. Since
bl′+1−(j−2) ≤ al+1−(j−2) and bl′+1−(j−1) ≤ al+1−(j−1), it
follows by Proposition 3 thatξλ(bl′+1−(j−1), bl′+1−(j−2)) ≤
ξλ(al+1−(j−1)al+1−(j−2)) = al+1−j . The last equality is due
to the definition of the pathP . Further, since the prefix
of the pathP ′ up to the nodebl′+1−(j−1)bl′+1−(j−2) is a
minimum weight path inG(λ) from the source to that node, it
follows by the definition ofξλ(bl′+1−(j−1), bl′+1−(j−2)) that
bl′+1−j ≤ ξλ(bl′+1−(j−1), bl′+1−(j−2)). Now the inequality
bl′+1−j ≤ al+1−j follows and the inductive proof is over.

For j = l we have thus,bl′+1−l ≤ a1 = 0. On the
other hand,l′ > l implies bl′+1−l ≥ b2 > 0, yielding a
contradiction.¤

Appendix B. Asymptotic Analysis at High Reso-
lution

Assume a probability distribution with continuous pdff(x)
defined on the compact interval[V, W ]. Any K-level balanced
convex 2DSQ satisfying the relation stated by Proposition
1 is completely specified by the central partition. Following
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the approach of [20] we model the central quantizer as a
compander. In other words, the central quantizerQ0 is the
composition of three functions,Q0 = G−1◦Qu

2K−1◦G, where
Qu

2K−1 is the2K − 1 level uniform quantizer on the interval
[0, 1], G is an invertible function,G : [V,W ] → [0, 1], andh
is its inverse,h = G−1, h : [0, 1] → [V, W ]. FunctionG is
moreover assumed to be strictly increasing and differentiable,
hence its derivativeg = G′ is positive. Furthermoreg is
assumed to be continuous. Therefore, the balanced 2-DSQ
of rate R is defined by the central partition with thresholds
t0 = V < t1 < t2 < · · · < t2K−2 < t2K−1 = W , where
K = 2R and ti = h(i/(2K − 1)) for all 0 ≤ i ≤ 2K − 1.

Then the thresholds of Q1 are t0, t1, t3, t5,· · · ,
t2K−3, t2K−1, and those of Q2 are t0, t2, t4, · · · ,
t2K−4, t2K−2, t2K−1. Consider ther-th power difference as
distortion measure, and denote byDr(Q) the distortion of
a quantizerQ, and byDr(a, b] the distortion of a codecell
(a, b]. According to [4, Eq. (1.6)] and [3, Eq. (8)], the
following approximation holds asR →∞

D(r)(Q0) ≈ 1
(2K − 1)r2r(r + 1)

∫ W

V

f(x)
gr(x)

dx.

Further, sincelimK→∞
(2K−1)r

Kr = 2r and K = 2R we
approximate(2K − 1)r by 2Rr2r, which leads to

D(r)(Q0) ≈ 1
2Rr22r(r + 1)

∫ W

V

f(x)
gr(x)

dx. (44)

Similar approximations for the side quantizers distortions do
not follow directly from [4], [3] because the side quantizers
are not companders. Precisely, the functionG maps each
side quantizerQk to a quantizer over the interval[0, 1]
which has all codecells except one, of equal length. But such
approximations can be derived very easily following the same
ideas as in [4], [3]. We illustrate this for the side quantizer
Q1. Note that

D(r)(Q1) = D(r)[t0, t1] +
K−1∑

i=1

D(r)(t2i−1, t2i+1].

Assuming that for highK the distribution is approximately
uniform over each codecell, it follows that the representation
point can be approximated by the midpoint and obtain

D(r)(t2i−1, t2i+1] ≈
f(t2i−1)

∫ t2i+1

t2i−1
|x− (t2i−1 + t2i+1)/2|rdx =

f(t2i−1)
(t2i+1−t2i−1)

r+1

2r(r+1) .

Further, using the mean value theorem and making another
approximation, we obtain

t2i+1 − t2i−1 = h( 2i+1
2K−1 )− h( 2i−1

2K−1 ) ≈
h′( 2i−1

2K−1 ) 2
2K−1 = 2

2K−1 · 1
g(t2i−1)

.

Thus, we get

D(r)(t2i−1, t2i+1] ≈ t2i+1 − t2i−1

(r + 1)(2K − 1)r

f(t2i−1)
gr(t2i−1)

.

Similarly, it follows that

D(r)[t0, t1] ≈ 1
2r(r + 1)(2K − 1)r

(t1 − t0)
f(t0)
gr(t0)

.

Then we have that

D(r)(Q1) ≈ 1
(r+1)(2K−1)r ((t1 − t0)

f(t0)
gr(t0)

+
∑K−1

i=1 (t2i+1 − t2i−1)
f(t2i−1)
gr(t2i−1)

)−
2r−1

2r(r+1)(2K−1)r (t1 − t0)
f(t0)
gr(t0)

.

By multiplying with Kr we obtain that

KrD(r)(Q1) ≈ Kr

(r+1)(2K−1)r [(t1 − t0)
f(t0)
gr(t0)

+
∑K−1

i=1 (t2i+1 − t2i−1)
f(t2i−1)
gr(t2i−1)

]−
(2r−1)Kr

2r(r+1)(2K−1)r (t1 − t0)
f(t0)
gr(t0)

.

Note that, asK → ∞, the last term approaches0 because
t1 − t0 → 0, while the expression inside the square brackets
approaches

∫ W

V
f(x)
gr(x)dx, thus,

KrD(r)(Q1) → 1
(r + 1)2r

∫ W

V

f(x)
gr(x)

dx. (45)

This yields the approximation

D(r)(Q1) ≈ 1
2Rr(r + 1)2r

∫ W

V

f(x)
gr(x)

dx.

Similarly, D(r)(Q2) can be approximated by the same quantity
as above. Using these approximations together with (44) and
the fact that the minimum value for the integral is achieved
when g(x) = f1/(r+1)(x)∫ W

V
f1/(r+1)(x)dx

[3], the following approxima-

tion of the minimal expected distortion is obtained:

D̄(r) ≈ 2ω + 2−rω0

2Rr2r(r + 1)
(
∫ W

V

f1/(r+1)(x)dx)r+1. (46)

The above result can be put in the following form, which will
be used in Appendix C,

lim
K→∞

KRD̄(r) =
2ω + 2−rω0

2r(r + 1)
(
∫ W

V

f1/(r+1)(x)dx)r+1. (47)

Relation (47) follows immediately from (45), together with
the equalities

lim
K→∞

(2K − 1)rD(r)(Q0) =
1

(r + 1)2r

∫ W

V

f(x)
gr(x)

dx,

which was proved in [5, Theorem 1], andg(x) =
f1/(r+1)(x)∫ W

V
f1/(r+1)(x)dx

.

Appendix C. Number of Iterations of Secant
Search

We assume here the squared error as distortion measure and
a probability mass function obtained by applying a fine pre-
quantizer to a continuous strictly positive pdff(x) defined
on a compact interval[V,W ]. The pre-quantizer partitions the
total interval [V, W ] in N equal sub-intervals and selects the
optimum representation value for each sub-interval. In other
words, we have

pi =
∫ V +i(W−V )/N

V +(i−1)(W−V )/N

f(x)dx,

xi =

∫ V +i(W−V )/N

V +(i−1)(W−V )/N
xf(x)dx

pi
, (48)
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for all 1 ≤ i ≤ N . We will denote byD̄N (l), respectivelyD̄l,
the smallest expected distortion of anl-level balanced convex
2DSQ for the pmf defined above, respectively for the pdff(x).

Proposition 4.For a pmf as above andN andK large enough,
the number of iterations in the secant search is upper bounded
by 8K + dlog3/2 Ne, whered·e denotes the ceiling function2.

In order to prove the above proposition we need the follow-
ing three lemmas.

Lemma 5. There is a positive constantc3 such that

|D̄l − D̄N (l)| ≤ c3

N
, (49)

for all N >> l.

Lemma 6. There is some positive integerl0, such that for all
l, l0 ≤ l << N , we have

D̄N (l) > 3D̄N (2l). (50)

Lemma 7. Assume that2K << N andL(Pλ2) < 2K. Then,
if L(Pλ1) − L(Pλ2) ≥ max 3{2l0, L(Pλ2)}, it follows that
L(Pλnew) − L(Pλ2) < 2

3 (L(Pλ1) − L(Pλ2)), whereλnew is
obtained according to the secant search strategy, i.e.,

λnew = (W (Pλ2)−W (Pλ1))/(L(Pλ1)− L(Pλ2)),

and l0 is the constant defined in Lemma 6.

We first prove Proposition 4, then each of the three lemmas.

Proof of Proposition 4.We can think of the secant search as a
search in the interval of integers[L(Pλ2), L(Pλ1)]. After each
iteration the search interval is reduced as follows:

Case 1: If L(Pλnew) < 2K then the new search interval is
[L(Pλnew), L(Pλ1)].

Case 2: If L(Pλnew) > 2K then the new search interval is
[L(Pλ2), L(Pλnew)].

The search stops whenL(Pλnew) = 2K. Note that after each
iteration the search interval is reduced by at least one unit
sinceL(Pλ2) < L(Pλnew) < L(Pλ1) as justified in Section 6.

The total number of iterations is the sum of three quantities
q1, q2 and q3 defined as follows.q1 is the total number of
iterations when Case 1 happens.q2 is the total number of
iterations when the size of the current search interval is smaller
than6K and Case 2 happens. Finally,q3 is the total number
of iterations when the size of the current search interval is at
least6K and Case 2 happens.

Since the valuesL(Pλnew) corresponding to distinct itera-
tions are different, and since there are at most2K−1 different
positive integers smaller than2K it follows thatq1 ≤ 2K−1.
By a similar reasoning we obtain thatq2 ≤ 6K − 1.

In order to provide an upper bound forq3 we assume
that K ≥ l0. Also assume thatL(Pλ1) − L(Pλ2) ≥ 6K.
Clearly, L(Pλ1) − L(Pλ2) ≥ 6l0. Also, since2K > L(Pλ2),
we have L(Pλ1) − L(Pλ2) ≥ 3L(Pλ2). By Lemma 7 it
follows that L(Pλnew) − L(Pλ2) < 2

3 (L(Pλ1) − L(Pλ2)).
Consequently, if the length of the current search interval is
at least6K and situation 2 happens then the length of the

2For any real numberx, dxe is the smallest integer larger or equal tox.

new search interval is reduced by at least2
3 . Starting from the

initial search interval[1, 2N ], the total number of times this
reduction can be applied until the size of the interval becomes
smaller than6K is at mostdlog3/2(2N/(6K))e. Therefore
q3 ≤ dlog3/2(2N/(6K))e < dlog3/2 Ne. ¤

Proof of Lemma 5.
According to equation (47) in Appendix B, we have

lim
l→∞

l2D̄l = c0, (51)

where

c0 =
1
12

(2ω + 2−2ω0)(
∫ W

V

f1/(3)(x)dx)3. (52)

The proof of this lemma hinges on relation (51), but we
moreover need a way to relatēDN (l) to D̄l. Let us first
establish a mapping between thel-level balanced convex
2DSQ’s for the pdff(x) and those of the pmfpi, 1 ≤ i ≤ N .
Let an l-level balanced convex 2DSQQf of the pdf f(x)
have the following thresholds in the central partition:t0 =
V < t1 < t2 < · · · < t2l−2 < t2l−1 = W . Define now an
l-level balanced convex 2DSQQp of the pmfpi, 1 ≤ i ≤ N ,
with the following thresholds0 = q0 < q1 < · · · < q2l−2 <
q2l−1 = N , where:

qi = dN(ti − V )
W − V

e (53)

for all 0 ≤ i ≤ 2l−1. The 2DSQQp corresponds to a convex
2DSQQ′

f of the pdff(x) with the thresholds

t′i = V +
qi(W − V )

N
(54)

for 0 ≤ i ≤ 2l−1. It is easy to see that the expected distortions
of Qp and of Q′

f differ only by the distortion of the pre-
quantizer applied tof(x) in order to obtain the pmfpi, 1 ≤
i ≤ N . We will denote this quantity by∆N . Thus,

D̄(Q′
f ) = D̄(Qp) + ∆N . (55)

Next we provide an upper bound for|D̄(Q′
f )−D̄(Qf )|. Note

first that relation (53) implies that

N(ti − V )
W − V

≤ qi <
N(ti − V )
W − V

+ 1. (56)

Using further the equality (54), after some algebraical manip-
ulation we obtain

0 ≤ t′i − ti <
W − V

N
. (57)

We assume that the pdf is smooth enough andN >> l so that
the optimuml-level balanced convex 2DSQ of the pdff(x)
has the distance between any consecutive thresholds larger
than W−V

N . Therefore we will consider only 2DSQ’s with
this property. This property together with the above inequality
imply that

V = t0 = t′0 < t1 ≤ t′1 < · · · ti ≤ t′i < ti+1 ≤ t′i+1 <

· · · < t2l−2 ≤ t′2l−2 < t2l−1 = t′2l−1 = W. (58)
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Let Q0, respectivelyQ′
0, denote the central quantizer ofQf ,

respectivelyQ′
f . For anyu < u′ ∈ [V, W ] we denote

µ(u, u′) =

∫ u′

u
xf(x)dx

∫ u′

u
f(x)dx

. (59)

Then

D(Q′0)−D(Q0) =
∑2l−1

i=1 (
∫ t′i

t′i−1
(x− µ(t′i−1, t

′
i))

2f(x)dx−
∫ ti

ti−1
(x− µ(ti−1, ti))2f(x)dx). (60)

Applying the inequalities (58) we further obtain

D(Q′0)−D(Q0) =∑2l−1
i=1

∫ ti

t′i−1
((x− µ(t′i−1, t

′
i))

2 −
(x− µ(ti−1, ti))2)f(x)dx +

∑2l−2
i=1

∫ t′i
ti

((x− µ(t′i−1, t
′
i))

2 −
(x− µ(ti, ti+1))2)f(x)dx =∑2l−1

i=1

∫ ti

t′i−1
2(µ(ti−1, ti)− µ(t′i−1, t

′
i)) ·

(x− µ(t′i−1,t′i)+µ(ti−1,ti)

2 )f(x)dx +
∑2l−2

i=1

∫ t′i
ti

2(µ(ti, ti+1)− µ(t′i−1, t
′
i)) ·

(x− µ(t′i−1,t′i)+µ(ti,ti+1)

2 )f(x)dx. (61)

Using the fact that the absolute value of a sum is smaller or
equal than the sum of absolute values and the fact thatf(x)
is positive we further obtain that

|D(Q′0)−D(Q0)| ≤ ·
2

∑2l−1
i=1 |µ(t′i−1, t

′
i)− µ(ti−1, ti)| ·

∫ ti

t′i−1
|x− µ(t′i−1,t′i)+µ(ti−1,ti)

2 |f(x)dx +

2
∑2l−2

i=1 |µ(ti, ti+1)− µ(t′i−1, t
′
i)| ·∫ t′i

ti
|x− µ(t′i−1,t′i)+µ(ti,ti+1)

2 |f(x)dx. (62)

Using the following property of the centroidµ(u, u′) ∈ [u, u′],
it follows that

µ(t′i−1,t′i)+µ(ti−1,ti)

2 ∈ [ti−1, t
′
i]. Then for

x ∈ [t′i−1, ti] we have|x − µ(t′i−1,t′i)+µ(ti−1,ti)

2 | ≤ t′i − ti−1.

Likewise
µ(t′i−1,t′i)+µ(ti,ti+1)

2 ∈ [t′i−1, ti+1]. Since [ti, t′i] ⊂
[t′i−1, ti+1], for x ∈ [ti, t′i] we have|x− µ(t′i−1,t′i)+µ(ti,ti+1)

2 | ≤
ti+1 − t′i−1 ≤ ti+1 − ti−1. By applying these observations to
(62) we obtain:

|D(Q′0)−D(Q0)| ≤
2

∑2l−1
i=1 |µ(t′i−1, t

′
i)− µ(ti−1, ti)|(t′i − ti−1) ·∫ ti

t′i−1
f(x)dx +

2
∑2l−2

i=1 |µ(ti, ti+1)− µ(t′i−1, t
′
i)|(ti+1 − ti−1) ·∫ t′i

ti
f(x)dx. (63)

Next we will treat each sum separately. In order to deal with
the second sum notice that

∫ t′i
ti

f(x)dx ≤ M0(t′i − ti) <
M0(W − V )/N , whereM0 denotes the maximum value of
f(x) over [V, W ] (this value is finite due to the continuity of

the pdf). Also we have|µ(ti, ti+1) − µ(t′i−1, t
′
i)| ≤ W − V .

Then the following inequalities hold
∑2l−2

i=1 |µ(ti, ti+1)− µ(t′i−1, t
′
i)|(ti+1 − ti−1)

∫ t′i
ti

f(x)dx ≤
M0(W−V )2

N

∑2l−2
i=1 (ti+1 − ti−1) =

M0(W−V )2

N (t2l−2 − t0 + t2l−1 − t1) ≤ 2M0(W−V )3

N . (64)

In order to find an upper bound for the first sum in relation
(63) notice that

|µ(t′i−1, t
′
i)− µ(ti−1, ti)| ≤

|µ(t′i−1, t
′
i)− µ(ti−1, t

′
i)|+ |µ(ti−1, t

′
i)− µ(ti−1, ti)|.(65)

Using the definition ofµ(·, ·) in (59) and the inequalities
ti−1 ≤ t′i−1 < t′i from (58), we obtain the following sequence
of relations

µ(ti−1, t
′
i)

∫ t′i
ti−1

f(x)dx =
∫ t′i

ti−1
xf(x)dx =

∫ t′i−1
ti−1

xf(x)dx +
∫ t′i

t′i−1
xf(x)dx =

µ(ti−1, t
′
i−1)

∫ t′i−1
ti−1

f(x)dx + µ(t′i−1, t
′
i)

∫ t′i
t′i−1

f(x)dx,

which further imply the equality

µ(ti−1, t
′
i) = µ(ti−1, t

′
i−1)

∫ t′i−1
ti−1

f(x)dx
∫ t′i

ti−1
f(x)dx

+µ(t′i−1, t
′
i)

∫ t′i
t′i−1

f(x)dx
∫ t′i

ti−1
f(x)dx

.

The above relation leads to

|µ(t′i−1, t
′
i)− µ(ti−1, t

′
i)| =

|µ(t′i−1, t
′
i)− µ(ti−1, t

′
i−1)|

∫ t′i−1
ti−1

f(x)dx

∫ t′
i

ti−1
f(x)dx

≤
(t′i−ti−1)M0(W−V )

N
∫ t′

i
ti−1

f(x)dx
. (66)

Moreover, using the definition ofµ(·, ·) in (59) and the
inequalitiesti−1 < ti ≤ t′i from (58), it follows that

µ(ti−1, t
′
i)

∫ t′i
ti−1

f(x)dx =
∫ t′i

ti−1
xf(x)dx =

∫ ti

ti−1
xf(x)dx +

∫ t′i
ti

xf(x)dx =

µ(ti−1, ti)
∫ ti

ti−1
f(x)dx + µ(ti, t′i)

∫ t′i
ti

f(x)dx,

further leading to

µ(ti−1, t
′
i) = µ(ti−1, ti)

∫ ti

ti−1
f(x)dx

∫ t′i
ti−1

f(x)dx
+µ(ti, t′i)

∫ t′i
ti

f(x)dx
∫ t′i

ti−1
f(x)dx

.

Using the above relation we obtain

|µ(ti−1, t
′
i)− µ(ti−1, ti)| =

|µ(ti, t′i)− µ(ti−1, ti)|
∫ t′i

ti
f(x)dx

∫ t′
i

ti−1
f(x)dx

≤
(t′i−ti−1)M0(W−V )

N
∫ t′

i
ti−1

f(x)dx
. (67)

By replacing (66) and (67) in (65), it follows that

|µ(t′i−1, t
′
i)− µ(ti−1, ti)| ≤

2M0(W−V )(t′i−ti−1)

N
∫ t′

i
ti−1

f(x)dx
≤ 2M0(W−V )2

N
∫ t′

i
ti−1

f(x)dx
,



18

which further implies the following inequality
∑2l−1

i=1 |µ(t′i−1, t
′
i)− µ(ti−1, ti)|(t′i − ti−1)

∫ ti

t′i−1
f(x)dx ≤

2M0(W−V )2

N

∑2l−1
i=1 (t′i − ti−1) ≤ 4M0(W−V )3

N . (68)

Further, by replacing (64) and (68) in (63) it follows that

|D(Q′0)−D(Q0)| ≤ 12M0(W − V )3

N
. (69)

According to the above relation there is some positive constant
c1 (i.e., which does not depend onN ) such that

|D(Q′
0)−D(Q0)| ≤ c1

N
.

A similar result can be obtained for the difference of dis-
tortions of corresponding side quantizers ofQ′

f and Qf .
Therefore we conclude that there is some constantc2 > 0
such that

|D̄(Q′
f )− D̄(Qf )| ≤ c2

N
. (70)

From relation (55) we obtain that

|D̄(Q′
f )− D̄(Qp)| = ∆N =

∑N
i=1

∫ V +i(W−V )/N

V +(i−1)(W−V )/N
(x− xi)2f(x)dx ≤

(W−V )2

N2

∑N
i=1

∫ V +i(W−V )/N

V +(i−1)(W−V )/N
f(x)dx =

(W−V )2

N2 ≤ c′2
N ,

for some suitable positive constantc′2. Further,

|D̄(Qf )− D̄(Qp)| ≤ |D̄(Qf )− D̄(Q′
f )|+

|D̄(Q′
f )− D̄(Qp)| ≤ c2+c′2

N .

Let c3 = c2 + c′2, then the above relation implies that

D̄(Qp)− c3

N
≤ D̄(Qf ) ≤ D̄(Qp) +

c3

N
.

The above sequence of inequalities remains valid if we apply
infimum over all possibleQf , i.e.,

inf
Qf

D̄(Qp)− c3

N
≤ inf

Qf

D̄(Qf ) ≤ inf
Qf

D̄(Qp) +
c3

N
,

which implies

| inf
Qf

D̄(Qf )− inf
Qf

D̄(Qp)| ≤ c3

N
.

Note thatQp is a function ofQf and asQf varies over the
whole set of l-level balanced convex 2DSQ’s off(x), Qp

varies over the whole set ofl-level balanced convex 2DSQ’s
of the pmfpi, 1 ≤ i ≤ N . Therefore,infQf

D̄(Qp) = D̄N (l),
which further implies our claim.¤
Proof of Lemma 6.

According to equation (47) in Appendix B, we have

lim
l→∞

l2D̄l = c0, (71)

wherec0 is given by (52). Relation (71) implies that there is
some integerl0 such that for all integersl ≥ l0 the following
inequality holds

|l2D̄l − c0| ≤ c0/14, (72)

which further implies that

|D̄l − c0

l2
| ≤ c0

14l2
. (73)

According to Lemma 5 there is a positive constantc3 such
that the following inequality is valid for alll << N ,

|D̄l − D̄N (l)| ≤ c3

N
. (74)

Relations (74) and (73) further imply that

|D̄N (l)− c0

l2
| ≤ |D̄N (l)− D̄l|+ |D̄l − c0

l2
| ≤ c3

N
+

c0

14l2
,

which lead to
13c0

14l2
− c3

N
≤ D̄N (l) ≤ 15c0

14l2
+

c3

N
, (75)

for all l, N with l ≥ l0 andN >> l. When l ≥ l0, it follows
that 2l ≥ l0, consequently, relation (75) also holds ifl is
replaced by2l, i.e.,

13c0

14 · 4l2
− c3

N
≤ D̄N (2l) ≤ 15c0

14 · 4l2
+

c3

N
, (76)

Let c =
√

c0
32c3

. Let l0 ≤ l << N . Assume that the condition

l << N implies that l < c
√

N . Then we have4 c3
N ≤ c0

8l2 ,
which further leads to

3(
15c0

14 · 4l2
+

c3

N
) ≤ 13c0

14l2
− c3

N
. (77)

Finally, from (75), (76) and (77) it follows that

3D̄N (2l) ≤ D̄N (l).

¤
Proof of Lemma 7.

Let ` denoteL(Pλ2), k denoteL(Pλ1)−L(Pλ2), and denote
`′ denoteL(Pλnew).

Consider the pointsA,B, C, D andE on the lower convex
hull of U , corresponding to the following abscisa respectively:
`, b`+ 1

3k +1c, b`+ 2
3kc, `+k, `′, whereb·c denotes the floor

function3. Hence,A = (`, W̄ (`)), B = (b`+ 1
3k+1c, W̄ (b`+

1
3k+1c), C = (b`+ 2

3kc, W̄ (b`+ 2
3kc), D = (`+k, W̄ (`+k))

andE = (`′, W̄ (`′)).
Our development hinges on the following relation

slope(BC) > slope(AD), (78)

whereslope(BC) andslope(AD) denote the slope of the line
BC, respectivelyAD. After proving the above relation our
argument proceeds as follows. Any support line toU passing
through a point to the right ofC has the slope at least equal
to slope(BC), therefore strictly larger thanslope(AD). Since
there is a support line passing throughE of slope equal to
−λnew = slope(AD), it follows that E has to be situated to
the left ofC. This implies that̀ ′ < `+ 2

3k, which proves our
claim.

We proceed now to prove (78). By the definition of a slope,
we have

slope(BC) = W̄ (b`+ 2
3 kc)−W̄ (b`+ 1

3 k+1c)
b`+ 2

3 kc−b`+ 1
3 k+1c =

D̄N (b`+ 2
3 kc)−D̄N (b`+ 1

3 k+1c)
b`+ 2

3 kc−b`+ 1
3 k+1c . (79)

3For any real valuex, bxc is the largest integer smaller or equal tox.
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We show next that the denominator of the above ratio is
smaller thank/3. According to the definition of the floor
function (b·c) we have:

` +
2
3
k − 1 < b` +

2
3
kc ≤ ` +

2
3
k (80)

and

` +
1
3
k < b` +

1
3
k + 1c ≤ ` +

1
3
k + 1 (81)

By multiplying by −1 the sequence of inequalities (81) and
then adding it to (80), we obtain

1
3
k − 2 < b` +

2
3
kc − b` +

1
3
k + 1c <

1
3
k. (82)

Relations (79) and (82) imply that

slope(BC) >
D̄N (b` + 2

3kc)− D̄N (b` + 1
3k + 1c)

1
3k

. (83)

Since

slope(AD) =
D̄N (` + k)− D̄N (`)

k
, (84)

in order to prove (78) it is sufficient to show that

D̄N (b` + 2
3kc)− D̄N (b` + 1

3k + 1c)
1
3k

>
D̄N (` + k)− D̄N (`)

k
,

which after some algebra becomes equivalent to

D̄N (`)+3D̄N (b`+
2
3
kc) > 3D̄N (b`+

1
3
k+1c)+D̄N (`+k).

(85)
In order to prove the above inequality we first establish that

D̄N (`) > 3D̄N (b` +
1
3
k + 1c). (86)

SinceD̄N (·) is decreasing it follows that

D̄N (`) ≥ D̄N (max{`, l0}). (87)

Since ` < 2K and 2K << N , it follows that ` << N .
Consequently, we can apply Lemma 6, which implies that

D̄N (max{`, l0}) ≥ 3D̄N (2max{`, l0}). (88)

From k ≥ 3max{2l0, `} we obtain ` + 1
3k ≥ max{2l0 +

`, 2`} ≥ max{2l0, 2`}. Since b` + 1
3k + 1c > ` + 1

3k, we
further obtain thatb` + 1

3k + 1c > max{2l0, 2`}. Using again
the decreasing monotonicity of̄DN (·) it follows that

D̄N (max{2`, 2l0}) ≥ D̄N (b` +
1
3
k + 1c). (89)

Relations (87), (88) and (89) further imply inequality (86).
Sinceb` + 2

3kc < ` + k we obtain thatD̄N (b` + 2
3kc) ≥

D̄N (` + k), which yields3D̄N (b` + 2
3kc) ≥ D̄N (` + k). The

above relation together with (86) lead to (85).¤
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