
J Sched (2015) 18:3–13
DOI 10.1007/s10951-014-0396-7

Optimal delivery time quotation in supply chains to minimize
tardiness and delivery costs

Sorina Dumitrescu · George Steiner · Rui Zhang

Received: 19 June 2013 / Accepted: 5 September 2014 / Published online: 21 October 2014
© Springer Science+Business Media New York 2014

Abstract There are many situations when, due to unex-
pected delays, the supplier may not be able to deliver some
orders by the promised due dates. We present a model
for quoting attainable delivery times to minimize tardiness
penalties and delivery costs, when deliveries take place in
batches. We show that the general problem is strongly NP-
hard, but when all orders have the same per-unit due-date-
assignment cost, it is NP-hard only in the ordinary sense. For
the latter case, we present a pseudo-polynomial algorithm,
which is converted into a fully polynomial-time approxima-
tion scheme. If the tardiness penalties are also identical, we
show that the problem can be solved in polynomial time.

Keywords Scheduling · Tardiness · Delivery times ·
Approximation algorithm

1 Introduction

Supply chain management has been one of the most impor-
tant topics in manufacturing research. Most of the supply
chain literature focuses on issues on the strategic level, using
stochastic models. According to the survey paper by Thomas
and Griffin (1996), over 11 % of the U.S. Gross National

S. Dumitrescu
Department of Electrical and Computer Engineering,
McMaster University, Hamilton, ON, Canada
e-mail: sorina@mail.ece.mcmaster.ca

G. Steiner (B) · R. Zhang
Operations Management Area, DeGroote School of Business,
McMaster University, Hamilton, ON, Canada
e-mail: george.steiner4@gmail.com

R. Zhang
e-mail: zhangr6@mcmaster.ca

Product is spent on logistics, and for many products, logis-
tics expenses may exceed 30 % of the cost of goods sold.
This underlines the need for research dealing with schedul-
ing and distribution issues in supply chains. The recently
emerging research area of supply chain scheduling studies
such problems using deterministic models Hall and Potts
(2003), Chen and Vairaktarakis (2005). In these models, a
set of jobs (customer orders) must be processed in a facility,
usually represented by a single “machine,” and then delivered
to the customer without any delay. The problem is to find an
optimal schedule of production and distribution with a com-
posite objective that measures the customer service level and
the total distribution cost. Customer service level usually is
expressed as a function of the times when the orders are deliv-
ered. The distribution costs depend on the configuration of
the delivery system used. A classification and overview of
these models are in Chen (2010).

One set of these models measures the customer ser-
vice component of the schedule cost by considering how
closely the schedule follows the contracted delivery dates
(due dates). Customers often demand that suppliers meet con-
tracted delivery dates or face large penalties. For example,
Slotnick and Sobel (2005) cite contracts from the aerospace
industry, which may impose tardiness penalties of millions
of dollars on subcontractors for aircraft components. In order
to avoid tardiness penalties, including the possibility of los-
ing customers, companies are under increasing pressure to
quote attainable delivery dates for customer orders. Nat-
urally, longer due dates are easier to meet, but promising
delivery dates too far into the future may not be acceptable
to the customer, who may even be lured away by a competitor
offering shorter delivery times. In such situations, a company
may be forced to offer price discounts in order to retain the
business. At the same time, shorter due dates increase the
probability that the order will be delivered late. Thus there

123

4 J Sched (2015) 18:3–13

is an important trade-off between assigning relatively short
due dates to customer orders and avoiding tardiness penalties,
which creates the need for methodology that allows firms to
quote attainable delivery dates and obtain efficient schedules
at the same time.

In traditional scheduling models, due dates are considered
as given by decisions exogenous to scheduling. Because of
the strong pressure on managers of manufacturing or service
organizations to quote attainable delivery dates to clients, a
large number of recent scheduling studies include due-date
assignment, i.e., treat the due dates as variables with a certain
cost. Many of these due-date assignment models are classi-
fied in Gordon et al. (2002a, b). More recent surveys can be
found in Kaminsky and Hochbaum (2004) and Gordon et al.
(2004). All these models assign a certain cost to the assigned
due dates. Typically, the longer is the due date, the higher is
its assignment cost to reflect the trade-off discussed above.

The ability to integrate due-date assignment and schedul-
ing can be an important factor in improving performance
in supply chains. Among the earlier papers relevant to our
current model, Shabtay and Steiner (2006) study a single-
machine scheduling problem, in which each job has a pre-
viously contracted due date that can be changed to a new
assigned due date at a certain cost. Their goal is to find a
schedule which minimizes the sum of due-date-assignment
costs and the tardy-job penalties with respect to the assigned
due dates, but their model does not include distribution
(batching or delivery) costs. Hall and Potts (2003) con-
sider delivery costs together with the scheduling objective
of minimizing the weighted number of tardy jobs (with fixed
due dates) and assume that deliveries occur in batches and
without any further delay. This problem has strong con-
nections to the classical scheduling problem of minimiz-
ing the weighted number of tardy jobs on a single machine,
which has been studied with varying assumptions since the
1960s. For details, we refer to the papers: Moore (1968),
Karp (1972), Gens and Levner (1981), Hochbaum and Landy
(1994), and Brucker and Kovalyov (1996). Hall and Potts
(2003) show that their problem with batch deliveries is ordi-
nary NP-hard by presenting a pseudo-polynomial algorithm
for it, but they make the simplifying assumption that the
tardy jobs do not need to be delivered. Steiner and Zhang
(2007) include batch-setup time and tardy deliveries in the
model and present a pseudo-polynomial algorithm and a fully
polynomial-time approximation scheme (FPTAS).

Our problem is essentially the combination of the above
two problems studied by Steiner and Zhang (2007) and Shab-
tay and Steiner (2006). The former paper did not consider
assignable due dates. The latter paper considered due date
assignments but did not consider distribution costs and pro-
vided algorithms for two special cases only. Our current
model allows arbitrary assigned due dates, and the objec-
tive is to minimize the sum of the weighted number of tardy

jobs, the due-date-assignment costs, and the batch-delivery
costs in a supply chain.

The paper is organized as follows. Section 2 contains pre-
liminaries: a formal problem definition, important proposi-
tions, and a strong NP-hardness proof. In Section 3, a special
case with equal per-unit due-date-assignment costs is studied.
It is proven to be NP-hard, and a pseudo-polynomial algo-
rithm and a multi-stage FPTAS are proposed. In Section 4, the
special case with equal per-unit due-date-assignment costs
and equal tardiness penalties is shown to be polynomially
solvable. Section 5 includes our conclusions and a brief dis-
cussion of future research.

2 Problem definition, due-date assignments,
and computational complexity

Given a job set J = {1, . . . , n}, all the jobs have to be sched-
uled on a single machine and delivered to the customer in
batches. For each job j ∈ J , processing time and tardiness
penalty (weight) are denoted by p j and w j , respectively. Let
s be the batch-setup time before processing the first job in
each batch and q be the batch-delivery cost for each batch. In
contrast with classical machine scheduling, delivering jobs
in batches saves costs. However, an early finished job has to
wait for delivery until the completion of the last job in the
same batch. This time is called the batch-completion time,
denoted by C j for j ∈ J. This completion time is shared by
all the jobs in the same batch. Our model analyzes the trade-
offs between the savings in batch-delivery costs and the effect
of the longer batch-completion times on the schedule quality.

Let A denote the common lead time normally used for
all the jobs. Let D j denote the assigned due date of job j ,
which is a decision made or negotiated by the supplier. Let
R j = max{D j−A, 0} represent the extended time units from
A to D j and α j R j be the corresponding due-date-assignment
cost, where α j is the due-date-assignment cost per extended
time unit. Since D j becomes the effective due date of job j,
it is used to determine the tardiness indicator U j such that
if C j > D j , U j = 1; otherwise, U j = 0. The goal is to
find a schedule which minimizes the sum of the weighted
number of tardy jobs, the due-date-assignment costs, and
the batch-delivery costs, denoted by 1|s, A,DIF|∑ α j R j +∑

w jU j + bq, where DIF means that a different due date
can be assigned to each job (Gordon et al. 2002b), and b
is the number of batches. In addition to the non-preemption
assumption, all jobs are available for processing at time zero,
and we assume w.l.o.g. that all data are non-negative integers.

There are three decisions to be made in the 1|s, A,DIF
|∑α j R j + ∑

w jU j + bq problem: determining a job
sequence; grouping the sequence into batches; and assign-
ing the due dates. Let σ be a given schedule, where the first
two decisions have been made, but no due date has been

123

J Sched (2015) 18:3–13 5

assigned to any job yet. Let b(σ) be the number of batches in
σ and D j (σ) the due date to be assigned to each job j ∈ J
in σ . Thus, the batch-delivery cost of σ is b(σ)q. In order
to minimize the total cost of σ , D j (σ) needs to be deter-
mined for each job such that

∑
α j R j (σ) +∑

w jU j (σ) is
minimized, where α j R j (σ) = α j max{D j (σ)− A, 0} is the
due-date-assignment cost of D j (σ), and w jU j (σ) is the tar-
diness penalty if job j is tardy with respect to D j (σ). The
following important proposition is proved by Shabtay and
Steiner (2006).

Proposition 2.1 For any given schedule σ , the optimal due-
date assignment is

D j (σ) =
{

A, if C j (σ) ≤ A or C j (σ) > A + w j
α j

C j (σ), if A < C j (σ) ≤ A + w j
α j

.

(1)

This proposition further implies the following.

Proposition 2.2 For the 1|s, A,DIF|∑ α j R j +∑
w jU j +

bq problem, there is an optimal solution in which A + w j
α j

is an upper bound for the assigned due date of each job
j ∈ J . Furthermore, job j is tardy, with an assigned due
date D j (σ) = A, in an optimal schedule σ if and only if
C j (σ) > A + w j

α j
.

The above propositions analyze the trade-off between due-
date extension and tardiness costs. Regarding the computa-
tional complexity, we show that even a simplified special case
of the problem is strongly NP-hard: Consider an instance
of the 1|s, A,DIF|∑ α j R j +∑

w jU j +bq problem, where
s = 0, A = 0 and w j >> α j

∑n
k=1 pk , ∀ j ∈ J . By Eq.

(1), D j (σ) = C j (σ) and U j (σ) = 0, for any σ and ∀ j ∈ J .
Then, the objective value can be written as
∑

α j R j (σ)+
∑

w jU j (σ)+ bq =
∑

α j C j (σ)+ bq,

and therefore, the above instance is equivalent to the problem
of minimizing the sum of total weighted completion times
and batch-delivery costs, denoted by 1||∑α j C j+bq. Since
this problem is strongly NP-hard (Hall and Potts 2003),
Corollary 2.1 follows directly.

Corollary 2.1 The 1|s, A,DIF|∑ α j R j + ∑
w jU j + bq

problem is strongly NP-hard.

3 The problem with equal per-unit due-date-assignment
costs

The problem with equal per-unit due-date-assignment costs,
i.e., α j = α > 0, ∀ j ∈ J , is denoted by 1|s, A,DIF|∑ α

R j +∑
w jU j + bq. Consider an instance where s = 0,

q = 0 and α >> w j , ∀ j ∈ J . Then it can be easily seen that

this instance is equivalent to the single-machine scheduling
problem of minimizing the weighted number of tardy jobs
with a common due date A, denoted by 1|A|∑w jU j . The
latter problem is equivalent to the knapsack problem, which
is well known to be NP-hard. Thus Corollary 3.1 follows.

Corollary 3.1 The 1|s, A,DIF|∑ αR j + ∑
w jU j + bq

problem is NP-hard.

Since the single-machine scheduling problem of min-
imizing the weighted number of tardy jobs, denoted by
1||∑w jU j , is a classical NP-hard problem, considerable
literature exists on approximation algorithms for it. We men-
tion here the well-known pseudo-polynomial algorithm and
FPTAS of Lawler (1982) and an FPTAS by Brucker and
Kovalyov (1996) for the batching version of the problem with
no delivery costs or due-date assignment. Our problem is a
further generalization, which includes batch-delivery costs
and individual due-date assignment for the jobs. As we will
see later, this makes it much harder to design efficient approx-
imation algorithms for the problem. In the remainder of this
section, a pseudo-polynomial algorithm and an FPTAS are
proposed for this problem.

3.1 Pseudo-polynomial algorithm

Hall and Potts (2003) present a pseudo-polynomial algorithm
for the supply chain scheduling problem 1||∑w jU j + bq
with batch deliveries, but they make the simplifying assump-
tion that the tardy jobs do not need to be delivered. Steiner
and Zhang (2007) include batch-setup time and tardy deliver-
ies in the model and present a pseudo-polynomial algorithm
and an FPTAS. We start with two important observations
for our 1|s, A,DIF|∑ αR j +∑

w jU j +bq problem, which
will be used in developing a dynamic-programming pseudo-
polynomial algorithm, in which only the schedules with the
observed structures will be searched.

Proposition 3.1 There is an optimal schedule for the 1|s, A,

DIF|∑αR j +∑
w jU j +bq problem in which all the tardy

jobs are delivered at the end in a single batch either by them-
selves or together with some early jobs.

Proof Scheduling the tardy jobs at the end in the last batch
always leaves more room to schedule the early jobs better. ��
Proposition 3.2 For the 1|s, A,DIF|∑ αR j +∑

w jU j +
bq problem, there is an optimal schedule σ , in which the
early jobs are processed in the shortest processing time (SPT)
order.

Proof Suppose that two jobs i and k with pi > pk are early
in two consecutive batches in σ with batch-completion times
Ci (σ) < Ck(σ) . By Propositions 2.1 and 2.2, we can assume
that Di (σ) ∈ {A, Ci (σ)} and Ci (σ) ≤ wi

α
+ A, and Dk(σ) ∈

123

6 J Sched (2015) 18:3–13

Fig. 1 Scheduling alternatives
for adding j to the partial
schedule (j − 1, l, k, t, x)

{A, Ck(σ)} and Ck(σ) ≤ wk
α
+ A. Let σ ′ be the schedule in

which jobs i and k exchange their positions. Then Ci (σ
′) =

Ck(σ) and Ck(σ
′) = Ci (σ)− pi + pk < Ci (σ).

It is clear that all the early jobs (excluding job i) will stay
early after the exchange, and the number of jobs in each batch
would stay the same after the exchange. If Ci (σ

′) ≤ wi
α
+ A,

then job i could be scheduled early. In this situation, the total
due-date-assignment cost will not increase because job i and
job k have the same α. If Ci (σ

′) >
wi
α
+ A , then it is best

to set Di (σ
′) = A and let job i be tardy. In this situation, the

cost will be reduced by at least

α[Di (σ)+ Dk(σ)] − α[Di (σ
′)+ Dk(σ

′)] − wi

= α[max{A, Ci (σ)} −max{A, Ck(σ
′)}]

+ [α max{A, Ck(σ)} − αA − wi]
≥ α[max{A, Ci (σ)} −max{A, Ck(σ

′)}]
+ [α max{A, Ck(σ)} − αCi (σ

′)]
≥ 0.

After performing the exchange for all such pairs in con-
secutive batches, a desired SPT sequence will be obtained
for all the early jobs. ��

For the rest of this subsection, let all jobs be indexed so
that p1 ≤ p2 ≤ · · · ≤ pn . A batch is called delivered (or
finalized) if due dates have been assigned to the jobs in the
batch. On the other hand, a batch is called pending, if no due
date has been assigned yet to any job in the batch (since we
do not know the batch-completion time before finalizing).

We present our DP algorithm (A1) using state-space gen-
eration: Let (j−1, l, k, t, x) be the state for a partial schedule
on job set {1, 2, . . . , j − 1}, where

• l is the number of delivered batches, which are denoted
by B1, B2, . . . , Bl ;

• k is the number of jobs in the pending batch, denoted by
Bl+1;
• t is the total processing time of the early jobs in
{B1, B2, . . . , Bl+1};
• x is the objective value for the jobs in the delivered

batches plus the tardiness penalties for jobs scheduled
tardy in the partial schedule. (Note that x does not include
the delivery cost of Bl+1 or the due-date-assignment costs
of the jobs in Bl+1.)

We explain the salient features of our approach here and
refer the reader to Algorithm A1 for their implementation:
Consider the state (j − 1, l, k, t, x), for j ≤ n. Then the
next unscheduled job j can be scheduled using one of the
following three alternatives as shown in Fig. 1:

(1) Add job j to the pending batch Bl+1 and keep it pend-
ing; (2) Close and deliver Bl+1 and open a new pending batch
(Bl+2) starting with job j in it; (3) Schedule job j in the last
batch as a tardy job, denoted by the rectangle at the end. It
is important to note that Alternative (2) can only be applied
to a partial schedule with a non-empty pending batch, i.e.,
when k > 0. Thus, only a non-empty pending batch can be
delivered. Additionally, notice that the pending batch can be
empty only before scheduling the first early job. Finally, we
make the observation that Alternative (1) is the only opera-
tion which can be used to schedule the first early job.

In Alternative (1), x stays the same, since no delivery or
tardiness cost occurs. In Alternative (2), closing Bl+1 results
in batch-completion time (makespan) t + (l + 1)s for the
batch. Therefore, a common due date max{A, t + (l + 1)s}
is assigned to the jobs in Bl+1, which makes the jobs early.
The due-date-assignment cost αk max{t + (l + 1)s − A, 0}
and delivery cost q are added to x . In Alternative (3), the
tardiness penalty w j is added to x . The delivery cost for the

123

J Sched (2015) 18:3–13 7

tardy jobs will be added only at the end when their batch is
finalized.

Now let us consider how to finish computing the cost of
a state (n, l, k, t, x) representing a “partial” schedule with n
scheduled jobs. There are three cases: (1) there are no early
jobs, i.e., t = 0; (2) there are no tardy jobs, i.e., t = P;
and (3) the schedule with 0 < t < P has a non-empty
pending batch and at least one tardy job (since t < P). In
the following algorithm A1, procedure [FinalCompletion]
computes the costs for these cases. In case (1), the delivery
cost q of the tardy jobs is added to x . (Note that this case is
identical to our initial base case defined below and thus it is
not necessary to compute it in [FinalCompletion].) For case
(2), a common due date max{A, t + (l + 1)s} is assigned to
the jobs in the pending batch, which makes the jobs early.
The due-date-assignment cost αk max{t + (l + 1)s − A, 0}
and the delivery cost q are added to x . For case (3) there
are two options: (a) deliver separately the pending batch and
the batch with the tardy jobs; (b) deliver the jobs from the
pending batch together with the tardy jobs in a single batch.
The option yielding the lower cost is selected. Note that for
option (a) a common due date max{A, t+(l+1)s} is assigned
to the jobs in the pending batch, which makes them early. The
due-date-assignment cost αk max{t + (l + 1)s − A, 0} and
delivery cost 2q are added to x , where the second delivery
cost q is for delivering the tardy jobs in a separate batch. In
option (b) the jobs from the pending batch are made early
by assigning them the due date max{A, P + (l + 1)s}. The
due-date-assignment cost αk max{P + (l + 1)s − A, 0} and
the delivery cost q are added to x .

In order to reduce the state space, for any two states
(j, l, k, t, x1) and (j, l, k, t, x2) with x1 < x2, we can elim-
inate the second one, since any later states generated from
it cannot lead to a smaller x value than the value of similar
states generated from the first one.

Remark 3.1 For all states with the same entries: (j, l, k, t, ·),
we only need to keep the one with the smallest x value.

To initialize, we also consider the base case when all jobs
are scheduled as tardy jobs and delivered in a single batch:

x̄ =
n∑

j=1

w j + q. (2)

Clearly, the cost of the optimal schedule cannot be larger
than x̄ . (Note that by initializing x to x̄ it is no longer
needed to consider case (1) in [FinalCompletion] for any
state (n, l, k, t = 0, x) and thus this calculation is omitted.)

Let v∗ be the cost of the optimal schedule with initial
value x̄ , computed in Eq. (2), which represents the cost
of scheduling all the jobs in a single tardy batch. Algo-
rithm A1 starts from an empty schedule, (0, 0, 0, 0, 0). Then
v∗ will be repeatedly updated whenever a smaller value x

is obtained when completing a partial schedule into a full
schedule. States for partial schedules for the first j jobs
{1, 2, · · · , j}, j = 1, 2, . . . , n, are included in set S(j). Ini-
tially, S(0) = {(0, 0, 0, 0, 0)}.

Algorithm A1

[Initialization] Set v∗ = x̄ , S(0) = {(0, 0, 0, 0, 0)} and
S(j) = ∅, for j = 1, · · · , n.
[Generation] Generate set S(j) from S(j−1).
For j = 1 to n + 1

[Setup] Set T = ∅.
For each state (j − 1, l, k, t, x) in S(j−1)

Alternative (1): If j ≤ n, then setT ← T ∪(j, l, k+
1, t + p j , x). /*Schedule job j in the current
pending batch or schedule job j as the first early
job.

Alternative (2): If j ≤ n and k > 0, then set T ←
T ∪ (j, l + 1, 1, t + p j , x + αk max{t + (l +
1)s − A, 0} + q). /*Deliver the current pending
batch and start a new pending batch with job j
in it.

Alternative (3): If j ≤ n, then set T ← T ∪
(j, l, k, t, x + w j). /*Schedule job j tardy in
the last batch and charge its penalty.

[FinalCompletion]Do the following only when j =
n + 1:

1. If t = P and v∗ > x + x ′, where x ′ =
αk max{t + (l + 1)s − A, 0} + q, then set
v∗ = x + x ′. /*Delivering the current pend-
ing batch (case (2)).

2. If 0 < t < P and v∗ > x + x ′, where
x ′ = min{αk max{t + (l + 1)s − A, 0} +
2q, αk max{P + (l + 1)s − A, 0} + q} then
set v∗ = x + x ′. /*Delivering the current
pending batch and tardy jobs in two separate
batches or together in a single batch if the
latter yields a lower cost (case (3)).

Endfor
[Elimination] If j ≤ n, then for any two states

(j, l, k, t, x) and (j, l, k, t, x ′) with x < x ′, elimi-
nate from T the one with x ′ and set S(j) = T . /*by
Remark 3.1.

Endfor
[Optimization] Trace back v∗ to obtain an optimal schedule

and the corresponding assigned due dates.

Theorem 3.1 For the 1|s, A,DIF|∑ αR j +∑
w jU j + bq

problem, Algorithm A1 finds an optimal schedule in O(n3 P)

time and space. Thus the problem is NP-hard only in the
ordinary sense.

123

8 J Sched (2015) 18:3–13

Proof The correctness follows directly from the above
discussion. Regarding the complexity, each state (j −
1, l, k, t, x) in S(j−1) gives rise to at most three states con-
taining j and one calculation for updating v∗. The upper
bound for the number of triplets { j, l, k} is n3. For each
{ j, l, k}, there are at most P + 1 pairs {t, x}, because of
[Elimination]. Therefore, the overall complexity is O(n3 P).

��
Corollary 3.2 For the 1|s, A,DIF|∑ αR j +∑

w jU j +bq
problem, if all processing times are equal, i.e., p j = p > 0,
∀ j ∈ J , Algorithm A1 finds an optimal schedule in O(n4)

time and space.

Proof Since p j = p, for each { j, l, k}, there are at most n
possible values for t and therefore there are at most n pairs,
{t, x}. By the proof of Theorem 3.1, the run time is O(n4). ��

3.2 Fully polynomial-time approximation scheme

As a classical topic in scheduling, converting a dynamic-
programming algorithm into an FPTAS has a long history.
Our FPTAS is based on the technique of trimming the exe-
cution of the pseudo-polynomial algorithms by partitioning
the range of potential solution values into equal-size sub-
intervals and keeping only one solution value and sched-
ule for each sub-interval. This technique was introduced by
Ibarra and Kim (1975) and was applied to some schedul-
ing problems by Sahni (1976). The application of this tech-
nique requires computing a lower and an upper bound for
the optimal solution value that are related by a preferably
small polynomial factor. For the majority of applications
these related bounds are easily obtainable. Gens and Lev-
ner (1981), Hochbaum and Landy (1994), and Brucker and
Kovalyov (1996) presented FPTAS-s for various versions of
scheduling to minimize the weighted number of tardy jobs on
a single machine. Our 1|s, A, DIF|∑αR j +∑

w jU j + bq
problem substantially extends these models by including
due-date assignment, batch-setup times, and batch deliver-
ies (including the delivery of tardy jobs.) The three different
components of the schedule cost are only loosely related, but
the schedule structure introduces complex trade-off relation-
ships between them. This makes the development of good
related bounds for the overall objective very difficult. In fact,
the development of such related bounds for the unknown
optimum in polynomial time is the most challenging and
innovative part of the paper. We also mention that an FPTAS
with much higher complexity was presented by Steiner and
Zhang (2011) for a somewhat related problem with individ-
ual leadtimes but without batch deliveries.

In order to obtain the related bounds, we break down the
original problem into O(n) restricted problems, which will
yield bounds for the

∑
w jU j component of the objective.

To bound the
∑

αR j component, we introduce an auxiliary

problem for each restricted problem. The auxiliary problems
are solved by a dynamic-programming algorithm in poly-
nomial time. We are able to prove the somewhat surprising
fact that these separately obtained bounds for the different
objective components can be combined into a pair of related
bounds. Discretizing the interval defined by these bounds
produces a polynomial number of sub-intervals. Since the
overall efficiency of the resulting FPTAS depends on how
close the related bounds are to each other, we also employ a
bound tightening procedure. The objective value of every par-
tial feasible schedule, computed by the pseudo-polynomial
algorithms, falls into one of the sub-intervals. Then, the exe-
cution of the algorithms is accelerated to become polynomial
by trimming the partial schedules that are produced (when an
unscheduled job is considered) keeping only one schedule for
each sub-interval. Naturally, eliminating all but one sched-
ule from each sub-interval introduces some errors, but the
overall cumulative error does not exceed ε times the optimal
solution value, where ε > 0 is an arbitrary error bound.

3.2.1 Bounds analysis

We start by defining a hierarchy of restricted and auxil-
iary problems, whose solutions will be used in determin-
ing the initial related bounds for our 1|s, A,DIF|∑ αR j +∑

w jU j + bq problem.

• The restricted problems: The i th restricted problem
is denoted by 1|s, A, i,DIF|∑ αR j + ∑

w jU j + bq,
i = 0, 1, · · · , n,, and it is designed in such a way that any
feasible schedule for it is also a feasible schedule for the
original 1|s, A,DIF|∑ αR j +∑

w jU j + bq problem.
Among all the optimal solution values of the restricted
problems, the smallest one is the optimal solution value
of the 1|s, A,DIF|∑ αR j+∑

w jU j+bq problem. The
restricted problems have to satisfy two feasibility condi-
tions listed below.

Condition 3.1 In any feasible schedule for the 1|s, A, i,
DIF|∑αR j +∑

w jU j + bq problem, job i is a tardy job
and has the largest tardiness penalty among the tardy jobs.
(In particular, if i = 0, then no job is tardy in any feasible
schedule.)

Condition 3.2 In any feasible schedule for the 1|s, A, i,
DIF|∑αR j +∑

w jU j + bq problem, all the early jobs
are in SPT order in order to satisfy Proposition 3.2.

Condition 3.1 allows us to have the non-zero lower bound
wi for the

∑
w jU j component of the optimal solution value

of 1|s, A, i,DIF|∑ αR j +∑
w jU j + bq for any i > 0. It

also forces every job in J (i) = { j |w j > wi , j ∈ J\{i}} to be
early. To account for this restriction in the

∑
αR j component

123

J Sched (2015) 18:3–13 9

of the cost, we define an auxiliary problem for each restricted
problem.

• The auxiliary problems: The i th auxiliary problem is
denoted by 1|s, A, J (i),DIF|∑ αR j , i = 0, 1, · · · , n,
and it is defined on job set J (i) = { j |w j > wi , j ∈
J\{i}}. Additionally, a feasible schedule of the auxiliary
problem has to satisfy Condition 3.2.

We will present polynomial-time solutions for the auxil-
iary problems. Furthermore, somewhat surprisingly, the solu-
tions for the auxiliary problems and the bounds for

∑
w jU j

can be combined to develop related bounds for the optimal
solution values of the corresponding restricted problems.

Let σi and v∗i be the optimal schedule and the correspond-
ing objective value, respectively, for the i th restricted prob-
lem 1|s, A, i,DIF|∑ αR j +∑

w jU j + bq. Then, by defin-
ition

v∗i =
n∑

j=1

αR j (σi)+
n∑

j=1

w jU j (σi)+ b(σi)q, (3)

where 1 ≤ b(σi) ≤ n yields the following bounds for the
third term

q ≤ b(σi)q ≤ nq. (4)

Next, consider bounding the first two terms in Eq. (3). Let
JE (σi) and JT (σi) be the set of early and tardy jobs in σi ,
respectively. By Condition 3.1 job i is tardy in σi , and any
tardy job j has w j ≤ wi and J (i) ⊆ JE (σi). Thus the second
component can be bounded by

wi ≤
n∑

j=1

w jU j (σi) ≤ |JT (σi)|wi , (5)

where |JT (σi)| denotes the number of jobs in JT (σi). Let
π∗i be the optimal solution value for problem 1|s, A, J (i),
DIF|∑ αR j . Since J (i) ⊆ JE (σi) and σi schedules the jobs
in JE (σi) early, even though it would be feasible to schedule
the jobs in JE (σi)\J (i) tardy,

π∗i ≤
n∑

j=1

αR j (σi) ≤ π∗i +
∑

j∈JE (σi)\J (i)

w j

≤ π∗i + |JE (σi)\J (i)|wi , (6)

where |JE (σi)\J (i)| is the number of jobs in JE (σi)\J (i).
(The right-hand side in the preceding bounds is the cost of
a schedule that starts with the schedule corresponding to
π∗i and schedules all the remaining jobs tardy.) Combining
Eqs. (4), (5) and (6) and using the fact that |JE (σi)\J (i)| +
|JT (σi)| ≤ n gives a pair of bounds for v∗i
π∗i + wi + q ≤ v∗i ≤ π∗i + |JE (σi)\J (i)|wi

+ |JT (σi)|wi + nq ≤ π∗i + nwi + nq. (7)

Note that if J (i) = ∅, then π∗i = 0 on this empty set. If
J (i) = J , which occurs when i = 0, then all of the jobs
must be early and w0 = 0. We proved the following.

Lemma 3.1 Let v∗i be the optimal solution value for the i th
restricted problem 1|s, A, i,DIF|∑ αR j +∑

w jU j + bq
and let π∗i be the optimal solution value for the i th aux-
iliary problem 1|s, A, J (i),DIF|∑αR j . A pair of related
bounds for the optimal solution value v∗i of the i th restricted
problem can be determined by L ′i ≤ v∗i ≤ nL ′i , where L ′i =
π∗i
n + wi + q, i = 0, 1, . . . , n.

3.2.2 Initial bounds determination

To apply the related bounds of Lemma 3.1, we need a solu-
tion algorithm for the auxiliary problems. In order to obtain
π∗i for the i th auxiliary problem, a dynamic- programming
algorithm (Algorithm A2(i)) is developed.

Assume w.l.o.g. that the jobs in J (i) are re-indexed so
that p1 ≤ · · · ≤ pr , where r = |J (i)|. Let (j − 1, l, k, y)

represent a partial schedule on job set {1, 2, . . . , j − 1} ⊆
J (i), where

• y is the due-date-assignment cost for the delivered
batches so far;
• l is the number of delivered batches, which are denoted

by B1, B2, . . . , Bl ;
• k is the number of jobs in the current batch, Bl+1, which

is undelivered/pending (Bl+1 always consists of the last
k jobs in the sequence (1, 2, ..., j − 1));

There are two ways to add job j to (j − 1, l, k, y): (W1)
schedule job j into Bl+1 and (W2) deliver Bl+1 and start a
new pending batch, Bl+2, with job j as the first scheduled
job in it. Let

t (j̄, l̄) =
j̄∑

h=1

ph + l̄s (8)

denote the makespan of a partial schedule on {1, 2, · · · , j̄}
with l̄ batches. For case (W1) the generated partial schedule
is represented by the state (j, l, k + 1, y), where Bl+1 is
pending. In case (W2), Bl+1 is delivered at t (j − 1, l + 1),
and the generated partial schedule with a delivered Bl+1 and
a pending Bl+2 is represented by (j, l+1, 1, y+ y(j−1, l+
1, k)), where y(j − 1, l + 1, k) is the sum of the due-date-
assignment costs of the jobs in Bl+1. Since Bl+1 includes k
jobs and is delivered at t (j − 1, l + 1), we can compute

y(j−1, l+1, k) = αk max{t (j − 1, l + 1)− A, 0}

= αk max

⎧
⎨

⎩

j−1∑

h=1

ph+(l+1)s−A, 0

⎫
⎬

⎭
. (9)

123

10 J Sched (2015) 18:3–13

Consider (r, l, k, y), where all the r jobs have been sched-
uled, and the current batch Bl+1 has not been delivered yet.
Simply delivering Bl+1 at t (r, l + 1) gives a full schedule
(r, l + 1, y+ y(r, l + 1, k)), where the value of y(r, l + 1, k)

can be obtained by replacing j − 1 with r in Eq. (9). This
case is denoted by (W3) in Algorithm A2(i). The algorithm
starts from an empty schedule (0, 0, 0, 0). Partial schedules
for the first j − 1 jobs {1, 2, . . . , j − 1} are included in set
S(j−1), j = 1, . . . , r . In particular, S(0) = {(0, 0, 0, 0)}. The
following state-reduction remark will also be used.

Remark 3.2 For any two states (j, l, k, y1) and (j, l, k, y2)

with y1 < y2, we can eliminate the second one, because any
later states generated from it cannot lead to a smaller y value
than the value of similar states generated from the first one.

Algorithm A2(i)

[Initialization] Determine J (i) = { j |w j > wi , j ∈ J\{i}}
and r = |J (i)|, renumber the jobs in J (i) so that
p1 ≤ · · · ≤ pr , set S(0) = {(0, 0, 0, 0)} and S(j) = ∅,
j = 1, . . . , r .
Compute and store the values

∑ j
h=1 ph , for all j =

1, . . . , r . /* These values are needed in order to compute
each t (j, l+ 1) using Eq. (8) and each y(j − 1, l+ 1, k)

by Eq. (9) in constant time.
[Generation] Generate set S(j) from S(j−1).
For j = 1 to r + 1

[Setup] Set T = ∅.
For each (j − 1, l, k, y) ∈ S(j−1)

(W1): If j ≤ r , then set T = T ∪ (j, l, k + 1, y).
/*Schedule job j in the current batch, Bl+1.

(W2): If j ≤ r , then set T = T ∪ (j, l + 1, 1, y +
y(j − 1, l + 1, k)). /*Deliver the jobs in Bl+1

and schedule job j as the first scheduled job in
Bl+2.

(W3): If j = r + 1, then set T = T ∪ (r, l +
1, y + y(r, l + 1, k)). /*Delivering the jobs in
Bl+1 completes the partial schedule into a full
schedule.

Endfor
[Elimination] If j < r , then for any two states

(j, l, k, y) and (j, l, k, y′) with y < y′, eliminate
from T the one with y′. Set S(j) = T . /* By Remark
3.2.

Endfor
[Result]Set the optimal solution valueπ∗i equal to the small-

est y among all states in T . /* Note that now T contains
the final schedules.

Theorem 3.2 For the 1|s, A, J (i),DIF|∑ αR j auxiliary
problem, Algorithm A2(i) finds an optimal solution in O(n3)

time and space.

Proof The correctness of the algorithm follows from the dis-
cussion preceding it. Regarding the complexity, for each
(j − 1, l, k, y), there are at most two operations. Since
(j, l, k, ·) always holds the smallest possible y value, there
are at most O(n2) states in each S(j) (k is a work variable
recording the number of jobs in the current pending batch).
Since there are at most n + 1 iterations, the complexity is
O(n3). ��
Corollary 3.3 Let v∗i be the optimal solution value for the
i-th restricted problem. In O(n3) time and space, Algorithm
A2(i) finds a pair of related bounds such that L ′i ≤ v∗i ≤ nL ′i ,
where L ′i = π∗i

n + wi + q.

Proof The corollary directly follows from Lemma 3.1 and
Theorem 3.2. ��

Let v∗ be the optimal solution value for the original 1|s, A,

DIF|∑αR j +∑
w jU j + bq problem. Since the feasible

schedules for all the restricted problems cover all the feasible
schedules for the original problem, we know that v∗must fall
into one of the non-empty intervals: [L ′i , nL ′i], i = 0, . . . , n.
Let L ′ = min

i=0,...,n
{L ′i }. Then this implies v∗ ≥ min

i=0,...,n
{L ′i } =

L ′. Since the optimal solutionv∗i for the i th restricted problem
represents a schedule that is also feasible for the original
problem, we have v∗ ≤ min

i=0,...,n
{v∗i } by the optimality of v∗.

Thus using Corollary 3.3, we also have v∗ ≤ min
i=0,...,n

{nL ′i } =
nL ′. Thus we proved our crucial result for obtaining initial
related bounds for our original problem.

Corollary 3.4 In O(n4) time, we can determine a pair of
initial related bounds for optimal solution value v∗ of our
original problem such that v∗ ∈ [L ′, nL ′], where L ′ =

min
i=0,...,n

{L ′i }.

3.2.3 Tight bounds determination

The bounds obtained in the previous section are related by
a factor of n. This would allow a polynomial size interval
partitioning procedure. This size and the time complexity of
the resulting FPTAS, however, depend on how close these
bounds are to each other. The tighter are the bounds, the
better is the complexity. In this section, we introduce a range
approximation algorithm (Algorithm A3 (u, ε)), which will
be called a number of times by a search algorithm (Algorithm
A4). This will yield tighter bounds which are related by a
small constant factor and thus allow a faster implementation
of our FPTAS.

Algorithm A3(u, ε) is a modified, approximation version
of Algorithm A1. Instead of finding the optimal solution
value (v∗), given a target value u > 0 for the unknown v∗
and an arbitrary small ε > 0, Algorithm A3(u, ε) reports

123

J Sched (2015) 18:3–13 11

either that v∗ > (1 − ε)u or v∗ ≤ u. Algorithm A3(u, ε)
applies to the objective the interval partitioning technique. It
uses the same state representation (j, l, k, t, x) as Algorithm
A1 described there. Initially v = ∞ and v is used to keep the
objective value of the best full schedule found. The following
easy-to-prove remark is similar to Remark 3.1.

Remark 3.3 For all states with the same entries: (j, l, k,

. . . , x), we only need to keep the one which has the smallest
t value.

Algorithm A3(u, ε)

[Initialization] Set v = x̄ = ∑n
j=1 w j + q, S(0) =

{(0, 0, 0, 0, 0)} and S(j) = ∅, j = 1, . . . , n.
[Partitioning] Partition the interval [0, u] into �n/ε� equal

sub-intervals of size εu/n, with the last one possibly
smaller.
[Generation] Generate set S(j) from S(j−1).
For j = 1 to n + 1

[Setup] Set T = ∅.
For each state (j − 1, l, k, t, x) in S(j−1)

Do the same state generation steps as in Algorithm
A1 but use v, the best value obtained so far,
instead of the optimal v∗ everywhere. /In order
to save space, we do not repeat the Generation
procedure here.

Endfor
[Elimination] If j ≤ n, do the following:

1. If x > u, then eliminate from T any newly gen-
erated state (j, l, k, t, x).

2. For any two states (j, l, k, t, x) and (j, l, k, t ′, x)

with t ≤ t ′, eliminate the one with t ′ from set T .
/*by Remark 3.3.

3. For states (j, l, k, t, x) with values x falling into
the same sub-interval, keep only the one with
the smallest t value for each sub-interval. /*This
guarantees that the x value of the representative
state kept for the sub-interval can be larger than
the x value of any discarded state by at most
εu/n.

4. Set S(j) = T .

Endfor
[Report] If v > u, then report v∗ > (1 − ε)u; otherwise,

report v∗ ≤ u.

Theorem 3.3 In O(n4/ε) time, Algorithm A3(u, ε) either
establishes that v∗ > (1− ε) u or demonstrates that v∗ ≤ u
(by finding a solution with x ≤ u), where v∗ is the optimal
solution value for the 1|s, A,DIF|∑ αR j +∑

w jU j + bq
problem.

Proof The correctness of the state generations follows from
the same arguments as in the case of Algorithm A1. If v < u,
then v∗ < u because v∗ ≤ v. Let us consider now the case
v > u. Since the algorithm can generate at least one full
schedule where all jobs are tardy, we have v < ∞. Since
v represents the best full schedule found, and the total error
introduced is at most εu (in one iteration it is at most εu/n),
v > u implies that any feasible full schedule that could have
been generated from a state discarded in Step 3 would have
an objective value greater than u − εu = (1 − ε)u. Thus
v∗ > (1− ε)u in this case indeed.

Because of [Partitioning] and [Elimination], for each
triplet { j, l, k}, there are at most O(�n/ε�) pairs {t, x}. By
the proof of Theorem 3.1, the running time is then O(n4/ε).

��

In order to tighten the previously obtained related bounds
[L ′, nL ′], we apply the “Bound Improvement Procedure”
introduced by Chubanov et al. (2006): Algorithm A4 repeat-
edly calls Algorithm A3(u, 1/3) (with ε = 1/3) in a binary
search on the exponential form n = 2logn .

Algorithm A4

1. Set L = 2�log n�L ′/3, l1 = 0 and l2 = �log n�.
2. Set k = �(l1 + l2)/2�, u = 2k−1L ′.
3. Run Algorithm A3(u, 1/3) for the 1|s, A,DIF|∑ αR j +∑

w jU j + bq problem:

(a) If Algorithm A3(u, 1/3) reports v∗ > (1 − ε)u =
2u/3, and if l2 = k, then stop; otherwise set l1 = k
and go to step 2. /*l1 gets updated only in this step.

(b) If Algorithm A3(u, 1/3) reports a solution with value
v ≤ u, and if l2 = k, then set L = u/3 and stop;
otherwise set l2 = k, L = u/3 and go to step 2. /*l2
gets updated only in this step.

Theorem 3.4 Algorithm A4 determines L in O(n4 log log n)

time, which yields the tight bounds L ≤ v∗ ≤ 3L, where v∗
is the optimal solution value for the 1|s, A,DIF|∑ αR j +∑

w jU j + bq problem.

Proof We refer the reader for the proof of correctness to the
Appendix in the paper by Chubanov et al. (2006). ��

3.2.4 Approximation

The FPTAS for the 1|s, A,DIF|∑ αR j + ∑
w jU j + bq

problem can be obtained by combining the algorithms intro-
duced above: For any given ε > 0, using the bounds
L ≤ v∗ ≤ 3L obtained by Algorithm A4, we run a slightly
modified version of Algorithm A3(u, ε), called Algorithm

123

12 J Sched (2015) 18:3–13

A5, where u = (1 + ε/3)3L . The only difference is that
in the [Partitioning] step [0, u] = [0, (1 + ε/3)3L] is parti-
tioned into n �3/ε + 1� intervals of size at most εL/n, so that
the cumulative error over n iterations will be no more than
εL . (In order to save space, we do not repeat the algorithm
here.) Since we know that the problem has an optimal solu-
tion value v∗ ≤ 3L , Algorithm A5 cannot return the answer
v∗ > u = (1 + ε/3)3L . Thus, it returns a solution v such
that v ≤ 3L+ εL = u. Furthermore, whichever sub-interval
of [L , 3L] the optimal v∗ falls into, the algorithm will gener-
ate an approximate solution v with an error at most εL , i.e.,
v ≤ v∗ + εL ≤ (1+ ε)v∗.

Corollary 3.5 For any given ε > 0, Algorithm A5 finds a
(1 + ε)-approximate solution for the 1|s, A,DIF|∑ αR j +∑

w jU j + bq problem in O(n4/ε) time.

Finally, we summarize the whole FPTAS in Algorithm A6,
which calls the previously defined algorithms as components:

Algorithm A6

[
InitialBoundsPreparation

]
: For i = 0 to n

1. If i = 0, i.e., J (i) = J , then run Algorithm A2(i)
for the 1|s, A, J (i),DIF|∑ αR j problem and if the
answer is π∗i <∞, then obtain initial bounds: L ′i ≤
v∗i ≤ nL ′i , where L ′i = π∗i /n+q. /*There is no tardy
job.

2. If i > 0 and J (i) �= ∅, then run Algorithm A2(i)
for the 1|s, A, J (i),DIF|∑ αR j problem and if the
answer is π∗i <∞, then obtain initial bounds: L ′i ≤
v∗i ≤ nL ′i , where L ′i = π∗i /n + q + wi .

3. If i > 0 and J (i) = ∅, then set L ′i = q+wi . /*There
is no early job.

Endfor
[InitialBounds]: Set L ′ = mini=0,··· ,n{L ′i }, which yields

initial bounds: L ′ ≤ v∗ ≤ nL ′.[
TightBounds

]
: Run Algorithm A4 for the 1|s, A,DIF|

∑
αR j +∑

w jU j + bq problem. The answer L yields
tight bounds: L ≤ v∗ ≤ 3L .[

Approximation
]
: Run Algorithm A5 for the 1|s, A,DIF|

∑
αR j+∑

w jU j+bq problem and based on the answer
v, we obtain an approximation schedule.

Theorem 3.5 For the 1|s, A,DIF|∑ αR j +∑
w jU j + bq

problem, Algorithm A6 is an FPTAS and finds a (1 + ε)-
approximate solution in O(n4/ε + n4 log log n) time.

Proof The complexity and correctness follow directly from
the properties of the component algorithms. ��

4 The problem with equal per-unit due-date-assignment
costs and tardiness penalties

In this section, we present a polynomial-time algorithm for
1|s, A,DIF|∑ αR j +∑

wU j + bq, i.e., when w j = w >

0 and α j = α > 0. Note that Propositions 2.1, 2.2, and 3.1
can be applied to this problem. By Proposition 3.2 all early
jobs are sequenced in SPT order, and we assume w.l.o.g.
that p1 ≤ · · · ≤ pn . The following two propositions are
important for this case.

Proposition 4.1 There is an optimal schedule for the 1|s, A,

DIF|∑αR j +∑
wU j + bq problem, in which all the early

jobs are scheduled before or at w
α
+ A.

Proof By Proposition 2.2, w
α
+ A is an upper bound for any

assigned due date. ��
Proposition 4.2 There is an optimal schedule for the 1|s, A,

DIF|∑αR j +∑
wU j + bq problem, where the early jobs

are exactly {1, 2, . . . , h}, for some h, 0 ≤ h ≤ n, with the
convention that {1, . . . , 0} = ∅. Moreover, all the tardy jobs,
if any, are scheduled by themselves in the last batch.

Proof By Proposition 4.1, there is an optimal schedule where
the early jobs are delivered in batches before or at w

α
+ A, and

the tardy jobs (if any) are delivered after w
α
+ A in a single

batch. Suppose that there is an early job i and a tardy job k
with pi > pk in a schedule. Then exchanging jobs i and k
may reduce the schedule cost by α(pi − pk) and cannot lead
to an increase in the other cost components. Exchanging all
such pairs will generate an early job set as claimed. ��

Proposition 4.2 allows a simple modeling of the 1|s, A,

DIF|∑αR j +∑
wU j + bq problem as a minimum weight

path problem in a weighted directed acyclic graph (WDAG)
as follows. Consider the WDAG G = (V, E), where the set
of vertices is V = {(j, l)|0 ≤ l ≤ j ≤ n}, and the set of
edges is E = {(j, l|k, l + 1)|0 ≤ l ≤ j < k ≤ n}. Any
edge (j, l|k, l + 1) represents the fact that the (l + 1)-th
batch consists of jobs { j + 1, . . . , k}. Further, let the source
node of the graph be (0, 0) and the set of final nodes be
F = {(n, l)|1 ≤ l ≤ n}. Then any path π in the graph
starting at the source node and ending at some final node has
the form π = (j0, 0), (j1, 1), . . . , (j�, �), where 1 ≤ � ≤ n
and 0 = j0 < j1 < j2 < · · · < j� = n. Clearly, these
paths are in a one-to-one correspondence with all possible
schedules obeying the SPT order, (i.e., a batching of the SPT
job sequence). Specifically, the l-th batch in this schedule
contains jobs { jl−1 + 1, . . . , jl}. Now let us assign weights
to edges. Recall that an edge (j, l|k, l + 1) represents the
fact that the (l + 1)-th batch consists of jobs { j + 1, . . . , k}.
Then the completion time of all jobs in the batch is Ck,l+1 =∑k

i=1 pi+s(l+1). Thus, the weight w(j, l|k, l+1) assigned
to edge (j, l|k, l + 1) is the sum of the batch-delivery cost q

123

J Sched (2015) 18:3–13 13

and the cost of the optimal due-date assignments according
to (1):

w(j, l|k, l + 1)

=

⎧
⎪⎨

⎪⎩

q, if Ck,l+1 ≤ A

α(k− j)(Ck,l+1−A)+q, if A < Ck,l+1 ≤ A + w
α

w(k − j)+ q, if Ck,l+1 > A + w
α

.

(10)

Therefore, the weight of any path π equals the cost of the
associated schedule assuming optimal due-date assignments,
and we need to find a minimum weight path from the source
to some final node in G.

Theorem 4.1 The 1|s, A,DIF|∑ αR j+∑
wU j+bq prob-

lem can be solved in O(n3) time.

Proof Since |V | = O(n2) and |E | = O(n3) in the graph G,
the minimum weight path can be found in O(|V | + |E |) =
O(n3) time by standard algorithms. ��

5 Conclusions and future research

We presented a model for quoting attainable delivery times to
minimize delivery costs and tardiness penalties for the sup-
plier. The model can be applied to situations, where orders
cannot be delivered to the customer within the original lead
times. The general problem is shown to be strongly NP-
hard. When all the jobs have the same per-unit due-date-
assignment costs, we proved that the problem is NP-hard
only in the ordinary sense by providing a pseudo-polynomial
algorithm. This algorithm was also converted into an FPTAS.
If the problem also has an identical tardiness penalty for
all the jobs, the problem can be solved in polynomial time.
In summary, we have shown that all the known results for
the classical scheduling problem 1||∑w jU j , and its spe-
cial cases are extendable to include due-date assignment and
batch-delivery costs.

Further research may consider including controllable job
processing times or variable batch-delivery costs.

Acknowledgments This research was supported in part by NSERC
Discovery Grant 1708-09.

References

Brucker, P., & Kovalyov, M. Y. (1996). Single machine batch schedul-
ing to minimize the weighted number of late jobs. Mathematical
Methods of Operations Research, 43, 1–8.

Chen, Z.-L. (2010). Integrated production and outbound distribution
scheduling: Review and extensions. Operations Research, 58,
130–148.

Chen, Z.-L., & Vairaktarakis, G. L. (2005). Integrated scheduling of
production and distribution operations. Management Science, 51,
614–628.

Chubanov, S., Kovalyov, M., & Pesch, E. (2006). An FPTAS for a
single-item capacity economic lot-sizing problem with monotone
cost structure. Mathematical Programming Series A, 106, 453–
466.

Gens, G. V., & Levner, E. V. (1981). Fast approximation algorithm
for job sequencing with deadlines. Discrete Applied Mathematics,
3(4), 313–318.

Gordon, V. S., Proth, J.-M., & Chu, C. (2002a). A survey of the state-of-
the-art of common due date assignment and scheduling research.
European Journal of Operational Research, 139(3), 1–25.

Gordon, V. S., Proth, J.-M., & Chu, C. (2002b). Due date assignment
and scheduling: SLK, TWK and other due date assignment models.
Production Planning and Control, 13(2), 117–132.

Gordon, V. S., Proth, J.-M., & Strusevich, V. A. (2004). Scheduling
with due date assignment. In J. Y. T. Leung (Ed.), Handbook of
scheduling: Algorithms, models and performance analysis (Vol.
21, pp. 1–22). Boca Raton, FL: CRC Press.

Hall, N. G., & Potts, C. N. (2003). Supply chain scheduling: Batching
and delivery. Operations Research, 51(4), 566–584.

Hochbaum, D. S., & Landy, D. (1994). Scheduling with batching: Min-
imizing the weighted number of tardy jobs. Operations Research
Letters, 16, 79–86.

Ibarra, O., & Kim, C. E. (1975). Fast approximation algorithms for the
knapsack and sum of subset problems. Journal of the Associahon
for Computing Machinery, 22, 463–468.

Kaminsky, P., & Hochbaum, D. S. (2004). Due date quotation models
and algorithms. In J. Y.-T. Leung (Ed.), Handbook of scheduling:
Algorithms, models and performance analysis (pp. 20-1–20-22).
Boca Raton, FL: CRC Press.

Karp, R. M. (1972). Reducibility among combinatorial problems. In
R. E. Miller & J. W. Thatcher (Eds.), Complexity of computer
computations. New York: Plenum Press.

Lawler, E. L. (1982). A fully polynomial time approximation scheme
for the total tardiness problem. Operations Research Letters, 1(6),
207–208.

Moore, J. M. (1968). An n job, one machine sequencing algorithm
for minimzing the number of late jobs. Management Science, 15,
102–109.

Sahni, S. K. (1976). Algorithms for scheduling independent tasks. Jour-
nal of the ACM, 23(1), 116–127.

Shabtay, D., & Steiner, G. (2006). Two due date assignment problems in
scheduling a single machine. Operations Research Letters, 34(6),
683–691.

Slotnick, S. A., & Sobel, M. J. (2005). Manufacturing lead-time rules:
Customer retention versus tardiness costs. European Journal of
Operational Research, 169, 825–856.

Steiner, G., & Zhang, R. (2007). Minimizing the weighted number of
late jobs with batch setup times and delivery costs on a single
machine. In E. V. Levner (Ed.), Multiprocessor scheduling, the-
ory and applications (pp. 85–98). Vienna: Itech Education and
Publishing.

Steiner, G., & Zhang, R. (2011). Revised delivery-time quotation in
scheduling with tardiness penalties. Operations Research, 59(6),
1504–1511.

Thomas, D. J., & Griffin, P. M. (1996). Coordinated supply chain man-
agement. European Journal of Operational Research, 94, 1–15.

123

	Optimal delivery time quotation in supply chains to minimize tardiness and delivery costs
	Abstract
	1 Introduction
	2 Problem definition, due-date assignments, and computational complexity
	3 The problem with equal per-unit due-date-assignment costs
	3.1 Pseudo-polynomial algorithm
	3.2 Fully polynomial-time approximation scheme
	3.2.1 Bounds analysis
	3.2.2 Initial bounds determination
	3.2.3 Tight bounds determination
	3.2.4 Approximation

	4 The problem with equal per-unit due-date-assignment costs and tardiness penalties
	5 Conclusions and future research
	Acknowledgments
	References

