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LDGM-based Multiple Description Coding for
Finite Alphabet Sources
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Abstract—This work presents an LDGM-based practical suc-
cessive coding scheme for the multiple description (MD) problem
for finite alphabet sources. The scheme, which targets the Zhang-
Berger (ZB) rate-distortion region, is shown to be asymptotically
optimal with joint typicality encoding, while as a practical
encoding solution a message passing algorithm is adopted.

We further discuss in more detail the application of the coding
scheme in three cases of the MD problem with the Hamming
distortion measure: 1) no excess sum-rate for binary sources, 2)
successive refinement, and 3) no excess marginal rate for the
uniform binary source. In the no excess sum-rate case some
progress is made in the characterization of fundamental limits
by deriving the analytical expression of the distortion region for
general binary sources, and of the auxiliary variables needed to
achieve its boundary. The exact expression of the Zhang-Berger
upper bound to the central distortion is also provided for the
case of no excess marginal rate for the uniform binary source.

The proposed LDGM-based coding scheme is tested in practice
for all three aforementioned cases. The experimental results show
very good performance, demonstrating its ability to approach the
theoretical rate-distortion limits or the available upper bounds.

Index Terms—Lossy source coding, low-density generator
matrix code, message-passing algorithm, multiple description
coding.

I. INTRODUCTION

In the multiple description (MD) problem, a source se-
quence is compressed into two descriptions, which are con-
structed in such a way that an adequate reconstruction of the
source is possible based on each description while the two
descriptions together can lead to better reconstruction quality.
Information theoretical results on this problem can be found
in [1]–[7].

Research on practical MD coding has intensified in recent
years due to its applications in modern communications sys-
tems [8]–[12]. However, the design of practical schemes able
to approach the known fundamental limits for finite alphabet
sources has received little attention. For such sources, practi-
cal codes based on low-density generator matrices (LDGM),
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combined with various message passing algorithms, have been
successful in approaching the rate-distortion bound for single
description source coding. In [13], [14], LDGM codes are used
to encode a uniform binary source, while in [17] a multilevel
LDGM coding scheme for finite alphabet sources with general
distortion measure is proposed.

Motivated by the success of LDGM codes for the single
description problem we attempt to apply them to the MD case.
However, for finite alphabet sources with general distortion
measure the characterization of the MD rate-distortion region
is not known. Therefore, we turn our attention to the available
inner bounds of the MD region. The first general inner bound,
referred to as the EGC region, was provided by El Gamal
and Cover in [3]. This was shown to be tight for the no
excess sum-rate case by Ahlswede [4]. Later Zhang and Berger
[5] proposed a different inner bound, termed the ZB region,
and showed that it contains points not included in the EGC
region. Recently, Wang et al. [7] proved that the ZB region
includes the EGC region and established the ZB region as
the best inner bound known to date. Motivated by the latter
result we design an LDGM-based coding scheme for this
region. The scheme consists of three sequential encoders and
is applicable to corner points of a certain rate region derived
from the ZB region, while any other rate pair can be obtained
through timesharing of two such corner points. We prove
that the coding scheme is asymptotically optimal when the
joint typicality rule is employed at each encoder, whereas as
a practical solution for the encoding problem we propose a
message passing algorithm.

The proposed coding scheme needs knowledge of the auxil-
iary variables involved in the ZB region. In order to determine
the optimal auxiliary variables achieving rate-distortion points
on the boundary of the ZB region, numerical techniques can be
used to solve the underlying non-convex optimization problem.
On the other hand, availability of analytical solutions would
spare this step and thus simplify the design of the coding
system. Therefore, next we turn our attention to several cases
of the MD problem with Hamming distortion measure where
such optimal auxiliary variables can be computed analytically.

The first case is the no excess sum-rate case for binary
sources. In this case the characterization of the rate-distortion
MD region is available, as the EGC region, however, the
computation of the rate-distortion limits is not simple and
analytical expressions are only partly available for the uniform
binary source. Interestingly, it turns out that the the distortion
region and the auxiliary variables achieving their boundary can
be computed analytically for general binary sources, and we
derive its exact expression.
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Further, we consider the case of no excess marginal rate
for the uniform binary source. For this case Zhang and Berger
proposed in [6] a method to compute an upper bound for the
central distortion given the values of the side distortions. We
improve Zhang and Berger’s result by providing the analytical
expression of this upper bound and of the achieving auxiliary
variables.

Another special case of the MD problem, where the fun-
damental limits are known, is the problem of successive
refinement (SR) for finite alphabet sources [18]–[20]. In this
case the second description is of no interest alone, but only
in conjunction with the first description. We show how the
proposed LDGM-based coding scheme can be adapted to the
SR problem.

Finally, we test the proposed coding scheme in each of the
aforementioned cases of the MD problem. Our simulations
show very good performance demonstrating thus its ability to
approach in practice the theoretical rate-distortion limits or the
available upper bounds.

We mention that LDGM-based successive coding schemes
for the MD problem were also presented in [21], [22]. The
scheme in [22] is specifically designed for a Gaussian source
with squared-error distortion measure, leveraging on particu-
larities of the MD problem conferred by the specific source
and distortion measure, and cannot be extended to the case of
finite alphabet sources with general distortion. On the other
hand, the MD scheme of [21] is tailored for the EGC region,
which can be strictly smaller than the ZB region, targeted
in our work. For instance, Zhang and Berger’s upper bound
on the central distortion, in the no excess marginal rate case
for the uniform binary source, cannot be achieved using the
MD code of [21]. Additionally, beside the differences in the
coding scheme, another contribution of the current work versus
[21], [22] consists in the analytical results emphasized in the
previous paragraphs.

The paper is organized as follows. Section II reviews
the MD problem and the ZB region. The following section
presents the proposed sequential coding scheme for the ZB
region. Section IV addresses the no excess sum-rate case for
binary sources and derives the analytical expression of the
distortion region and boundary achieving auxiliary variables.
Section V discusses the upper bound on the central distortion
in the no excess marginal rate case for the uniform binary
source. Section VI reviews the SR rate-distortion region and
clarifies the application of the proposed coding scheme in this
case. Finally, Section VII presents our simulation results and
Section VIII concludes the paper.

II. THE MD PROBLEM

The formal definition of the MD problem is given as
follows. Consider a sequence Xn = (X(1), X(2), · · · , X(n))
drawn from an i.i.d. source X with generic distribution pX .
Let d : X × X̂ → [0,∞) be a distortion measure, where X
and X̂ are the source alphabet and the reconstruction alphabet,
respectively. Throughout this work, the alphabets X and X̂ are
assumed to be finite. The quintuple (R1, R2, d1, d2, d0) is said
achievable, if for all sufficiently large n, there exist encoding

functions

f
(n)
t : Xn → {1, 2, · · · , ⌊2nRt⌋}, t = 1, 2,

and decoding functions

g
(n)
t : {1, 2, · · · , ⌊2nRt⌋} → X̂n, t = 1, 2,

g
(n)
0 : {1, 2, · · · , ⌊2nR1⌋} × {1, 2, · · · , ⌊2nR2⌋} → X̂n,

such that

E

[
1

n

n∑
l=1

d(X(l), X̂t(l))

]
≤ dt, t = 0, 1, 2,

where

X̂n
t = g

(n)
t (f

(n)
t (Xn)), t = 1, 2,

X̂n
0 = g

(n)
0 (f

(n)
1 (Xn), f

(n)
2 (Xn)).

The MD rate-distortion region, denoted by RD, is the closure
of the set of all achievable quintuples (R1, R2, d1, d2, d0).

Zhang and Berger [5] proposed an inner bound of the MD
rate-distortion region termed the ZB region. The ZB region,
denoted by RDZB, is the set of quintuples (R1, R2, d1, d2, d0)
such that there exist random variables Xc, X1, X2 jointly
distributed with X and functions ψt, t = 0, 1, 2, satisfying

Rt ≥ I(X;Xc, Xt), t = 1, 2, (1)
R1 +R2 ≥ 2I(X;Xc) + I(X;X1, X2|Xc)

+ I(X1;X2|Xc), (2)
Ed(X,ψt(Xc, Xt)) ≤ dt, t = 1, 2, (3)
Ed(X,ψ0(Xc, X1, X2)) ≤ d0. (4)

The question whether RDZB is tight is an open problem.
However, RDZB is the best inner bound known so far for RD.
Therefore, in the next section we propose a practical coding
scheme based on LDGM codes for the ZB region.

III. AN LDGM-BASED CODING SCHEME FOR THE
CORNER RATE POINTS ASSOCIATED TO THE ZB REGION

A. Sequential Random Coding Scheme

Given the auxiliary random variables Xc, X1, X2 jointly
distributed with X , the distortion triple (d1, d2, d0) obey-
ing (3) and (4), can be achieved by the set of rate pairs
(R1, R2) satisfying relations (1) and (2). Let us denote by
R(pXcX1X2|X) this rate region, and by F(pXcX1X2|X) its
dominant face, which is defined as the set of rate pairs
(R1, R2) ∈ R(pXcX1X2|X) for which (2) holds with equality.
Without loss of generality, we shall focus on F(pXcX1X2|X)
since every point in R(pXcX1X2|X) is dominated, in a com-
ponentwise sense, by some point (R1, R2) ∈ F(pXcX1X2|X).
Moreover, the two corner points E1 and E2 of R(pXcX1X2|X)
(i.e., the end points of F(pXcX1X2|X)) are of particular
importance. Specifically, one can achieve an arbitrary point
on the dominant face by timesharing E1 and E2. Precisely,
the coordinates of E1 are

R1(E1) = I(X;Xc) + I(X;X1|Xc), (5)
R2(E1) = I(X;Xc) + I(X,X1;X2|Xc).
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Fig. 1. Factor graph associated to the multilevel LDGM code.

The coordinates of E2 are obtained by swapping indices 1 and
2 in the above relations.

The successive encoding scheme directly suggested by (5)
needs conditional codebooks, which complicate the implemen-
tation. To avoid this we use a variable substitution as follows.
According to [7, Lemma 1], there exist random variables Ut

1,
t = 1, 2, taking values in the finite sets Ut, respectively,
with |Ut| ≤ |Xc|(|Xt| − 1) + 1, t = 1, 2, and functions
πt : Xc × Ut → Xt, , t = 1, 2, such that
C1) Ut is independent of Xc;
C2) Xt = πt(Xc, Ut);
C3) (X,X2)−(Xc, X1)−U1 and (X,X1, U1)−(Xc, X2)−U2

form Markov chains.
The above relations imply that

I(X,Xc;U1) = I(Xc;U1) + I(X;U1|Xc) = I(X;X1|Xc),

I(X,Xc, X1;U2) = I(Xc;U2) + I(X,X1;U2|Xc)

= I(X,X1;X2|Xc).

Hence, (5) can be written equivalently as

R1(E1) = I(X;Xc) + I(X,Xc;U1),

R2(E1) = I(X;Xc) + I(X,Xc, X1;U2).

Next we present a sequential coding scheme approaching
the corner point E1. This system consists of three encoders,
labeled 0, 1 and 2.
Codebook generation. Encoder 0 randomly generates a code-
book C0 = {xnc,i}2

n(I(X;Xc)+ϵ)

i=1 according to the distribution∏n
l=1 pXc(·). Encoder 1 randomly generates a codebook
C1 = {un1,j}

n(I(X,Xc;U1)+ϵ)
j=1 , according to the distribution∏n

l=1 pU1(·). Encoder 2 randomly generates a codebook
C2 = {un2,k}

n(I(X,Xc,X1;U2)+ϵ)
k=1 , according to the distribution∏n

l=1 pU2(·).
Encoding. Given the source sequence xn, encoder 0 selects
a codeword xnc,i which is jointly strongly typical with xn.
Encoder 1 finds an index j such that un1,j is jointly strongly
typical with xn and xnc,i. Finally, encoder 2 chooses an index
k such that un2,k is jointly strongly typical with xn, xnc,i, and
xn1,i,j , where xn1,i,j = (π1(xc,i(l), u1,j(l)))

n
l=1. The pairs (i, j)

and (i, k) form descriptions 1 and 2, respectively.
Decoding. Decoder 1 receives index pair (i, j) and

1The construction of such variables is shown in the proof of Lemma 1 in
[7].

takes g
(n)
1 (i, j) = (ψ1(x

n
1,i,j(l)))

n
l=1 as the reconstruc-

tion. Decoder 2 receives index pair (i, k) and recon-
structs the source as g

(n)
2 (i, k) = (ψ2(x

n
2,i,k(l)))

n
l=1,

where xn2,i,k(l) = π2(xc,i(l), u2,k(l)). The central de-
coder obtains the reconstruction as g

(n)
0 (i, j, i, k) =

(ψ0(xc,i(l), x
n
1,i,j(l), x

n
2,i,k(l)))

n
l=1.

Following the above sequential coding system we propose
an LDGM-based coding scheme for the corner rate points E1

and E2, which uses a multilevel LDGM code to generate the
codebook at each encoding stage. Further, we show that when
the joint typicality rule is used at each encoder the proposed
scheme achieves optimality asymptotically. Finally, we present
the message passing algorithm used as a practical heuristic
solution for the encoding problem at each stage.

B. Asymptotically Optimal LDGM-based Code

A multilevel LDGM code of rate R = m
n is specified by

a low density generator matrix G of dimension m× nω over
F2 and a mapping ϕ : Fω

2 → Z , for some positive integer ω
and finite set Z . Define now the mapping Φ : Fnω

2 → Zn

such that for any cnω ∈ Fnω
2 , the l-th component of Φ(cnω)

is ϕ(c(l), c(n+ l), · · · , c(n(ω− 1) + l)), for 1 ≤ l ≤ n. Then
the multilevel LDGM code specified by G and ϕ is defined as
the set

C(G,ϕ) , {Φ(vmG)|vm ∈ Fm
2 },

where vmG denotes the product between the row vector vm

and the matrix G.
Consider now the joint probability distribution pY,ϕ(Ỹ ),

where Y takes values in some finite alphabet Y , while
Ỹ takes values in Fω

2 . Then we define the joint typicality
encoder associated to C(G,ϕ) and pY,ϕ(Ỹ ) as the mapping
EG,ϕ,pY,ϕ(Ỹ )

: Yn → Fm
2 , where

EG,ϕ,pY,ϕ(Ỹ )
(yn) ,

argminvm∈Fm
2
{α : (yn,Φ(vmG)) ∈ T α,n

pY,ϕ(Ỹ )
}. (6)

Note that for every α > 0 and every distribution pV1,V2 ,
T α,n
pV1,V2

denotes the set of pairs of sequences (vn1 , v
n
2 ) which

are α-strongly jointly typical according to pV1,V2
2. Likewise,

T α,n
pV1

denotes the set of sequences vn1 which are α-strongly
typical according to pV1 .

2The definition of strongly typical sequences is as in [24].
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MSl→Nl
(z) = exp(−γ(y(l), z)), for all z ∈ Z, 1 ≤ l ≤ n,

MNl→Cl+sn
(b) =

∑
z∈Z

MSl→Nl
(z)

∑
bω∈{0,1}ω
b(s+1)=b
ϕ(bω)=z

∏
j=0
j ̸=s

ω−1
MCl+jn→Nl

(b(j + 1)),

MCl+sn→Nl
(b) =

1

2
+

(−1)b

2

∏
k∈Bv(l+sn)

(MVk→Cl+sn
(0)−MVk→Cl+sn

(1)),

for all b ∈ {0, 1}, 1 ≤ l ≤ n, 0 ≤ s ≤ ω − 1,

MCl+sn→Vk
(b) =

1

2
+

(−1)b

2
(MNl→Cl+sn

(0)−MNl→Cl+sn
(1))

∏
i∈Bv(l+sn)\{k}

(MVi→Cl+sn
(0)−MVi→Cl+sn

(1)),

MVk→Cl+sn
(b) =

∏
q∈Ac(k)\{l+sn}

MCq→Vk
(b),

for all b ∈ {0, 1}, k ∈ Bv(l + sn), 1 ≤ l ≤ n, 0 ≤ s ≤ ω − 1.

Fig. 2. Message passing equations. The message passed by node A to node B is denoted by MA→B . It is a vector with two components for A ̸= Sl, and
with |Z| components for A = Sl. After applying these equations, the components of each message are normalized to sum up to 1. Ac(k) denotes the set
of indices q such that Cq is adjacent to node Vk , and Bv(q) denotes the set of of indices k such that Vk is adjacent to Cq . The values of the parameters
γ(y, z) used in our simulations are specified in Section VII.

Further, as in [17] we consider an LDGM code ensemble
specified by a random generator matrix G with elements
selected independently from F2 using a Bernoulli distribution
with parameter pn, where pn → 0 and npn →∞ as n→∞.
Finally, following [17], [15] and [16], we obtain the following
result, which is crucial for our development and whose proof
is given in Appendix A.

Lemma 1. Consider the LDGM code ensemble as described
above for some R, ω, ϕ, Y , and Ỹ such that Ỹ is uniformly
distributed over Fω

2 and R ≥ I(Y ; Ỹ )+ ϵ0, for some arbitrary
ϵ0 > 0. Furthermore, assume that the random vector Y n

representing the input at the encoder satisfies the equality

lim
n→∞

P(Y n ∈ T δ,n
pY

) = 1, (7)

for any δ > 0. Then, for any δ > 0 one has

lim
n→∞

P((Y n,Φ(EG,ϕ,pY,ϕ(Ỹ )
(Y n)G)) ∈ T δ,n

pY,ϕ(Ỹ )
) = 1. (8)

In order to proceed with the specifics of the proposed
LDGM-based code for each encoding stage, we need first the
following result which was proved in [17] as a part of the
proof of Theorem 1.

Lemma 2 ( [17]). Consider arbitrary jointly distributed random
variables Y and Z over the finite alphabets Y and Z , respec-
tively. Then, for any positive integer ω there exist a random
variable Ỹω uniformly distributed over Fω

2 and a mapping
ϕω : Fω

2 → Z such that

lim
ω→∞

pY,ϕω(Ỹω)(y, z) = pY,Z(y, z)

for every (y, z) ∈ Y × Z .

In virtue of the above result for each triple of positive inte-
gers ω0, ω1, ω2 there exist random variables X̃0,ω0

, X̃1,ω0,ω1

and X̃2,ω0,ω1,ω2 uniformly distributed over Fω0
2 , Fω1

2 , and Fω2
2

respectively, and mappings ϕ0 : Fω0
2 → Xc, ϕ1 : Fω1

2 → U1,

and ϕ2 : Fω2
2 → U2 such that

lim
ω0→∞

pX,ϕ0(X̃0,ω0
),U1,U2

(x, xc, u1, u2)

= pX,Xc,U1,U2(x, xc, u1, u2), (9)

lim
ω1→∞

pX,ϕ0(X̃0,ω0
),ϕ1(X̃1,ω0,ω1

),U2
(x, xc, u1, u2)

= pX,ϕ0(X̃0,ω0
),U1,U2

(x, xc, u1, u2), (10)

lim
ω2→∞

pX,ϕ0(X̃0,ω0
),ϕ1(X̃1,ω0,ω1

),ϕ2(X̃2,ω0,ω1,ω2
)(x, xc, u1, u2)

= pX,ϕ0(X̃0,ω0
),ϕ1(X̃1,ω0,ω1

),U2
(x, xc, u1, u2), (11)

for every (x, xc, u1, u2) ∈ X × Xc × U1 × U2.
Let ωj , respectively ϕj , denote the value of ω, respectively

the mapping ϕ used at encoder j, for j = 0, 1, 2. The encoding
mapping at each stage is defined as in (6) where

a) Y = X and Ỹ = X̃0,ω0 at encoder 0;
b) Y = (X,ϕ0(X̃0,ω0)) and Ỹ = X̃1,ω0,ω1 at encoder 1;
c) Y = (X,ϕ0(X̃0,ω0), π1(ϕ0(X̃0,ω0), ϕ1(X̃1,ω0,ω1))) and

Ỹ = X̃2,ω0,ω1,ω2 at encoder 2.
The rates at the three encoders are as in the previous subsec-
tion, i.e.

R(0) = I(X;Xc) + ϵ at encoder 0;
R(1) = I(X,Xc : U1) + ϵ at encoder 1;
R(2) = I(X,Xc, X1;U2) + ϵ at encoder 2.

Lemmas 1 and 2 immediately imply the asymptotical op-
timality of the proposed LDGM-based coding scheme, which
is stated next.

Theorem 1. The sequential LDGM-based coding scheme
described in this subsection ensures that the target distor-
tion values d1, d2 and d0 for the side and central descrip-
tions, respectively, can be approached arbitrarily closely as
n, ω0, ω1, ω2 →∞.

Proof of Theorem 1. Notice that in view of relations (9-11)
and of the continuity of the information mapping I(·, ·), there
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exists some positive ϵ0(ϵ) such that the condition R(j) ≥
I(Y ; Ỹ ) + ϵ0 is satisfied at every encoder j = 0, 1, 2, for
sufficiently large ωj and the corresponding pair of random
variables (Y ; Ỹ ). Since condition (7) is satisfied for encoder
0 it follows that Lemma 1 can be applied, thus relation (8)
holds as well. This further implies that condition (7) is also
valid at encoder 1, consequently (8) also holds for encoder 1,
which validates (7) for encoder 2 as well. Finally, by Lemma
1, (8) also holds for encoder 2. Combining these observations
with (9-11) the conclusion of Theorem 1 follows. �

Unfortunately, solving the encoder problem (6) is imprac-
tical, therefore we use as a heuristic solution the belief
propagation with decimation on the factor graph associated
to the LDGM code (Fig. 1). This algorithm is similar to
the message passing algorithm described in [14], [17], [21],
[22]. However, a notable distinction versus the aforementioned
prior work stems from the difference in the objective of the
encoder. Namely, while in the single description setting the
objective is to minimize the distortion between the codeword
and the input sequence, in our case the objective is to find
a codeword which is strongly jointly typical with the input
sequence. To account for this difference we will use more
parameters in the computation of the messages passed by the
source nodes as seen in Fig. 2. For an attempt to justify this
strategy we refer the reader to [23]. The justification in [23]
is based on heuristically modeling problem (6) as the problem
of minimizing a weighted sum of frequencies of pairs of
letters (y, z) ∈ Y×Z , in (yn,Φ(vmG)), for some appropriate
weights. Then the parameters used in the definition of the
messages passed by the source nodes in Fig. 2 correspond to
these weights.

The factor graph is composed of n source nodes
{S1, · · · , Sn}, m variable nodes {V1, · · · , Vm}, nω check
nodes {C1, · · · , Cnω}, and n network nodes {N1, · · · , Nn}.
Every variable node Vk is associated to information bit v(k)
and is connected by an edge to every check node Ch such
that G(k, h) = 1. Each network node Nl is connected by an
edge to check nodes Cl, Cl+n, · · · , Cl+(ω−1)n, and to source
node Sl. Source node Sl is associated to the l-th symbol
y(l) in the input sequence, and Nl is associated to the l-th
symbol z(l) of the output sequence (i.e., codeword). Finally,
the equations to compute the messages are presented in Fig.
2 and the algorithm description in Fig. 3.

IV. DISTORTION REGION FOR THE NO EXCESS SUM-RATE
CASE FOR BINARY SOURCES WITH HAMMING DISTORTION

The term “no excess sum-rate” refers to the case when R1+
R2 = R(d0), where R(·) denotes the rate-distortion function.
As shown by Ahlswede in [4], the following relation holds

{(R1, R2, d1, d2, d0) ∈ RD : R1 +R2 = R(d0)} =
{(R1, R2, d1, d2, d0) ∈ Q : R1 +R2 = R(d0)}, (12)

where Q denotes the convex closure of the set of quintuples
(R1, R2, d1, d2, d0) for which there exist auxiliary random

1: maxiter ← 100
2: Ac(k)← {q|G(k, q) = 1}, for all k = 1, · · · ,m
3: Bv(q)← {k|G(k, q) = 1}, for all q = 1, · · · , nω
4: NV ← {1, · · · ,m}
5: for l = 1 to n do
6: Compute MSl→Nl

as in Fig. 2
7: for s = 0 to ω − 1 do
8: MCl+sn→Nl

← ( 12 ,
1
2 )

9: for k ∈ Bv(l + sn) do
10: MCl+sn→Vk

← ( 12 ,
1
2 )

11: end for
12: end for
13: end for
14: while NV ≠ ∅ do
15: for i = 1 to maxiter do
16: Compute MNl→Cl+sn

, MVk→Cl+sn
as in Fig. 2

17: for all l = 1, · · · , n, s = 0, · · · , ω − 1,
18: k ∈ Bv(l + sn) ∩NV .
19: for l = 1 to n do
20: for s = 0 to ω − 1 do
21: if Bv(l + sn) ∩NV ̸= ∅ then
22: Compute MCl+sn→Nl

as in Fig. 2
23: for k ∈ Bv(l + sn) ∩NV do
24: Compute MCl+sn→Vk

as in Fig. 2
25: end for
26: else
27: MCl+sn→Nl

(b)←
28: 1

exp(δ)+exp(−δ) (c exp((−1)
1−bδ)+

29: (1− c) exp((−1)bδ)), for b ∈ {0, 1}, where c
30: equals the fixed value of check node Cl+sn.
31: end if
32: end for
33: end for
34: if MCq→Vk

converge for all q = 1, · · · , nω and
35: k ∈ Bv(q) ∩NV then
36: Break
37: end if
38: end for
39: for k ∈ NV do
40: p(Vk = b)←

∏
q∈Ac(k)

MCq→Vk
(b), for b ∈ {0, 1}

41: p(Vk = b)← p(Vk=b)
p(Vk=0)+p(Vk=1) , for b ∈ {0, 1}

42: if |p(Vk = 0)− p(Vk = 1)| > η then
43: NV ← NV − {k}
44: b̂← argmaxb∈{0,1}p(Vk = b), Vk ← b̂

45: MVk→Cq (b̂)← 1, MVk→Cq (1− b̂)← 0,
46: for all q ∈ Ac(k)
47: end if
48: end for
49: end while

Fig. 3. Message passing algorithm. NV denotes the set of indices k of
currently non-decimated variable nodes Vk . The values of parameter δ in our
tests are provided in Section VII. The threshold η is set to 0.9 or 0.99 in our
experiments.
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variables Xt, t = 0, 1, 2, jointly distributed with X such that

I(X1;X2) = 0,

Rt ≥ I(X;Xt), t = 1, 2,

R1 +R2 ≥ I(X;X0, X1, X2),

dt ≥ E[d(X,Xt)], t = 0, 1, 2.

Our next result represents some progress towards an explicit
characterization of RD in the no excess sum-rate case for
general binary sources with Hamming distortion measure (i.e.,
d(x, x̂) = dH(x, x̂) = 0 if x = x̂, and 1 otherwise). Let
X = X̂ = {0, 1} and pX(0) = δ, where 0 < δ ≤ 1/2. Let D
denote the distortion region, i.e.,

D , {(d1, d2, d0) : ∃(R1, R2) such that R1 +R2 = R(d0)

and (R1, R2, d1, d2, d0) ∈ RD}.

For d0 ≥ 0 let us additionally define

D(d0) , {(d1, d2) : (d1, d2, d0) ∈ D}.

Clearly,

D = ∪d0:d0≥0{(d1, d2, d0) : (d1, d2) ∈ D(d0)}.

Now we proceed to characterize D(d0). With no loss of
generality, we shall assume 0 ≤ d0 < δ. Since D(d0) is
convex, it suffices to characterize its supporting lines. Two
of the supporting lines are already known, namely d1 = d0
and d2 = d0. Therefore, to complete the task, it is enough to
solve the following optimization problem, for all α > 0,

min
(d1,d2)∈D(d0)

αd1 + d2. (13)

Note that R(d0) is a strictly convex function of d0 for d0 ∈
[0, δ). Furthermore, if

R(d0) = R1 +R2 ≥ I(X;X0, X1, X2), and
d0 ≥ E[d(X,X0)],

then one must have X = X0 ⊕ Z, where ⊕ denotes the
modulo-2 addition operation, and Z ∼ Ber(d0) is inde-
pendent of (X0, X1, X2). Therefore, it suffices to specify
pX1X2|X0

in order to determine pXX0X1X2 due to the fact
that pXX0 is completely determined once d0 is given and that
X − X0 − (X1, X2) form a Markov chain. Now in view of
(12), it can be readily shown that

min
(d1,d2)∈D(d0)

αd1 + d2 ≥

min
pX1X2|X0

:I(X1;X2)=0
αE[d(X,X1)] + E[d(X,X2)].

It turns out that the inequality can be replaced by an equality.
To see this, for any pX1X2|X0

such that the induced X1 and
X2 are independent, let

R1 = I(X;X1),

R2 = I(X,X1;X2) + I(X;X0|X1, X2),

dt = E[d(X,Xt)], t = 0, 1, 2.

It can be verified that (R1, R2, d1, d2, d0) ∈ Q and R1+R2 =
R(d0). Therefore, (13) is equivalent to

min
pX1X2|X0

:I(X1;X2)=0
αE[d(X,X1)] + E[d(X,X2)]. (14)

Solving (14) for all α > 0 leads to the following result, whose
proof is deferred to Appendix B.
Theorem 2. The following relation holds

D(d0) = {(d1, d2) : (d1 + 1− 2d0 − δ)(d2 + 1− 2d0 − δ)
≥ (1− d0 − δ)(1− 2d0), d1 ≥ d0, d2 ≥ d0}.

Moreover, for each α > 0, the solution (d1, d2) to (13) is
unique, and a corresponding solution to (14) is as specified
in Fig. 4. Additionally, when δ < 1/2, the solution to (14) is
unique, while for δ = 1/2 and d1 ̸= d0, d2 ̸= d0, there is only
one alternative solution, which is obtained by swapping 0 and
1 in Fig. 4.

pXX1X2(0, 1, 1) =
d0

1− 2d0
(1− δ − d0),

pXX1X2(1, 0, 0) =
d0

1− 2d0
(δ + d0 − d1 − d2),

pXX1X2(1, 1, 0) =
d0

1− 2d0
(d1 − d0),

pXX1X2(1, 0, 1) =
d0

1− 2d0
(d2 − d0),

pXX1X2(0, 1, 0) =
1− d0
1− 2d0

(d1 − d0),

pXX1X2(0, 0, 1) =
1− d0
1− 2d0

(d2 − d0),

pXX1X2(0, 0, 0) =
1− d0
1− 2d0

(δ + d0 − d1 − d2),

pXX1X2(1, 1, 1) =
1− d0
1− 2d0

(1− δ − d0),

X0 = ψ0(X1, X2) =

{
1, X1 = X2 = 1
0, otherwise ;

Fig. 4. Auxiliary random variables achieving the lower boundary of D(d0).

Note that for the case of the uniform binary source, part of
the conclusion of Theorem 2 can be inferred from [5, Section
IV]. Fig. 5 depicts the distortion region D(d0) for a binary
source with pX(0) = 1/4, d0 = 0, and d0 = 0.013.

Consider now a distortion pair (d1, d2) on the lower bound-
ary3 of D(d0), let pX0X1X2|X and ψ0(X1, X2) be specified by
Fig. 4, Xc = 0, and ψt(Xt) = Xt, for t = 1, 2. Then relations
(3) and (4) are satisfied. Further, define the rate region

R(d1, d2, d0) , {(R1, R2) : R1 +R2 = R(d0), and
(R1, R2, d1, d2, d0) ∈ RD}.

It can be shown by leveraging Theorem 2 that R(d1, d2, d0)
coincides with the set of rate pairs satisfying R1 ≥ I(X;X1),
R2 ≥ I(X;X2), R1 + R2 = R(d0). Thus, R(d1, d2, d0)
coincides with the dominant face F(pXcX1X2|X) defined in

3The lower boundary of D(d0) is defined as the set of solutions to (13)
for α > 0.
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Fig. 5. Distortion region D(d0) for a binary source with pX(0) = 1/4,
d0 = 0, and d0 = 0.013.

Subsection III-A, and the coding scheme proposed in Section
III, with U1 = X1 and U2 = X2, can be used to approach its
extremities.

V. NO EXCESS MARGINAL RATE CASE FOR THE UNIFORM
BINARY SOURCE WITH HAMMING DISTORTION

The term “no excess marginal rate” refers to the case when
R1 = R(d1) and R2 = R(d2). An interesting question in
such a case is, given the distortion pair (d1, d2), what is the
minimum distortion d0? Precisely, let us define

d0(d1, d2) , min{d0 : (R(d1), R(d2), d1, d2, d0) ∈ RD}.

Zhang and Berger proposed in [6] an upper bound for
d0(d1, d2) by choosing the auxiliary random variables
Xc, X1, X2 in the definition of the ZB region such that
X − Xt − Xc, t = 1, 2, and X1 − (X,Xc) − X2 form
Markov chains, I(X;Xt) = R(dt), E[d(X,Xt)] ≤ dt,
ψt(Xt, Xc) = Xt, for t = 1, 2, and ψ0(Xc, X1, X2) = X1, if
X1 = X2, and Xc, otherwise.

Further they showed that for the uniform binary source with
Hamming distortion the proposed upper bound is strictly better
than the upper bound derived from the EGC region, namely
than min(d1, d2). Notice that the case of interest is when
min(d1, d2) > 0. Now let

P(Xc = X|X) = 1− s, P(Xc ̸= X|X) = s,

P(Xt = X|X) = 1− dt, P(Xt ̸= X|X) = dt,

P(Xc = Xt|X) = 1− st, P(Xc ̸= Xt|X) = st, t = 1, 2,

for some s such that max(d1, d2) ≤ s ≤ 1
2 , and st = s−dt

1−2dt
,

t = 1, 2. Then the upper bound is computed in [6] as

UB(d1, d2) = inf
max(d1,d2)≤s≤ 1

2

P(X ̸= ψ0(Xc, X1, X2)). (15)

We argue that the mapping ψ0 given in [6] is not optimal
and provide the optimal mapping ψ0 which minimizes the
central distortion, along with the optimal value s0 achieving
the infimmum in (15). Let us assume without restricting the

generality that d1 ≤ d2. Define α(d1, d2) , d1(1−d2)
d1+d2−2d1d2

.
Then relations d2 ≤ α(d1, d2) ≤ 1/2 hold. In Appendix C
we show that the mapping ψ0 which minimizes the central
distortion is the following

ψ0(xc, x1, x2) =

 x1, x1 = x2
1− xc, if x1 ̸= x2, d2 ≤ s ≤ α(d1, d2)
x1, if x1 ̸= x2, α(d1, d2) < s ≤ 1/2

.

(16)

Then the upper bound (15) becomes

UB(d1, d2) =

min
d2≤s≤α(d1,d2)

(
1− s− (1− d1)(1− d2)(1− s− d1)(1− s− d2)

(1− s)(1− 2d1)(1− 2d2)

+
d1d2(1− s− d1)(1− s− d2)

s(1− 2d1)(1− 2d2)

)
. (17)

Define β(d1, d2) , d1+d2−2d1d2

d1d2(1−d1)(1−d2)
. As argued in Appendix

C, the solution s0 to (17) is

s0 =
1

2
− 1

2

√
1− 4

√
1 + β(d1, d2)− 1

β(d1, d2)
. (18)

Thus, UB(d1, d2) can be recovered by substituting (18) into
the expression in (17).

Further, to apply the the coding scheme proposed in Section
III for the distortion triple (d1, d2, d0 = UB(d1, d2)), we
define Ut , Xc ⊕Xt, t = 1, 2. It follows easily that C1 and
C3 are satisfied, while C2 holds since Xt = πt(Xc, Ut) ,
Xc ⊕ Ut, t = 1, 2.

VI. SUCCESSIVE REFINEMENT WITH HAMMING
DISTORTION

Successive refinement (SR) can be regarded as a special
form of multiple description coding in which the distortion
constraint on the second description (i.e., d2) is not imposed.
In this scenario it is common to refer to the first description
as the base layer and the second description as the refinement
layer. The successive refinement coding rate-distortion region
RDSR is given by

RDSR = {(R1, R2, d1, d0) : (R1, R2, d1,∞, d0) ∈ RD}.

An important case is when (R(d1), R(d0)−R(d1), d1, d0) ∈
RDSR. The sources for which this relation holds for all
admissible d1 > d0 are called in [19] successively refinable
sources. Equitz and Cover showed in [19] that (R(d1), R(d0)−
R(d1), d1, d0) ∈ RDSR if and only if there are random
variables Xc and X1, jointly distributed with the generic
source variable X , such that

R(d1) = I(X;Xc), R(d0) = I(X;Xc, X1), (19)
E[d(X,Xc)] ≤ d1, E[d(X,X1)] ≤ d0,

and X−X1−Xc form a Markov chain. They further proved,
based on the results of [25], that finite alphabet sources with
Hamming distortion are successively refinable and that the
joint distribution pXXcX1 is specified by the relations in Fig.
6.

Given pXXcX1 as in Fig. 6, the rate-distortion tuple sat-
isfying (19) can be achieved by using a sequential coding
scheme adapted from Section III. The scheme consists only
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pXt(x) =
(pX(x)− λt)+∑

x′∈X (pX(x′)− λt)+
, x ∈ X , t ∈ {c, 1},

pX|X1
(x|x1) =


1− d0, x = x1 ∈ X+

1

λ1, x ̸= x1, x ∈ X+
1 , x1 ∈ X

+
1

pX(x) x /∈ X+
1 , x1 ∈ X

+
1

,

pX1|Xc
(x1|xc) =


1−d1−λ1

1−d0−λ1
, x1 = xc ∈ X+

c
λc−λ1

1−d0−λ1
, x1 ̸= xc, x1 ∈ X+

c , xc ∈ X+
c

pX(x1)−λ1

1−d0−λ1
x1 ∈ X+

1 , x1 /∈ X+
c , xc ∈ X+

c

,

where λ1 ∈ [0, λc], λc are determined by∑
xt∈X+

t

pXt(xt)pX|Xt
(x|xt) = pX(x), x ∈ X , t ∈ {c, 1},

and X+
t = {x ∈ X : pX(x)− λt > 0}, t ∈ {c, 1}.

Fig. 6. Relations defining the joint distribution pXXcX1 for SR.

of encoders 0 and 1, whose outputs represent the base,
respectively the refinement layer. To clarify the details of
the scheme we only need to specify U1. Assume without
restricting the generality that X = {0, 1, · · · , ζ − 1} and
X+

c = {0, 1, · · · , τ − 1}, for some integers ζ ≥ τ > 0. Then
let U1 , σ(Xc, X1), where σ(Xc, X1) = X1 ⊕τ (τ −Xc), if
X1 ∈ X+

c , and σ(Xc, X1) = X1 otherwise, and ⊕τ denotes
the modulo-τ addition. It can be easily verified that conditions
C1-C3 hold, where π1(Xc, U1) = U1⊕τ Xc if U1 ∈ X+

c , and
π1(Xc, U1) = U1 otherwise.

VII. EXPERIMENTAL RESULTS

We have tested the proposed LDGM-based coding scheme
in each of the three cases of the MD problem discussed in the
previous section. The degree distributions of the LDGM codes
are from the website (http://lthcwww.epfl.ch.research/ldpcopt)
or obtained by implementing the algorithm in [26]. We have
used damping as in [14], [17] in our message passing algo-
rithm, if the messages do not converge after 30 iterations. The
length n of the input sequence is 10, 000. Next we present the
experimental results for each case. The values of the empirical
distortions are averaged over 100 runs.

A. No Excess Sum-Rate Case for Binary Sources

We have targeted distortion pairs (d1, d2) on the lower
boundary of D(d0) for a uniform binary source (UBS) and
for a non-uniform binary source (NBS) with pX(0) = 1/4.
In both cases we have considered d0 = 0 and d0 = 0.013.
In our tests the sum-rate R1 + R2 equals R(d0) in each
case. The value of the threshold η is 0.9, while δ is 1.8
for UBS and 1.6 for NBS. At encoder 1 we set γ(0, 0) =
γ(1, 1) = 0, and a) γ(0, 1) = 1.0, γ(1, 0) ∈ [3.2, 3.6] for
UBS; b) γ(0, 1) ∈ [1.0, 2.0], γ(1, 0) = 2.8 for NBS. At
encoder 2 we use γ((0, 1), 0) = γ((1, 1), 1) = γ((0, 0), 0) =
γ((1, 0), 1) = 0 and γ((0, 1), 1) = γ((1, 1), 0) = 3.2, while:
a) γ((0, 0), 1) = γ((1, 0), 0) ∈ [0.0, 0.6] for UBS; and b)
γ((0, 0), 1) = γ((1, 0), 0) = 0.0 for NBS. Tables I and II
present the results for UBS, respectively NBS. The second

(R1, R2) (d1, d2, d0) d̂1 d̂2 d̂0

(0.500, 0.500) E1 (0.147, 0.272, 0) 0.154 0.279 0.008
(0.500, 0.500) E1 (0.156, 0.266, 0) 0.156 0.269 0.008
(0.383, 0.617) E1 (0.207, 0.207, 0) 0.209 0.212 0.007
(0.617, 0.383) E2 (0.207, 0.207, 0) 0.212 0.209 0.007
(0.500, 0.500) T (0.207, 0.207, 0) 0.211 0.211 0.007
(0.445, 0.555) E1 (0.174, 0.242, 0) 0.176 0.247 0.009
(0.676, 0.324) E2 (0.174, 0.242, 0) 0.175 0.246 0.009
(0.500, 0.500) T (0.174, 0.242, 0) 0.176 0.247 0.009
(0.349, 0.551) E1 (0.215, 0.215, 0.013) 0.219 0.216 0.021
(0.551, 0.349) E2 (0.215, 0.215, 0.013) 0.216 0.219 0.021
(0.450, 0.450) T (0.215, 0.215, 0.013) 0.218 0.218 0.021
(0.422, 0.478) E1 (0.174, 0.258, 0.013) 0.181 0.258 0.022
(0.619, 0.281) E2 (0.174, 0.258, 0.013) 0.177 0.259 0.021
(0.450, 0.450) T (0.174, 0.258, 0.013) 0.180 0.258 0.022

TABLE I
TEST RESULTS IN THE NO EXCESS SUM-RATE CASE FOR THE UNIFORM

BINARY SOURCE: (d1, d2, d0) IS A TARGET DISTORTION TRIPLE; (R1, R2)
IS THE PAIR OF RATES USED BY THE CODE; d̂1 , d̂2 , d̂0 ARE THE

EMPIRICAL DISTORTIONS.

(R1, R2) (d1, d2, d0) d̂1 d̂2 d̂0

(0.492, 0.319) E1 (0.116, 0.116, 0) 0.120 0.120 0.014
(0.319, 0.492) E2 (0.116, 0.116, 0) 0.120 0.120 0.014
(0.424, 0.387) T (0.116, 0.116, 0) 0.120 0.120 0.014
(0.502, 0.309) E1 (0.060, 0.176, 0) 0.065 0.181 0.014
(0.162, 0.649) E2 (0.176, 0.060, 0) 0.184 0.065 0.016
(0.373, 0.439) T (0.104, 0.132, 0) 0.110 0.137 0.015
(0.291, 0.423) E1 (0.123, 0.123, 0.013) 0.130 0.128 0.025
(0.423, 0.291) E2 (0.123, 0.123, 0.013) 0.128 0.130 0.025
(0.369, 0.344) T (0.123, 0.123, 0.013) 0.129 0.129 0.025
(0.492, 0.222) E1 (0.060, 0.191, 0.013) 0.064 0.197 0.027
(0.122, 0.591) E2 (0.191, 0.060, 0.013) 0.198 0.066 0.027
(0.377, 0.337) T (0.101, 0.151, 0.013) 0.105 0.156 0.027

TABLE II
TEST RESULTS IN THE NO EXCESS SUM-RATE CASE FOR A BINARY

SOURCE WITH pX(0) = 1/4: (d1, d2, d0) IS A TARGET DISTORTION

TRIPLE; (R1, R2) IS THE PAIR OF RATES USED BY THE CODE; d̂1 , d̂2 , d̂0
ARE THE EMPIRICAL DISTORTIONS.

column indicates whether the pair of rates (R1, R2) is an E1

or E2 corner point, or it is obtained by timesharing (T ) the two
corner points. As observed from Tables I and II, the distortions
are very close to the theoretical lower bounds.

B. No Excess Marginal Rate Case for the Uniform Binary
Source

We have considered three target distortion triples
(d1, d2, d0 = UB(d1, d2)): d1 = d2 = 0.1, 0.2, 0.3. At
encoder 0, we have set γ(x, xc) = 0 if x = xc, and 0.5 if
x ̸= xc. At encoders 1 and 2, γ((x, xc), u1) = ρ(x ⊕ xc, u1)
and γ((x, xc, u1), u2) = ρ(x ⊕ xc, u2), respectively, where
ρ(x ⊕ xc, ut) = 0 if x ⊕ xc = ut, and 1.2 if x ⊕ xc ̸= ut,
t = 1, 2. The value of δ is 0.5 at encoder 0 and 0.8 at
encoders 1 and 2. The threshold η is set to 0.99. In all
the cases R1 = R(d1) = R2 = R(d2). The experimental
results, which are summarized in Table III, show very good
performance.
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d1 = d2 UB(d1, d2) d̂1 d̂2 d̂0

0.1 0.0626 0.1159 0.1136 0.0783
0.2 0.1574 0.2161 0.2170 0.1720
0.3 0.2658 0.3173 0.3134 0.2823

TABLE III
TEST RESULTS IN THE NO EXCESS MARGINAL RATE CASE FOR THE

UNIFORM BINARY SOURCE: d1 = d2 ARE TARGET DISTORTION VALUES
FOR THE SIDE DESCRIPTIONS; UB(d1, d2) IS THE TARGET VALUE FOR

THE CENTRAL DISTORTION; d̂1 , d̂2 , d̂0 ARE THE EMPIRICAL DISTORTIONS.

C. Successive Refinement

We have tested the proposed SR coding scheme for two
binary and one ternary sources. The binary sources are 1)
uniform binary source; 2) non-uniform binary source with
pX(0) = 0.25. In both cases δ = 1.6, and a) at encoder 0,
γ(x, xc) = 0 if x = xc, and 2.8 if x ̸= xc; b) at encoder
1, γ((x, xc), u1) = 0 if x ⊕ xc = u1, and 2.8 otherwise.
For the uniform ternary source δ = 1.1 and a) at encoder 0,
γ(x, xc) = 0 if x = xc, and ρ if x ̸= xc; b) at encoder 1,
γ((x, xc), u1) = 0 if x ⊕3 (3 − xc) = u1, and ρ otherwise,
where ρ ∈ [1.91, 2.31]. The value of η is 0.9 or 0.99. The
results of our experiments are presented in Figs. 7, 8 and 9.
As seen in these figures, the empirical distortions are very
close to the theoretical limits.

Fig. 7. Simulation results in the SR case for the uniform binary source at
R1 = 0.2 and various R2 values.

VIII. CONCLUSION

This work presents a practical MD coding scheme based on
LDGM codes for the Zhang-Berger region. The asymptotical
optimality of the scheme is proved for a joint typicality
encoder, while a message passing algorithm is used as a
practical encoding solution. The application of this scheme to
three cases of the MD problem is discussed in more detail:
1) the no excess sum-rate case for binary sources; 2) the
no excess marginal rate case for the uniform binary source;
3) the problem of successive refinement. In all cases, the
Hamming distortion is the fidelity criterion. To aid the code

Fig. 8. Simulation results in the SR case for a non-uniform binary source
with pX(0) = 0.25 at R1 = 0.2 and various R2 values.

Fig. 9. Simulation results in the SR case for the uniform ternary source at
R1 = 0.4 and various R2 values.

design for the first of the aforementioned cases, we provide
the analytical expression of the distortion region, which was
known previously only for the uniform binary source. Our
simulations show very good results, validating the ability of the
proposed coding scheme to approach in practice the theoretical
rate-distortion limits or the available upper bounds.

APPENDIX A
PROOF OF LEMMA 1

For each 1 ≤ l ≤ n, let ϱl denote the random m×ω matrix
consisting of columns l, l+n, l+2n, · · · , l+(ω− 1)n of the
random matrix G, and define Ỹ n(vm) = (vmϱl)

n
l=1 for every

vm ∈ Fm
2 . Further, for each yn ∈ Yn and δ > 0 define

σn(y
n,G, δ) ,

∑
vm∈Fm

2

I((yn, Ỹ n(vm))) ∈ T δ,n
pY,Ỹ

).

It is easy to verify that if (yn, ỹn) ∈ T
δ

|Z| ,n
pY,Ỹ

, then
(yn, ϕ(ỹn)) ∈ T δ,n

pY,Ỹ
. Therefore, in order to prove Lemma 1 it
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is sufficient to show that limn→∞ P(σn(Y n,G, δ) > 0) = 1,
for any δ > 0.

According to the proof of Theorem 2 in [17] the following
holds

lim
n→∞

1

n
log2 P(σn(Y n,G, δ) > 0) ≥ 0, (20)

for any δ > 0. We point out that the proof in [17] was carried
out assuming that the sequence Y n was i.i.d according to the
probability pY . However, a careful examination reveals that
only property (7) was needed in the proof4.

To complete the proof we will construct a bounded differ-
ence martingale sequence. For this, for each yn ∈ Yn and
matrix G define the mapping

ρ(yn, G) ,
min{ nα

|Y||Ỹ|
: (yn, ỹn(vm)) ∈ T α,n

pY,Ỹ
for some vm ∈ Fm

2 },

where ỹn(vm) denotes the realization of Ỹ n(vm) for the
given matrix G. Consider now a sequence of random variables
{B0,n, B1,n, · · · , Bn,n} defined as follows:

B0,n = E{ρ(Y n,G)},
Bi,n = E{ρ(Y n,G)|Y1, · · · , Yi, ϱ1, · · · , ϱi}, 1 ≤ i ≤ n.

Notice that Bn,n = ρ(Y n,G). Further, it can be easily shown
that the inequality |Bi+1,n−Bi,n| ≤ 1 holds for all i, 0 ≤ i ≤
n − 1. Then according to Azuma’s inequality [27] it follows
that

P{|Bn,n −B0,n| > nτ} < 2e−
nτ2

2 , (21)

for any n, τ > 0. Further, using a proof by contradiction
one obtains the equality limn→∞

1
nB0,n = 05 based on (20)

and (21). Finally, the previous equality corroborated with (21)
immediately implies that limn→∞ P{Bn,n > nδ} = 0 for all
δ > 0, which completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Since D(d0) is symmetric, it suffices to solve (14) for α ≥
1. Note that

E[d(X,Xt)] = E[d(X0 ⊕ Z,Xt)]

= E[E[d(X0 ⊕ Z,Xt)|Z]]
= (1− d0)E[d(X0, Xt)] + d0(1− E[d(X0, Xt)])

= (1− 2d0)E[d(X0, Xt)] + d0,

for t = 1, 2. Therefore problem (14) is equivalent to

min
pX1X2|X0

:I(X1;X2)=0
αE[d(X0, X1)] + E[d(X0, X2)]. (22)

To tackle this minimizaiton problem, we first fix the marginal
distribution of X1, in other words, let pX1(0) = ϵ, for some
ϵ, 0 < ϵ < 1, and solve the parameterized problem P (ϵ), then
optimize over all possible values of ϵ. In order to proceed let

4In the proof of Theorem 2 of [17] the quantity I(X; f(X̃)) has to be
replaced by I(X; X̃).

5The proof of this relation proceeds as the proof of relation (74) in [16].

us adopt the following notation

y1 = pX0X1X2(0, 1, 1), y2 = pX0X1X2(1, 0, 0),

y3 = pX0X1X2(1, 1, 0), y4 = pX0X1X2(1, 0, 1),

y5 = pX0X1X2(0, 1, 0), y6 = pX0X1X2(0, 0, 1),

y7 = pX0X1X2(0, 0, 0), y8 = pX0X1X2(1, 1, 1).

Then

d∗1 , E[d(X0, X1)] = y1 + y2 + y4 + y5,

d∗2 , E[d(X0, X2)] = y1 + y2 + y3 + y6. (23)

Let y = (y1, · · · , y8) and δ∗ , pX0(0) =
δ−d0

1−2d0
≤ 1/2. Now

problem (22) becomes

min
0<ϵ<1

min
y

C(ϵ,y) = (α+ 1)y1 + (α+ 1)y2

+ y3 + αy4 + αy5 + y6 (24)

subject to
8∑

i=1

yi = 1 (25)

y1 + y5 + y6 + y7 = δ∗

y2 + y4 + y6 + y7 = ϵ

y2 + y7 =
ϵ

1− ϵ
(y3 + y5)

yi ≥ 0, 1 ≤ i ≤ 8.

The second constraint in (25) is obtained from pX0(0) = δ∗,
while the third follows from pX1(0) = ϵ. The fourth is derived
from pX1(0)pX2(0) = pX1X2(0, 0), which holds due to the
independence of X1 and X2. First we solve problem P (ϵ) for
the case when ϵ ≤ 1/2. From the four equations in (25) one
obtains

y5 = −y1 + y2 + y4 + δ∗ − ϵ, (26)
y8 = −y2 − y3 − y4 + 1− δ∗,

y6 =
ϵ

1− ϵ
y1 −

ϵ

1− ϵ
y2 −

ϵ

1− ϵ
y3 −

1

1− ϵ
y4 +

ϵ(1− δ∗)
1− ϵ

,

y7 = − ϵ

1− ϵ
y1 +

(
ϵ

1− ϵ
− 1

)
y2 +

ϵ

1− ϵ
y3 +

ϵ

1− ϵ
y4+

ϵ(δ∗ − ϵ)
1− ϵ

.

Plugging them into the cost function yields

C(ϵ,y) = α(δ∗ − ϵ) + ϵ(1− δ∗)
1− ϵ

+

(
1 +

ϵ

1− ϵ

)
y1

+

(
2α+ 1− ϵ

1− ϵ

)
y2 +

(
1− ϵ

1− ϵ

)
y3

+

(
2α− 1

1− ϵ

)
y4. (27)

It can be easily verified that the coefficients of all variables in
(27) are non-negative when ϵ ≤ 1/2, and are strictly positive
when ϵ < 1/2. Thus, C(ϵ,y) ≥ g1(ϵ) , α(δ∗ − ϵ) + ϵ(1−δ∗)

1−ϵ ,
for any y satisfying (25). If, additionally, ϵ ≤ δ∗, then the
vector y obtained using (26) and y1 = y2 = y3 = y4 = 0,
has non-negative components, hence it is a feasible solution
achieving the lower bound g1(ϵ), and therefore, it is a solution
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to P (ϵ). Now denote by C∗(ϵ) the value of the cost function
of P (ϵ) at optimality. The conclusion of the above discussion
is stated next.
Assertion 1. Let α ≥ 1. For 0 < ϵ ≤ 1/2, one has C∗(ϵ) ≥
g1(ϵ). Additionally, when 0 < ϵ ≤ δ∗, one has C∗(ϵ) = g1(ϵ)
and a solution to P (ϵ) is y(ϵ) defined by

y1(ϵ) = y2(ϵ) = y3(ϵ) = y4(ϵ) = 0,

y5(ϵ) = δ∗ − ϵ, y6(ϵ) =
ϵ(1− δ∗)
1− ϵ

,

y7(ϵ) =
ϵ(δ∗ − ϵ)
1− ϵ

, y8(ϵ) = 1− δ∗.

Furthermore, when 0 < ϵ ≤ δ∗ and ϵ ̸= 1/2, y(ϵ) is the
unique solution to P (ϵ).

The next result can be easily verified.

Assertion 2. For 1 ≤ α ≤ 1/(1− δ∗),

min
0<ϵ≤1/2

g1(ϵ) = g1(ϵ1),

where ϵ1 , 1−
√

(1− δ∗)/α ∈ (0, 1/2), and ϵ1 is the unique
point of minimum.

Next we will analyze the case when ϵ > 1/2. By solving
the variables y3, y4, y7, y8 from the four equalities in (25) and
replacing them in the cost function, one obtains

C(ϵ,y) = α(ϵ− δ∗) + δ∗(1−ϵ)
ϵ +

(
2α+ 1− 1−ϵ

ϵ

)
y1 +(

1 + 1−ϵ
ϵ

)
y2 +

(
2α− 1

ϵ

)
y5 +

(
1− 1−ϵ

ϵ

)
y6. (28)

Because 1/2 < ϵ < 1 and α ≥ 1, the coefficients of variables
in (28) are non-negative; therefore, we obtain that C∗(ϵ) ≥
g2(ϵ) , α(ϵ− δ∗) + δ∗(1−ϵ)

ϵ . Further, the following assertion
can be easily verified.

Assertion 3. Let α ≥ 1 and 1/2 < ϵ < 1. Then

C∗(ϵ) ≥ min
1/2<ϵ<1

g2(ϵ) ≥ min
0<ϵ<1

g2(ϵ) = g2(ϵ2),

where ϵ2 ,
√
δ∗/α ∈ (0, 1).

Finally, we need one more result, which is stated next.

Assertion 4. For δ < 1/2, g1(ϵ1) < g2(ϵ2) holds, while for
δ = 1/2, one has g1(ϵ1) = g2(ϵ2).

Proof of Assertion 4. The nontrivial case is when δ < 1/2.
Relation g1(ϵ1) < g2(ϵ2)) is equivalent to 2

√
α(
√
1− δ∗ −√

δ∗) < (α+1)((1−δ∗)−δ∗). By multiplying both sides of the
above inequality with 1/(

√
1− δ∗ −

√
δ∗), which is positive

for δ < 1/2, it reduces to 2
√
α < (α + 1)(

√
1− δ∗ +

√
δ∗),

which holds due to 0 < 2
√
α ≤ α+1 and 1 <

√
1− δ∗+

√
δ∗.

�
Further, by combining Assertions 1-4, we conclude that

when 1 ≤ α ≤ 1/(1 − δ∗) a solution to problem (24)
is (ϵ1,y(ϵ1)). Additionally, when δ < 1/2 this solution is
unique. This solution yields the following values for d1, d2
(via (23))

d1 = d0 + (1− 2d0)(
√
1− δ∗(1/

√
α−
√
1− δ∗)), (29)

d2 = d0 + (1− 2d0)(
√
1− δ∗(

√
α−
√
1− δ∗)).

Further, eliminating α from the above relations leads to

(d1 + 1− 2d0 − δ)(d2 + 1− 2d0 − δ)
= (1− d0 − δ)(1− 2d0). (30)

Notice that for any pair (d1, d2) with d0 ≤ d1 ≤ d2, satisfying
(30), the value of α for which equations (29) hold, is α =
(1−d0−δ)(1−2d0)
(d1+1−2d0−δ)2 , which clearly satisfies 1 ≤ α ≤ 1/(1− δ∗).

Thus, we have proved that the set of solutions to problem (13)
for all 1 ≤ α ≤ 1/(1 − δ∗), equals the portion of hyperbola
(30) corresponding to d0 ≤ d1 ≤ d2. The solution pair (d1, d2)
corresponding to α = 1/(1 − δ∗) is (d1, d2) = (d0, δ). Since
the value of d1 in the solution to (13) is non-increasing as α
increases, and cannot go below d0, it follows that for any α >
1/(1− δ∗) the unique solution to problem (13) is (d1, d2) =
(d0, δ). Using further the fact that D(d0) is symmetric the first
conclusion of Theorem 2 follows.

To complete the proof note that, for any pair (d1, d2), with
d1 ≤ d2, satisfying (30), the joint probability distribution
pX0X1X2 can be recovered from the solution vector y(ϵ1).
Further, pXX1X2 can be evaluated using the Markov chain
X−X0−(X1, X2), leading to relations in Fig. 4. Additionally,
since D(d0) is symmetric and relations in Fig. 4 are symmetric
in (X1, d1) and (X2, d2), one concludes that they also hold
for d1 > d2.

We have already established the uniqueness of the condi-
tional probability pX0X1X2|X when δ < 1/2. For the case
δ = 1/2 the range of interest for α is 1 ≤ α ≤ 1/(1−δ∗) = 2.
Then ϵ2 =

√
1
2α ≥ 1/2 and by Assertions 1-4, one has

g2(ϵ2) = min0<ϵ<1 C
∗(ϵ). Note that when ϵ = ϵ2 and

α < 2 the coefficients of y1, y2, y5, y6 in (28) are positive.
Therefore, in order to achieve the minimum value g2(ϵ2) the
variables y1, y2, y5, y6 must be set to 0. By letting ϵ = ϵ2 and
y1 = y2 = y5 = y6 = 0 in (25), one obtains the only other
solution (ϵ2,y(ϵ2)) to problem (24). It can be verified that the
random variables X ′

1 and X ′
2 derived from (ϵ2,y(ϵ2)) satisfy

pXX′
1X

′
2
(x, x1, x2) = pXX1X2(x⊕ 1, x1 ⊕ 1, x2 ⊕ 1). �

APPENDIX C
PROOF OF CLAIMS IN SECTION V

Using the fact that X − Xt − Xc, t = 1, 2, and X1 −
(X,Xc)−X2 form Markov chains, one obtains

pXXcX1X2(x, xc, x1, x2)

=
pX1

(x1)pX|X1
(x|x1)pXc|X1

(xc|x1)pX2
(x2)pX|X2

(x|x2)pXc|X2
(xc|x2)

pXc (xc)pX|Xc
(x|xc)

.

Then the mapping ψ0(·) which minimizes the central distor-
tion must satisfy

ψ0(xc, x1, x2) = arg max
x=0,1

pXXcX1X2(x, xc, x1, x2)

= arg max
b=0,1

h(b),

where h(b) , pX|X1
(b|x1)pX|X2

(b|x2)

pX|Xc (b|xc)
. Notice that

pX|Xt
(b|xt) = pXt|X(xt|b) and pX|Xc

(b|xc) = pXc|X(xc|b).
Using the fact that the function 1−x

x is decreasing for
x > 0, and that 1−x

x ≥ 1 for 0 < x ≤ 1/2, combined
with 0 < d1 ≤ d2 ≤ s, it follows easily that h(b)

h(1−b) ≥ 1,
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for the following cases: 1) x1 = x2 = xc = b; 2)
x1 = x2 = b, xc = 1− b; 3) x1 = b, x2 = xc = 1− b.

Consider now the case x1 = xc = b and x2 = 1− b. Then
h(1−b)
h(b) = d1

1−d1

1−d2

d2

1−s
s . Clearly, h(1−b)

h(b) ≥ 1 holds if and only
if s ≤ α(d1, d2). Notice that d2 ≤ α(d1, d2) ≤ 1/2. Based on
the above arguments one concludes that (16) is valid.

Now let us analyze the central distortion when s ≤
α(d1, d2). The following relations hold

P(X ̸= ψ0(Xc, X1, X2))

= P(Xc = X)− P(X = Xc = X1 = X2)

+P(X ̸= Xc, Xc = X1 = X2)

= 1− s− (1−d1)(1−d2)(1−s−d1)(1−s−d2)
(1−s)(1−2d1)(1−2d2)

+d1d2(1−s−d1)(1−s−d2)
s(1−2d1)(1−2d2)

.

Let f(s) denote the last expression. The function f(·) is
strictly convex over the interval (d2, α(d1, d2)) and f(d2) =
f(α(d1, d2)). Then its unique point of minimum s0 ∈
(d2, α(d1, d2)) is the solution to f ′(s) = 0. The above equa-
tion is equivalent to β(d1, d2)s2(1− s)2 +2s(1− s)− 1 = 0,
whose only real solution smaller than 1/2 is given by (18). �
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