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Abstract- It is known that the generalized Lloyd method is applicable to locally optimal multiple

description scalar quantizer (MDSQ) design. However, it remains unsettled when the resulting MDSQ is

also globally optimal. We partially answer the above question by proving that for a fixed index assignment

there is a unique locally optimal fixed-rate MDSQ of convex cells under Trushkin’s sufficient conditions

for the uniqueness of locally optimal fixed-rate single description scalar quantizer. This result holds

for fixed-rate multiresolution scalar quantizer (MRSQ) of convex cells as well. Thus the well-known

log-concave pdf condition can be extended to the multiple description and multiresolution cases.

Moreover we solve the difficult problem of optimal index assignment for fixed-rate MRSQ and

symmetric MDSQ, when cell convexity is assumed. In both cases we prove that at optimality the number

of cells in the central partition has to be maximal, as allowed by the side quantizer rates. As long as

this condition is satisfied, any index assignment is optimal for MRSQ, while for symmetric MDSQ an

optimal index assignment is proposed.

The condition of convex cells is also discussed. It is proved that cell convexity is asymptotically optimal

for high resolution MRSQ, under the rth power distortion measure.
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I. INTRODUCTION

The problem of multiple description coding (MDC) was first posed by Wyner at the 1979 IEEE

Information Theory Workshop. Recent years have seen greatly intensified research efforts on MDC,

which were primarily driven by the pressing needs of robust communications over lossy IP and wireless

networks. A popular MDC technique is multiple description quantization.

A multiple description quantizer (MDQ) consists of a set of K encoders, also called side encoders, and

a set of 2K −1 decoders. Each encoder generates a different description, called side description. Each of

the K side descriptions can be separately decoded to a reconstruction of a certain fidelity, by a so-called

side decoder. Furthermore, any non-empty subset I, |I| ≥ 2, of the K side descriptions can also be

jointly decoded by a so-called joint decoder. The reconstruction improves as more side descriptions are

received and they collaborate to refine the source. Each pair of a side encoder and the corresponding

side decoder of the MDQ forms a quantizer (called side quantizer). Moreover, for each set I, |I| ≥ 2,

of descriptions there is an implicit encoder related to the side encoders for the descriptions in I. This

encoder together with the decoder for set I constitute a joint quantizer. The side and joint quantizers are

called components of the MDQ. A component of particular importance is the central quantizer, which

corresponds to the whole set of K descriptions.

This paper is concerned with the design and properties of optimal multiple description scalar quantizers.

We will use the abbreviation K-DSQ for a K-description scalar quantizer. The performance of a K-DSQ

is measured by the expected distortion of the reconstructed source at the receiver, where the expectation

is taken over all possible sets of descriptions received. Thus, it is a weighted sum of the distortions of

all decoders. The objective of optimal K-DSQ design is to minimize the expected distortion subject to

rate constraints on the K side descriptions.

A multiresolution (progressively refinable) scalar quantizer (MRSQ) is a special case of K-DSQ, where

a prefix condition has to be met. Namely, side description i can be decoded only jointly with all of the

side descriptions 1, 2, through i− 1, for any 1 ≤ i ≤ K. In other words, the set of component decoders

is restricted to the decoders associated to the sets of descriptions {1, 2, · · · , i} for all 1 ≤ i ≤ K.

Another important case, which is commonly treated in the literature, is that of symmetric K-DSQ,

when all K side descriptions have the same rate, and any two sets of descriptions of equal size have the
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same probability of being received.

A few techniques have been proposed for optimal K-DSQ design in both fixed-rate and entropy-

constrained cases. The main design methods can be classified into two types: generalized Lloyd algorithms

[26], [27], [4], [17], [12], and combinatorial algorithms [22], [23], [5], [6], [7], [8], [16]. The first type is

a generalization of Lloyd’s method [21] for fixed-rate scalar quantizer design. This method alternatively

optimizes the decoder and the encoder, when the other component is fixed. Since the sequence of expected

distortions is non-increasing, the algorithm eventually converges to a local optimum. The generalized

Lloyd’s method has been applied to the design of 2-DSQ with balanced descriptions (i.e., symmetric

2-DSQ in our terminology) [26], [27]. It was also used for the design of multiresolution scalar quantizers

[4], [17] and multiresolution vector quantizers [9]. The design of more general K-DSQ by this approach

was covered in [12].

The combinatorial methods address the design of optimal K-DSQ for discrete distributions, under the

constraint of convex cells. These algorithms ensure globally optimal solution under the above convexity

constraint. Specifically, in [22], [23] the problem is modeled as a shortest path problem in a weighted

directed acyclic graph. In [7], [8], [6] a strong monotonicity of a general class of distortion functions is

exploited to speed up the shortest path computation for fixed-rate 2-DSQ [7], [6] and symmetric fixed-rate

K-DSQ [8]. Similar ideas are used in [5] to accelerate the dynamic programming in the optimal design

of fixed-rate MRSQ. Unfortunately, the cell convexity may preclude optimal solutions [10]. Moreover,

the fast matrix search algorithm for K-DSQ can still be too expensive if K is large (the complexity is

exponential in K in general).

In contrast, the locally descent algorithms are easier to implement and have lower complexity. But

they only converge to a locally optimal solution in general. However, this limitation becomes nonexistent

if the underlying distortion function has a unique local minimum. The main question to be answered

by this paper is under what conditions the local minimum is unique, and hence the generalized Lloyd

method for K-DSQ design is globally optimal.

Sufficient conditions for the uniqueness of a local optimum were studied in the case of fixed-rate single

description scalar quantization [11], [24], [18], [19], [25]. The most general sufficient conditions are the

ones given by Trushkin in [24], which were shown to be satisfied if the source pdf is log-concave [25].
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It is unknown up to now, however, whether a similar result holds for fixed-rate K-DSQ’s. One of the

contributions of this paper is to prove that Trushkin’s conditions also ensure the uniqueness of locally

optimal fixed-rate K-DSQ’s with convex cells (convex K-DSQ’s).

A central mechanism of K-DSQ is index assignment (IA) introduced in [26]. IA labels each central

quantizer cell by an ordered K-tuple of indexes corresponding to the side quantizers cells whose inter-

section equals that central cell. Thus, the system of K side encoders is uniquely specified by the central

partition (the partition induced by the central quantizer) and the IA. Our results on the uniqueness of

locally optimal convex K-DSQ’s hold with respect to fixed IA. The problem of optimal IA is notoriously

difficult, and it is solved by us for two notable cases of K-DSQ with convex cells. Specifically, we present

an optimal IA for fixed-rate convex symmetric K-DSQ. Moreover, for fixed-rate MRSQ of convex cells

we show that any index assignment is optimal as long as the number of cells in the central partition is the

maximum possible under the rate constraints. Furthermore, for both cases, we prove that the requirement

for the number of cells in the central partition to be maximal is necessary at optimality.

As to cell convexity, it was shown [10] that there are discrete distributions and weighting schemes for

different side and joint quantizers such that optimal K-DSQ has non-convex cells. It is interesting to know

when the cell convexity does not precludes optimality. Qualitatively, optimal K-DSQ will necessarily

have convex cells when the weights of side quantizers are large enough relative to the weights of the

joint quantizers, i.e., the optimization emphasizes on the side quantizers rather than the joint ones. This

intuition was validated in [6] for fixed-rate symmetric 2-DSQ’s of high rates, and r-th power distortion

measure. Another contribution of this paper is to show that the cell convexity of fixed-rate MRSQ does

not preclude optimality for high rates and r-th power distortion measure, regardless the weighting scheme.

The next section introduces the definitions and notations used throughout the paper. Section 3 presents

the necessary conditions for a locally optimal fixed-rate convex K-DSQ. Section 4 states and proves a

key result of this paper: For convex and strictly increasing error functions, the sufficient conditions given

by Trushkin [24] for the uniqueness of a locally optimal fixed-rate scalar quantizer are also sufficient

for the uniqueness of a locally optimal fixed-rate convex K-DSQ, with respect to a given IA. Section 5

turns to the problem of optimal IA, in which we derive a necessary condition for optimality (within the

class of fixed-rate convex MRSQ): the central partition of MRSQ has to have the largest possible number
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of cells allowed by the rate constraints. Further, any IA is optimal as long as this condition is satisfied.

Next we prove in Section 6 that at optimality, the fixed-rate convex symmetric K-DSQ must also have

the maximal number of cells in the central partition, and present an optimal IA. The proposed IA is a

generalization of the staggered IA for two descriptions. Precisely, it requires that the jth threshold of

side partition i be the
(
(j − 1)K + i

)th threshold in the central partition. Moreover, we show that if the

error function is continuously differentiable, this IA is the unique optimal IA, up to a permutation of side

quantizers. In Section 7 we discuss the cell convexity condition and show, based on the high-resolution

analysis of optimal scalar quantization [2], [1], [3], [20], [14], that at high rates optimal fixed-rate MRSQ

has convex cells for the rth power distortion measure. Section 7 concludes the paper.

II. DEFINITIONS, NOTATIONS, PROBLEM FORMULATION

Let X be a continuous random variable with probability density function (pdf, for short) p(x). In this

work we assume that the pdf p(x) satisfies the following condition.

Condition A. There is an open interval (V, W ), −∞ ≤ V < W ≤ ∞, such that p(x) is continuous and

positive inside this interval and p(x) = 0 outside this interval. Denote A = [V, W ] ∩ R.

We consider a distortion function d(x, y) = f(|x− y|), where f(·) satisfies the condition stated below.

Condition B. f(·) is a nonnegative convex function with its only null point in 0. Consequently, f(·) is

continuous and strictly increasing. Additionally, for any y ∈ R the following inequality holds
∫ W

V
f(|y − x|)p(x)dx < +∞.

A scalar quantizer Q of M cells is a partition of the alphabet setA into M non-empty sets C1, C2, · · · , CM ,

called cells, together with a set of representation values y1, · · · , yM ∈ A. The distortion of the quantizer

is defined by

D(Q) =
M∑

i=1

∫

Ci

d(x, yi)p(x)dx =
M∑

i=1

∫

Ci

f(|x− yi|)p(x)dx. (1)

The quantizer is also associated with a rate, denoted by R(Q). In the case of fixed-rate quantizer,

R(Q) = log2 M ; in the case of entropy-constrained quantizer, R(Q) =
∑M

i=1 P (Ci) log2
1

P (Ci)
, where

P (Ci) =
∫
Ci

p(x)dx. The problem of optimal quantizer design is to minimize D(Q) given a target

quantizer rate R(Q) = R0.
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Now consider K ≥ 2 different scalar quantizers Q1, Q2, · · · , QK , called side quantizers, and define a

K-description scalar quantizer (K-DSQ) Q to be a system of 2K −1 scalar quantizers QI , for I ⊆ K =

{1, 2, · · · ,K}, I 6= ∅, such that for each I = {i1, · · · , is} with s ≥ 2, the partition of the alphabet A
by quantizer QI equals the intersection of the partitions of quantizers Qi1 , · · · , Qis

. The quantizer QK,

which has the highest resolution among all joint quantizers, is called the central quantizer. As K-DSQ

is a means of networked source coding to utilize channel diversity, it is natural to define the expected

distortion D̄(Q) of the K-DSQ Q to be

D̄(Q) =
∑

I⊆K,I6=∅
ωID(QI), (2)

where each component quantizer QI is assigned a weight ωI ≥ 0. Typically, in practice the weight ωI

has the meaning of the probability that only the subset of side descriptions I is available for source

reconstruction. Note that in (2) the term for no descriptions is omitted since it does not affect the optimal

design of K-DSQ. For convenience of further formulations we also define ω∅ = 0.

The K-DSQ is said to be fixed-rate/entropy-constrained if all side quantizers are fixed-rate/entropy-

constrained.

The problem of optimal fixed-rate/entropy-constrained K-DSQ design is to minimize the expected

distortion (2) over all possible K side quantizers, given the weights ωI , and given the target rates

R(Qi) = Ri, 1 ≤ i ≤ K, of the side quantizers. Note that in the case of fixed-rate K-DSQ, the

constraints on the rates are equivalent to imposing to each side quantizer Qi to have Mi = 2Ri cells.

Note that only the quantizers QI with ωI 6= 0, contribute to the expected distortion. Therefore we call

them active components of the K-DSQ. We will require that the central quantizer of a K-DSQ be an

active component, i.e., ωK > 0.

A K-DSQ is called symmetric if R1 = R2 = · · · = RK and ωI = ωI′ for all I, I ′ ⊆ K, such that

|I| = |I ′|. We also require that the side quantizers of symmetric K-DSQ are active components, i.e.,

ω{1} > 0.

The above definition of K-DSQ also includes multiresolution scalar quantizers (MRSQ). Precisely, an

MRSQ of K refinement stages is a K-DSQ whose active components are Q1, Q{1,2}, · · · , Q{1,··· ,i}, · · · , QK.

A cell is said to be convex if it is a convex set, i.e., an interval of the real line. A scalar quantizer is

called convex, or regular as referred in some literature, if all of its cells are convex. A K-DSQ is said to
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Fig. 1. Two different IA’s for convex 2DSQ and their corresponding side quantizers partitions: c) partitions for IA of a); d)

partitions for IA of b).

be convex if all its active quantizers are convex. Note that in a convex K-DSQ, not all side quantizers

are necessarily convex, but only if they are active components. For example, in a convex MRSQ only

the side quantizer Q1 is active, therefore all the others may have non-convex cells.

Assume that the K-DSQ has convex cells in the central partition and denote them by C1, C2, · · · , CM ,

the indexing being consistent with their order from left to right. Further, for each i, 1 ≤ i ≤ K, let Mi

denote the number of cells of the side quantizer Qi and let C
(i)
1 , C

(i)
2 , · · · , C

(i)
Mi

, denote its cells. The

index assignment of the K-DSQ is the mapping h : {1, · · · ,M} → {1, · · · , M1} × · · · × {1, · · · ,MK},

such that h(l) = (j1, j2, · · · , jK) if and only if Cl = C
(1)
j1
∩C

(2)
j2
∩ · · · ∩C

(K)
jK

. In other words, the IA is

the function which assigns to each l the K-tuple of indices of side cells whose intersection equals the

lth central cell. Note that the the central partition together with the IA uniquely determine the partitions

of all component quantizers. This is because for any j and i the side cell C
(i)
j has to be the union of all

Cl for which the ith component of h(l) equals j.

It is true that in the case of convex K-DSQ the convexity requirement already imposes constraints on

the IA. However, the variety of eligible IA’s may still be large enough to make an exhaustive search for

the optimal IA unattractive.

Next we illustrate the relevance of IA for convex K-DSQ’s by considering two examples, one for
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fixed-rate symmetric 2-DSQ and one for fixed-rate MRSQ with 2 refinement stages. The number of cells

in the central partition is M = 7 in the first example and M = 6 in the second one. In both cases we

assume a uniform distribution over [V,W ] = [0,M ], and the central partition to be uniform, consequently,

Cl = (l − 1, l] for 2 ≤ l ≤ M , and C1 = [0, 1]. In these examples we will consider the squared error as

distortion measure and the midpoint of each cell as its representation value.

We will represent graphically each IA as a table with M1 rows and M2 columns, where some positions

are filled with the integers l, 1 ≤ l ≤ M , while others are empty. Precisely, integer l is placed on row i

and column j if and only if h(l) = (i, j). This table will be referred to as the IA matrix as in [26].

Example 1. Relevance of IA for Convex Symmetric 2-DSQ. Consider the two IA’s depicted in Figure

1 a) and b), where M1 = M2 = 4. Each of the IA’s induces a convex 2-DSQ since the cells of both

side quantizers are convex. The side partitions corresponding to each of the two IA’s are represented in

Figure 1 c) and d), respectively. The side distortions for case c) are D(Q1) = D(Q2) = 25
84 , while for

case d) are D(Q1) = D(Q2) = 67
84 . Since the central distortion is the same in both cases, it follows that

the 2-DSQ of case c) has smaller expected distortion.

Example 2. Relevance of IA for Convex 2-stage MRSQ. Consider the three IA’s illustrated in Figure 2

a)-c). Here M1 = 2 and M2 = 4. Each of these IA’s defines a 2-stage MRSQ where Q2 has non-convex

cells, while Q1 has only convex cells. Since only Q1 and Q{1,2} must have convex cells for the MRSQ

to qualify as convex, it follows that all three IAs correspond to convex MRSQ’s. Their side partitions

are depicted in Figure 2 d)-f), respectively. Note that the side distortion D(Q1) is smaller in case d)

than in the other two cases since, as it is well known, for the uniform distribution, the uniform quantizer

is strictly better than a non-uniform one. Further, because the side quantizer Q2 does not affect the

overall expected distortion, while the central quantizer is the same in all three situations, it follows that

the MRSQ of case d) has the best performance. On the other hand, note that the MRSQ’s of cases e)

and f) have different quantizers Q2, but identical quantizers Q1 and Q{1,2}, in other words their active

quantizers coincide. It follows that their performance is the same.

III. NECESSARY CONDITIONS FOR A LOCALLY OPTIMAL K-DSQ

In this paper the scope of our inquiry is confined to the class of fixed-rate convex K-DSQ’s. For

succinctness of presentation we will drop the qualifier ”fixed-rate”, consequently only use the term
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Fig. 2. Three different IA’s for convex MRSQ and their corresponding side quantizers partitions: d) partition for IA of a); e)

partition for IA of b); f) partition for IA of c).

convex K-DSQ in sequel.

Design algorithms generalized from Lloyd’s method [21], starting from a configuration of the K-DSQ,

alternatively fix the encoder to optimize the decoder and fix the decoder to optimize the encoder. Since

at each iteration the expected distortion does not increase, such an algorithm eventually converges to a

locally optimal convex K-DSQ. We next present the necessary conditions for a locally optimal convex

K-DSQ.

Let Q be a convex K-DSQ. Denote by MI the number of cells of quantizer QI , for I ⊆ K, I 6= ∅
and write M = MK. Let (ui−1, ui], for 1 ≤ i ≤ M , be the cells of the central quantizer, where
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V = u0 < u1 < u2 < · · · < uM = W . The values ui, 1 ≤ i ≤ M − 1, are called thresholds. For each

active quantizer QI there are indices jI,0 = 0 < jI,1 < jI,2 < · · · < jI,MI = M , such that the cells

of QI are (ujI,k−1 , ujI,k
], for 1 ≤ k ≤ MI . Denote by yI,k the reproduction value corresponding to cell

(ujI,k−1 , ujI,k
] of QI . Then (1) and (2) imply that

D̄(Q) =
∑

I⊆K,ωI 6=0

ωI
MI∑

k=1

∫ ujI,k

ujI,k−1

f(|x− yI,k|)p(x)dx. (3)

Optimum decoder condition. When the encoder is fixed, the thresholds ui and the indeces jI,k are

fixed. Thus, the decoder is optimum if and only if the following is satisfied
∫ ujI,k

ujI,k−1

f(|x− yI,k|)p(x)dx = min
y∈A

∫ ujI,k

ujI,k−1

f(|x− y|)p(x)dx,

for all I such that ωI > 0, and k, 1 ≤ k ≤ MI .

As shown by Trushkin [24], for every V ≤ a < b ≤ W , the function Da,b(y) =
∫ b
a f(|x− y|)p(x)dx,

defined for every y ∈ [V, W ], achieves its minimum in some unique point µ(a, b), situated inside the

interval (a, b). This value is called generalized centroid. Consequently, the optimum decoder condition

is that

yI,k = µ(ujI,k−1 , ujI,k
), for all I, ωI > 0, and k, 1 ≤ k ≤ MI . (4)

Note that for the case of squared error distortion measure, µ(a, b) is the conditional mean of the interval

(a, b), i.e.,

µ(a, b) =

∫ b
a xp(x)dx∫ b
a p(x)dx

. (5)

Optimum encoder condition. Here we derive a necessary condition for optimal encoder, given fixed

decoder and IA.

Define a function G(u) on the set OM of (M − 1)-dimensional vectors u = (u1, u2, · · · , uM−1)

satisfying V < u1 < u2 < · · · < uM−1 < W :

G(u) =
∑

I⊆K,ωI 6=0

ωI
MI∑

k=1

∫ ujI,k

ujI,k−1

f(|x− yI,k|)p(x)dx.

The encoder is optimal given the decoder and the index assignment if and only if G(·) takes its minimum

value over OM at u. Since G(·) is continuous and differentiable and OM is an open set, a necessary

condition for G(u) to be the minimum over OM is:

∂G

∂ui
(u) = 0, for any i, 1 ≤ i ≤ M − 1. (6)
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Fix an arbitrary i, 1 ≤ i ≤ M − 1. Denote by Si the set of subsets of indices I ⊆ K, such that

ωI 6= 0 and ui is a threshold of quantizer QI . Thus, for each I ∈ Si there is an integer k(I, i) such that

jI,k(I,i) = i (i.e., ui is the k(I, i)th threshold of quantizer QI). Then

G(u) = T +
∑

I∈Si

ωI

(∫ ui

ujI,k(I,i)−1

f(|x− yI,k(I,i)|)p(x)dx +
∫ ujI,k(I,i)+1

ui

f(|x− yI,k(I,i)+1|)p(x)dx

)
,

where the term T does not depend on ui. It follows that

∂G

∂ui
(u) =

∑

I∈Si

ωIp(ui)
(
f(|ui − yI,k(I,i)|)− f(|ui − yI,k(I,i)+1|)

)
.

Since p(ui) 6= 0, the necessary condition for optimal encoder (6) becomes

∑

I∈Si

ωIf(|ui − yI,k(I,i)|) =
∑

I∈Si

ωIf(|ui − yI,k(I,i)+1|) for any i, 1 ≤ i ≤ M − 1. (7)

The K-DSQ obtained at convergence must simultaneously satisfy (4) and (7). By combining these two

conditions we obtain

∑

I∈Si

ωIf(|ui − µ(ujI,k(I,i)−1 , ui)|) =
∑

I∈Si

ωIf(|ui − µ(ui, ujI,k(I,i)+1)|), 1 ≤ i ≤ M − 1, (8)

which is the necessary condition for local optimum with respect to the IA. From now on we simply refer

to it as the necessary condition for local optimum, being understood that this condition takes different

forms for different IA’s.

IV. SUFFICIENT CONDITIONS FOR UNIQUENESS OF A LOCALLY OPTIMAL CONVEX K-DSQ

Sufficient conditions for the global optimality of a locally optimal fixed-rate scalar quantizer were

investigated in [11], [24], [18], [19], [25]. The sufficient conditions found by Fleischer [11] in the case

of squared error distortion, require that p(x) be differentiable and the derivative of log2 p(x) be strictly

decreasing. Trushkin considered a more general distortion measure, namely d(x, y) = g(x, |x − y|),
such that g(x, η) is convex in η, has a unique zero point for each x and is continuous in x [24]. He

formulated sufficient conditions for the uniqueness of a locally optimal quantizer which do not require

differentiability of p(x). The log-concavity of p(x) satisfies these conditions when g(x, η) = φ(x)η2

or g(x, η) = φ(x)|η|. Kieffer [19] proved the sufficiency of log-concavity for the family of distortion

functions d(x, y) = f(|x− y|), where f(·) is increasing, convex and continuously differentiable. Finally,

Trushkin [25] extended this result by showing that the requirement of continuous differentiability for
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f(·) can be dropped. To our best knowledge the conditions formulated by Trushkin in [24] are the most

general sufficient conditions for uniqueness of local optimal scalar quantizer so far.

As specified in Section 2 our distortion function is d(x, y) = f(|x− y|), where f(·) is a nonnegative

convex function with its only null point in 0, i.e., f(·) is continuous and strictly increasing. The next

theorem states that under the same conditions for p(x) as in [24, Theorem 1], there is at most one locally

optimal K-DSQ of a given IA. An immediate consequence is that the log-concavity of p(x) suffices to

ensure this uniqueness.

Theorem 1. Assume that the pdf p(·) satisfies Condition A and the error function f(·) satisfies Condition

B. Additionally assume that conditions T1− T4 stated below hold. Then there is at most one u ∈ OM

which satisfies (8).

T1) For any V < x0 < x1 < W , x0 − µ(V, x0) ≤ x1 − µ(V, x1).

T2) For any V < x0 < x1 < W , µ(x0, W )− x0 ≥ µ(x1,W )− x1.

T3) For any V < x0 < z0 < W , V < x1 < z1 < W , such that x0 ≤ x1, there is

µ(x0, z0)− x0 ≤ µ(x1, z1)− x1 ⇒ z0 − µ(x0, z0) ≤ z1 − µ(x1, z1). (9)

Moreover, if the left inequality is strict, then so is the right one.

T4) For any positive integer m and any two sets of values V < x1 < · · · < xm < W , V < z1 < · · · <
zm < W , such that xi < zi, 1 ≤ i ≤ m, and µ(xi, xi+1)− xi ≤ µ(zi, zi+1)− zi, 1 ≤ i ≤ m− 1, at

least one of the following inequalities holds:

T4.1) x1 − µ(V, x1) < z1 − µ(V, z1);

T4.2) µ(xm,W )− xm > µ(zm,W )− zm;

T4.3) for some i, 1 ≤ i ≤ m− 1, xi+1 − µ(xi, xi+1) < zi+1 − µ(zi, zi+1).

In order to prove Theorem 1 we first write the necessary condition for local optimum (8) in a simpler

form. Denote respectively by γ
(1)
i (u) and γ

(2)
i (u), the expression in the left and right hand side of

equation (8), which is rewritten as

γ
(1)
i (u) = γ

(2)
i (u) for all i, 1 ≤ i ≤ M − 1. (10)
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There are coefficients αi,j ≥ 0, for 0 ≤ j < i, αi,i−1 > 0 (because ωK > 0), and coefficients βi,l ≥ 0,

for i < l ≤ K, βi,i+1 > 0 (because ωK > 0), such that

γ
(1)
i (u) =

i−1∑

j=0

αi,jf(ui − µ(uj , ui)), and γ
(2)
i (u) =

M∑

l=i+1

βi,lf(µ(ui, ul)− ui). (11)

Note that a single description quantizer can be considered as a special case of K-DSQ with K = 1. Then

the central partition coincides with the side partition 1 and M = M1. Consequently, conditions (10) also

characterize a locally optimal convex scalar quantizer. However, the corresponding functions γ
(1)
i (·) and

γ
(2)
i (·) are simpler. Each of them is only a function of two consecutive thresholds and the summations

in (11) contain a single term. Trushkin’s approach to prove the uniqueness of a locally optimal quantizer

under the conditions of Theorem 1, was to show that, if two locally optimal points u and u′ have the first

k− 1 components equal and uk < u′k, then the inequality ”<” propagates to the rest of the components,

i.e., ui < u′i holds for all i > k. The proof was completed by showing that relation uM−1 < u′M−1

leads to a contradiction. In the case of K-DSQ, the summations in (11) contain more than one term and

γ
(1)
i (·) and γ

(2)
i (·) are functions of more thresholds, facts which make the problem more complex. In

this case if two locally optimal points u and u′ have the first k − 1 components equal and uk < u′k,

then inequalities ui < u′i do not necessarily hold for all i > k. Moreover, such inequalities would not be

sufficient to reach a contradiction. Our approach is to show that a more complex condition is propagated

to some values of i > k until a contradiction is reached. To proceed with the proof we first present two

lemmas.

Lemma 1. If Conditions A, B and T3 hold, then for any V < x0 < z0 < W , V < x1 < z1 < W , such

that z0 < z1, there is

z0 − x0 ≤ z1 − x1 ⇒ z0 − µ(x0, z0) ≤ z1 − µ(x1, z1) (12)

Moreover, if the first inequality is strict, so is the second one.

Proof. Note first that implication (9) of T3 is equivalent to

x1 − x0 ≤ µ(x1, z1)− µ(x0, z0) ⇒ µ(x1, z1)− µ(x0, z0) ≤ z1 − z0. (13)

Likewise, relation (12) is equivalent to

x1 − x0 ≤ z1 − z0 ⇒ µ(x1, z1)− µ(x0, z0) ≤ z1 − z0. (14)
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Assume now that the hypothesis of Lemma 1 holds. Next we need to distinguish between two cases.

Case a) x0 ≤ x1. If x1 − x0 ≤ µ(x1, z1)− µ(x0, z0), then the second inequality in (14) follows by T3

(according to (13)). If x1−x0 > µ(x1, z1)−µ(x0, z0), then combining this relation with x1−x0 ≤ z1−z0,

again µ(x1, z1) − µ(x0, z0) ≤ z1 − z0 follows. Now let us assume that x1 − x0 < z1 − z0 and that

µ(x1, z1) − µ(x0, z0) = z1 − z0. Then the first inequality in (13) holds and it is strict, and by T3 the

second one is strict too, thus leading to a contradiction. Hence, the claim of Lemma 1 is proved.

Case b) x1 < x0. Because the function µ(·, ·) is non-decreasing in both variables [24], x1 < x0 and

z0 < z1, imply that µ(x0, z0) ≥ µ(x1, z0) and µ(x1, z0) ≤ µ(x1, z1). The last relation can be rewritten

as 0 = x1 − x1 ≤ µ(x1, z1) − µ(x1, z0) and by T3 (via (13)) it implies that µ(x1, z1) − µ(x1, z0) ≤
z1 − z0, and that the equality holds only if µ(x1, z1) − µ(x1, z0) = 0. On the other hand, equality in

the last two relations cannot be reached simultaneously because z1 − z0 > 0. Consequently, we have

µ(x1, z1)− µ(x1, z0) < z1 − z0. Using further the fact that µ(x1, z0)− µ(x1, z1) ≤ 0, we obtain

µ(x1, z1)− µ(x0, z0) =
(
µ(x1, z1)− µ(x1, z0)

)
+

(
µ(x1, z0)− µ(x0, z0)

)
< z1 − z0,

which concludes the proof. ¤

In order to state the next lemma we introduce a definition first. Consider two arbitrary points u =

(u1, · · · , uM−1) , u′ = (u′1, · · · , u′M−1) ∈ OM , and an integer i, 1 ≤ i ≤ M − 1. We say that condition

C(i) is satisfied if and only if ui < u′i and the following inequalities hold

ui − uj ≤ u′i − u′j for all j, 1 ≤ j < i. (15)

Note that condition C(1) is the condition that u1 < u′1.

Lemma 2. Assume that Conditions A, B, T1, T2 and T3 hold. Let u,u′ be arbitrary points in OM ,

and let i be an integer 1 ≤ i ≤ M − 2. If condition C(i) is satisfied and γ
(1)
i (u) = γ

(2)
i (u) and

γ
(1)
i (u′) = γ

(2)
i (u′), then at least one of the following holds.

L1) µ(ui, ui+1)− ui = µ(u′i, u
′
i+1)− u′i and C(i + 1) is satisfied;

L2) there is some k, 1 ≤ k ≤ M−1−i, such that condition C(i+k) is satisfied and γ
(1)
i+k(u) < γ

(1)
i+k(u

′).

If in addition to condition C(i), we have γ
(1)
i (u) < γ

(1)
i (u′), then necessarily L2 holds. (Note that L1

and L2 do not necessarily exclude each other.)
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Proof. Because C(i) is satisfied, it follows that ui < u′i and inequalities (15) hold. Thus, by applying T1

for j = 0 and Lemma 1 for j > 0, we obtain that

ui − µ(uj , ui) ≤ u′i − µ(u′j , u
′
i),

for all j, 0 ≤ j < i. Because the function f(·) is strictly increasing, it follows that

f(ui − µ(uj , ui)) ≤ f(u′i − µ(u′j , u
′
i)), (16)

for all j, 0 ≤ j < i. Using the expression (11) for γ
(1)
i (·) and the fact that all coefficients αi,j are non-

negative, we have γ
(1)
i (u) ≤ γ

(1)
i (u′). This and the hypothesis γ

(1)
i (u) = γ

(2)
i (u) and γ

(1)
i (u′) = γ

(2)
i (u′)

further imply

γ
(2)
i (u) ≤ γ

(2)
i (u′), (17)

which is equivalent to
M∑

l=i+1

βi,lf(µ(ui, ul)− ui) ≤
M∑

l=i+1

βi,lf(µ(u′i, u
′
l)− u′i). (18)

Because βi,l ≥ 0 for all l, and βi,i+1 > 0, at least one of the following conditions must hold:

S1) f(µ(ui, ui+1)− ui) = f(µ(u′i, u
′
i+1)− u′i);

S2) there is some k, 1 ≤ k ≤ M − 1− i such that f(µ(ui, ui+k)− ui) < f(µ(u′i, u
′
i+k)− u′i).

Indeed, if S1 does not hold then either f(µ(ui, ui+1) − ui) < f(µ(u′i, u
′
i+1) − u′i) is true, in which

case S2 holds for k = 1, or f(µ(ui, ui+1)− ui) > f(µ(u′i, u
′
i+1)− u′i) is valid, in which case S2 must

hold for some k, 1 < k ≤ M − i because otherwise the inequality (18) would not be satisfied. But

k 6= M − i because from ui < u′i and T2 it follows that µ(ui, uM ) − ui ≥ µ(u′i, u
′
M ) − u′i (recall that

uM = u′M = W ), which implies that f(µ(ui, uM )− ui) ≥ f(µ(u′i, u
′
M )− u′i).

If S1 holds, we have µ(ui, ui+1)− ui = µ(u′i, u
′
i+1)− u′i from the strict monotonicity of f(·). Since

ui < u′i we can apply T3, and obtain ui+1 − µ(ui, ui+1) ≤ u′i+1 − µ(u′i, u
′
i+1), and further (ui+1 −

µ(ui, ui+1))+(µ(ui, ui+1)−ui) ≤ (u′i+1−µ(u′i, u
′
i+1))+(µ(u′i, u

′
i+1)−u′i), hence ui+1−ui ≤ u′i+1−u′i.

Additionally, since inequalities (15) hold, it follows that (ui+1−ui)+(ui−uj) ≤ (u′i+1−u′i)+(u′i−u′j)

for all j, 1 ≤ j < i. Consequently, ui+1 − uj ≤ u′i+1 − u′j for all j, 1 ≤ j < i + 1.

Also, the inequalities ui+1 − ui ≤ u′i+1 − u′i and ui < u′i imply that ui+1 < u′i+1. Thus, condition

C(i + 1) is satisfied and conclusion L1 follows.
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If S2 holds, then the inequality f(µ(ui, ui+k)−ui) < f(µ(u′i, u
′
i+k)−u′i) implies that µ(ui, ui+k)−ui <

µ(u′i, u
′
i+k) − u′i. By applying T3 (we are allowed because ui < u′i), we obtain ui+k − µ(ui, ui+k) <

u′i+k − µ(u′i, u
′
i+k). These two inequalities lead to ui+k − ui < u′i+k − u′i. Let k0 denote the smallest

k ≥ 1 which satisfies the previous inequality. Since ui < u′i, it follows that ui+k0 < u′i+k0
, too. By

the definition of k0, for any k′, 0 ≤ k′ < k0, we have ui+k′ − ui ≥ u′i+k′ − u′i. Corroborating with

ui+k0 − ui < u′i+k0
− u′i, it follows that (ui+k0 − ui)− (ui+k′ − ui) < (u′i+k0

− u′i)− (u′i+k′ − u′i), and

hence ui+k0 − ui+k′ < u′i+k0
− u′i+k′ for all k′, 0 ≤ k′ < k0.

On the other hand, for any j, 1 ≤ j < i, since ui−uj ≤ u′i−u′j by (15), and ui+k0−ui < u′i+k0
−u′i, it

follows that ui+k0−uj < u′i+k0
−u′j . Consequently, condition C(i+k0) is satisfied with strict inequalities:

ui+k0 − uj < u′i+k0
− u′j for all j, 1 ≤ j < i + k0. (19)

Since the above inequalities are strict, it follows from Lemma 1 together with the strict monotonicity of

f(·), that f(ui+k0 −µ(uj , ui+k0)) < f(u′i+k0
−µ(u′j , u

′
i+k0

)) for all j, 1 ≤ j < i+ k0. Moreover, T1 and

the monotonicity of f(·) imply that f(ui+k0 − µ(uj , ui+k0)) ≤ f(u′i+k0
− µ(u′j , u

′
i+k0

)) for j = 0 (note

that u0 = u′0 = V ). Since αi+k0,j ≥ 0, 0 ≤ j < i + k0, and αi+k0,i+k0−1 > 0, we obtain further that

γ
(1)
i+k0

(u) < γ
(1)
i+k0

(u′). Thus, L2 follows.

If γ
(1)
i (u) < γ

(1)
i (u′), then inequality (17) has to be strict, hence (18) has to be strict, too. Then clearly,

S1 cannot hold, hence S2 has to hold, and L2 follows. ¤

Proof of Theorem 1.

Assume that there are two different points u = (u1, · · ·uM−1) ∈ OM , and u′ = (u′1, · · · , u′M−1) ∈ OM ,

for which (8) (or equivalently, (10)) holds. We show that this assumption leads to a contradiction.

Since u 6= u′, it follows that there is some i, 1 ≤ i ≤ M − 1, such that ui 6= u′i. Let i0 be the smallest

i with this property. We assume without loss of generality that ui0 < u′i0 . Then clearly C(i0) is satisfied.

Thus Lemma 2 can be applied. Moreover, according to T1 and Lemma 1, we obtain that ui0−µ(uj , ui0) ≤
u′i0 − µ(u′j , u

′
i0

), which further implies by (16) that f(ui0 − µ(uj , ui0)) ≤ f(u′i0 − µ(u′j , u
′
i0

)), for all

j, 0 ≤ j < i0. Because the coefficients αi0,j are nonnegative it follows further that γ
(1)
i0

(u) ≤ γ
(1)
i0

(u′).

We distinguish further two cases: when i0 ≥ 2, and when i0 = 1.

Case 1. i0 ≥ 2. Because V < ui0−1 = u′i0−1 < ui0 < u′i0 , it follows that ui0 − ui0−1 < u′i0 − u′i0−1.
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Lemma 1 implies further that ui0 −µ(ui0−1, ui0) < u′i0 −µ(u′i0−1, u
′
i0
). Since the function f(·) is strictly

increasing, we obtain f(ui0−µ(ui0−1, ui0)) < f(u′i0−µ(u′i0−1, u
′
i0

)). Since αi0,i0−1 > 0 we further have

γ
(1)
i0

(u) < γ
(1)
i0

(u′). Applying inductively Lemma 2 (note that at each application, L2 holds) establishes

condition C(M − 1) and

γ
(1)
M−1(u) < γ

(1)
M−1(u

′). (20)

On the other side, since uM−1 < u′M−1, it follows from T2 that µ(uM−1,W )−uM−1 ≥ µ(u′M−1,W )−
u′M−1. Hence f(µ(uM−1,W )− uM−1) ≥ f(µ(u′M−1,W )− u′M−1). It follows that

γ
(2)
M−1(u) ≥ γ

(2)
M−1(u

′). (21)

Relations (20), (21) together with γ
(1)
M−1(u

′) = γ
(2)
M−1(u

′) and γ
(1)
M−1(u) = γ

(2)
M−1(u) lead to a contradic-

tion.

Case 2. i0 = 1. Applying inductively Lemma 2 concludes that at least one of the following two

assertions holds:

A1) C(M − 1) is satisfied and γ
(1)
M−1(u) < γ

(1)
M−1(u

′).

A2) C(i) is satisfied for all i, 1 ≤ i ≤ M − 1. Additionally, µ(ui, ui+1)− ui = µ(u′i, u
′
i+1)− u′i for all

i, 1 ≤ i ≤ M − 2.

If A1 is true, then a contradiction arises as in the previous case. If the second assertion is true, then we

can apply T4 and it follows that at least one of the following statements is valid:

A2.1) µ(uM−1, uM )− uM−1 > µ(u′M−1, u
′
M )− u′M−1 (by T4.1, since uM = u′M = W );

A2.2) there is some i1, 0 ≤ i1 ≤ M − 2, such that ui1+1−µ(ui1 , ui1+1) < u′i1+1−µ(u′i1 , u
′
i1+1) (by T4.3

and T4.1; note that u0 = u′0 = V ).

When A2.1 holds, we have γ
(2)
M−1(u) > γ

(2)
M−1(u

′) because f(·) is strictly increasing and βM−1,M > 0.

Using (10) we obtain that γ
(1)
M−1(u) > γ

(1)
M−1(u

′). On the other hand, because C(M − 1) is satisfied it

follows that γ
(1)
M−1(u) ≤ γ

(1)
M−1(u

′) ( by the argument used to derive (17) in the proof of Lemma 2).

Thus, we have reached a contradiction.

Now we treat the case when A2.2 holds. Note first that since C(i1 + 1) is satisfied, by (16) we have

f(ui1+1 − µ(uj , ui1+1)) ≤ f(u′i1+1 − µ(u′j , u
′
i1+1)) for all j, 0 ≤ j < i1 + 1, (22)
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as shown in the proof of Lemma 2. Moreover, the inequality (22) corresponding to j = i1 is strict due to

the condition in A2.2 and the strict monotonicity of f(·). Further, because all αi1+1,j are non-negative

and αi1+1,i1 > 0, it follows that γ
(1)
i1+1(u) < γ

(1)
i1+1(u

′). The same argument as in Case 1 leads to a

contradiction as well. ¤

We say that an IA is optimal if there is a globally optimal convex K-DSQ (globally optimal with

respect to the set of convex K-DSQs), which has that IA. The following result is a direct consequence

of Theorem 1.

Corollary 1. If Conditions A, and B hold, Q is a locally optimal convex K-DSQ, its IA is optimal,

and the conditions in Theorem 1 are satisfied (e.g., if p(x) is log-concave and the error function is the

squared difference [24, Theorem 4]), then Q is a globally optimal convex K-DSQ.

Consequently, when the sufficient conditions of Theorem 1 are met, the design of optimal convex K-

DSQ can be performed by first finding an optimal IA, then applying a generalized Lloyd-type algorithm

to optimize the K-DSQ, given that assignment.

Finding the optimal IA is a difficult problem in general. Fortunately, for convex MDSQ’s there are

several important cases when this problem is easier to handle, such as MRSQ and symmetric MDSQ. In

the next two sections we address the problem of IA for these two cases.

V. OPTIMAL INDEX ASSIGNMENT FOR CONVEX MRSQ

This section is devoted to the discussion of optimal IA for convex MRSQ. Recall that a convex MRSQ

with K refinement stages is a convex K-DSQ whose active components are Q1, Q{1,2}, · · · , Q{1,··· ,i}, · · · , QK,

where Q{1,··· ,i} denotes the component quantizer corresponding to the first i descriptions, hence its

partition is the intersection of the partitions of side quantizers Q1, Q2, · · · , Qi. In our definition of

convex K-DSQ we have imposed only to active components to have convex cells. Therefore, in a convex

MRSQ only quantizers Q1, Q{1,2}, · · · , Q{1,··· ,i}, · · · , QK are required to satisfy this constraint, while

the side quantizers Q2, Q3, · · · , QK may have nonconvex cells.

Interestingly, as the following theorem shows, in the case of convex MRSQ, only the number of cells

in the central partition is relevant at optimality, and not the IA. The intuitive reason for the theorem
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to hold is that if the central partition has maximal number of cells, then it determines all active side

quantizers.

Theorem 2. Assuming that Conditions A and B hold, a globally optimal convex MRSQ of K refinement

stages must have M = M1M2 · · ·MK cells in the central partition, where Mi denotes the number of cells

in side quantizer Qi, for all 1 ≤ i ≤ K. As long as the latter condition is satisfied any index assignment

is optimal.

Proof. In order to prove this theorem it is useful to note that the active components of the convex MRSQ

Q1, Q{1,2}, · · · , Q{1,2,··· ,i−1,i}, · · · , QK forms a sequence of embedded convex quantizers, i.e., any cell

of Q{1,2,··· ,i−1} is the union of some cells of Q{1,2,··· ,i−1,i}, more specifically, of at most Mi such cells.

Another way of saying this is that the partition of Q{1,2,··· ,i−1,i} is obtained by splitting each cell of

Q{1,2,··· ,i−1} into at most Mi nonempty subintervals. To see this, let C be a cell of Q{1,··· ,i−1} and let

C
(i)
1 , C

(i)
2 , · · · , C

(i)
Mi

, be the cells of the side quantizer Qi. Then the sets C ∩C
(i)
1 , C ∩C

(i)
2 , · · · , C ∩C

(i)
Mi

(actually those which are nonempty) are cells of Q{1,2,··· ,i−1,i} and

C = (C ∩ C
(i)
1 ) ∪ (C ∩ C

(i)
2 ) ∪ · · · ∪ (C ∩ C

(i)
Mi

).

Further we argue that at optimality all the sets C ∩ C
(i)
1 , C ∩ C

(i)
2 , · · · , C ∩ C

(i)
Mi

have to be non-empty.

In order to prove this point it is enough to show that if one of these sets is empty then a convex

MRSQ of strictly smaller expected distortion can be constructed. For this, assume that C ∩ C
(i)
1 = ∅

and C ∩ C
(i)
2 = (a, b] 6= ∅. Pick some point t inside the open interval (a, b) and define two new sets

A
(i)
1 = C

(i)
1 ∪ (a, t] and A

(i)
2 = C

(i)
2 − (a, t]. The new MRSQ is constructed by replacing the cells

C
(i)
1 , C

(i)
2 of side quantizer Qi by the sets A

(i)
1 , A

(i)
2 , respectively, and optimizing the MRSQ decoder.

We assume that the decoder of the old MRSQ was optimized as well. Let us analyze now the effect

of this change on the active components of the MRSQ. Clearly, quantizers Q1, Q{1,2}, · · · , Q{1,2,··· ,i−1}

are not affected. The only effect on the partition of Q{1,2,··· ,i−1,i} is that the old cell (a, b] is replaced

by two new non-empty cells (a, t] = C ∩ A
(i)
1 and (t, b] = C ∩ A

(i)
2 . For j, i + 1 ≤ j ≤ K, only the

portion of the partition of Q{1,2,··· ,j} covering the interval (a, b] is affected. Note that in the old MRSQ

this portion of the partition consists of all non-empty intersections (a, b] ∩ C ′, where C ′ ranges over all

non-empty intersections of cells of side quantizers Qi+1, · · · , Qj . In the new MRSQ this portion of the
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partition is composed of all non-empty intersections (a, t] ∩ C ′ and (t, b] ∩ C ′ with all possible C ′ as

above. Let (a, b]∩C ′ = (c, d]. Then exactly one of the following three cases is possible: 1) (a, t]∩C ′ = ∅
and (t, b] ∩ C ′ = (c, d] when t ≤ c; 2) (a, t] ∩ C ′ = (c, t] and (t, b] ∩ C ′ = (t, d] when c < t < d; 3)

(a, t]∩C ′ = (c, d] and (t, b]∩C ′ = ∅ when t ≥ d. Consequently, the interval (c, d] from the old partition

either remains unchanged in the new partition or is split into two non-empty intervals (c, t] and (t, d].

Because there is only one cell (c, d] which can contain t in its interior, it follows that at most one of

the old cells is split. The above analysis reveals that the new MRSQ is still convex. Moreover, each of

its active component quantizers is either identical to the old one, or is obtained from the old one by

splitting one cell into two non-empty intervals, and at least one of the active components is in the second

category, i.e., Q{1,2,··· ,i}. Since the pdf p(x) is strictly positive, by splitting a cell of a convex quantizer

into two non-empty intervals a convex quantizer of strictly smaller distortion is obtained. It follows that

the new MRSQ has a strictly smaller distortion than the old one.

The above argument implies that in the optimal convex MRSQ, the partition of Q{1,2,··· ,i−1,i} is obtained

by splitting each cell of Q{1,2,··· ,i−1} into exactly Mi nonempty subintervals. This implies that it must have

exactly M = M1M2 · · ·MK cells in the central partition. Now let us consider a convex MRSQ which

has M = M1M2 · · ·MK cells in the central partition and let us examine the relevance of the IA. Note

that, since the number of cells in the central partition is maximal, then the central partition determines

the partitions of the active components, irrespective of the IA. Precisely, for each i, 1 ≤ i ≤ K − 1,

each cell of quantizer Q{1,2,··· ,i−1,i} must be the union of M ′
i = ΠK

j=i+1Mj consecutive intervals of

the central partition. Therefore, if u0, u1, u2, · · ·uM are the thresholds of the central partition, then the

thresholds of the quantizer Q{1,2,··· ,i−1,i} are necessarily u0, uM ′
i
, u2M ′

i
, · · · , u(M1M2···Mi−1)M ′

i
, uM . There

is a multitude of IA’s which yield the above partitions, but they affect only the distortions of non-active

components and therefore they do not have an impact on the expected distortion of the MRSQ. We

conclude that when the number of cells in the central partition is maximal,i.e., equals M1M2 · · ·MK ,

any index assignment is optimal. This observation concludes the proof. ¤

The next corollary is an immediate consequence of Theorem 2 and Corollary 1 from the previous

section.

Corollary 2. If Conditions A and B are satisfied, then any locally optimal convex MRSQ with M1M2 · · ·MK
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number of cells in the central partition is globally optimal, too, if the conditions in Theorem 1 are satisfied.

The generalized Lloyd-type algorithm for MRSQ design proposed by [4] constructs a locally optimal

(fixed-rate convex) MRSQ with the maximal number of cells in the central quantizer. According to the

above corollary, if the conditions in Theorem 1 are satisfied, then the MRSQ obtained is globally optimal.

VI. OPTIMAL INDEX ASSIGNMENT FOR SYMMETRIC CONVEX K-DSQ.

In this section we settle the problem of optimal IA for symmetric convex K-DSQ.

Recall that in a symmetric convex K-DSQ all side quantizers have the same rate, i.e., the same number

of cells, hence M1 = M2 = · · · = MK . Moreover, the weight ωI is only a function of the cardinality of

the set I, in other words we have ωI = ωI′ if |I| = |I ′|. We also require that ω1 > 0. Hence all side

quantizers are active components, and according to our definition of convex K-DSQ they have convex

cells. This implies that all component quantizers, active or not, are convex too.

Each side partition is specified by M1 − 1 thresholds. Let v0
i = V , vM1

i = W and let vj
i , 0 ≤ j ≤ M1

satisfying

V = v0
i < v1

i < · · · vj
i < vj+1

i < · · · < vM1
i = W,

be the thresholds of side quantizer Qi, 1 ≤ i ≤ K.

The set of thresholds of the central quantizer is the union of the sets of threshold of all side quantizers.

Therefore, the maximal number of cells in the central partition is K(M1 − 1) + 1, and it is achieved if

and only if the thresholds of different side partitions are different. Clearly, specifying an IA is equivalent

to specifying the order of thresholds vj
i in the central partition, and specifying the equalities between

these thresholds, if any.

In this section we will consider only convex K-DSQ’s with optimized decoders. Hence the represen-

tation point of any cell (a, b] will be its generalized centroid µ(a, b). We define the distortion of the cell,

denoted by D(a, b), according to

D(a, b) =
∫ b

a
f(|x− µ(a, b)|)p(x)dx.

Thus, the distortion of a quantizer becomes the sum of distortions of its cells. As previously, the error

function f(·) is assumed to be convex, continuous and strictly increasing. We will also prove some results

for the case when f(·) satisfies additional requirements, and then these requirements will be specified.
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Some progress toward finding the optimal IA for symmetric convex 2-DSQ was achieved in [7].

Precisely, it was proved that there exists an optimal symmetric convex 2-DSQ which satisfies the following

inequalities

v1
1 ≤ v1

2 ≤ v2
1 ≤ · · · vj

1 ≤ vj
2 ≤ vj+1

1 ≤ · · · ≤ vM1−1
2 . (23)

While this result sheds considerable light on the structure of the optimal IA in the case of two symmetric

descriptions, it does not solve the problem completely. In order to uniquely identify an IA each inequality

”≤” above must be replaced by ”<” or by ”=”. Therefore, the series of relations (23) characterize a class

of at least 2M1−1 distinct IA’s. This count was obtained by considering all possibilities when every second

inequality in (23) is strict and any other inequality is replaced by ”<” or by ”=”. Consequently, in order

to find the optimal IA, a search must be conducted among at least 2M1−1 possibilities. Nevertheless,

the structure highlighted by relations 23) was exploited in [7] to accelerate the combinatorial design

algorithm. The case of K > 2 was not treated in [7] and the proof given there for K = 2 does not extend

in a straightforward manner to more than two descriptions.

In this section we settle the problem of optimal IA for symmetric convex K-DSQ, for general K.

Specifically, we prove that there is an optimal IA for which a series of relations similar to (23) hold, but

with strict inequalities. Consequently, these relations uniquely specify an IA. Furthermore, we prove that

when the error function f(·) is additionally continuously differentiable, any optimal index assignment

must satisfy these relations, up to a permutation of the side quantizers. The first step toward our main

result is the next theorem which clarifies that an optimal convex K-DSQ whose all side quantizers are

active components (and hence convex), must have the maximal possible number of cells in the central

partition, as allowed by the side quantizers rates. Note that the result established by this proposition is

not restricted to symmetric K-DSQ’s, in other words, the side quantizers may have different rates and

different weights.

Theorem 3. Assume that Conditions A and B hold. Consider the class of convex K-DSQ’s whose all

side quantizers are active components, and each side quantizer Qi has Mi cells, 1 ≤ i ≤ K. Then there is

an optimal K-DSQ within this class and it necessarily contains M1+M2+· · ·+MK−K+1 (non-empty)

cells in the central partition.

Proof. Clearly, to find an optimal K-DSQ we only need to look at decoder optimized K-DSQ’s. Consider
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first the decoder optimized K-DSQ’s within the class specified in the hypothesis of the theorem, which

have M cells in the central partition, for some M such that max1≤i≤K Mi ≤ M ≤ M1 + M2 + · · · +
MK − K + 1, and some IA denoted by hM . Let OM be the set of (M − 1)-dimensional real vectors

u = (u1, u2, · · · , uM−1) satisfying V < u1 < u2 < · · · < uM−1 < W . Define the function FhM
(u) on

the set OM as follows

FhM
(u) =

∑

I⊆K,ωI 6=0

ωI
MI∑

k=1

∫ ujI,k

ujI,k−1

f(|x− µ(ujI,k−1 , ujI,k
)|)p(x)dx, (24)

with the notations introduced in Section III. Then FhM
(u) represents the expected distortion of the convex

K-DSQ with vector of thresholds u and with hM as IA. Next, denote by R the extended real line and

let OM be the set of all (u1, u2, · · · , uM−1) ∈ RM−1 satisfying V ≤ u1 ≤ u2 ≤ · · · ≤ uM−1 ≤ W .

Consider on the set OM the topology inherited from the product topology on RM−1. Now extend the

function FhM
(u) on the set OM by replacing

∫ ujI,k

ujI,k−1
f(|x − µ(ujI,k−1 , ujI,k

)|)p(x)dx in (24) by 0,

whenever ujI,k−1 = ujI,k
. By similar arguments to those used by Kieffer in [18, Lemma 3] and [19,

Lemma 2], the function FhM
(·) is continuous on RM−1. Since RM−1 is a compact set it follows that

the function FhM
(·) achieves its minimum on RM−1. Let ûhM

∈ OM denote such a minimum point, i.e.

FhM
(ûhM

) = minu∈OM
FhM

(u). Next, let M0 and hM0 be such that FhM0
(ûhM0

) = minM,hM
FhM

(ûhM
),

where the minimum is taken over all possible numbers M of cells in the central partition and IA’s

hM corresponding to the class of convex K-DSQ’s whose all side quantizers are active components,

and each side quantizer Qi has Mi cells. Clearly, the minimum exists since the set of all possible

such IA’s is finite. Moreover, FhM0
(ûhM0

) is smaller or equal than the distortion of any convex K-

DSQ in the class specified above. Therefore, in order to complete the proof it is enough to show that

M0 = M1 + M2 + · · ·+ MK −K + 1 and that ûhM0
∈ OM0 .

Note that ûhM0
can be interpreted as the vector of thresholds of a convex K-DSQ Q with all side

quantizers being active components, where the number of cells in Qi is at most Mi and such that

D̄(Q) = FhM0
(ûhM0

). If for some i’s, 1 ≤ i ≤ K, the number of cells of Qi were less than Mi, then

by refining the encoder partition of each such Qi to have exactly Mi non-empty cells we would obtain

a new K-DSQ (with optimized decoder) of expected distortion strictly lower (because all ωi > 0 and

the pdf p(x) is strictly positive), fact which leads to a contradiction. It follows that each Qi must have
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exactly Mi cells. In order to complete the proof is then enough to show that no two side quantizers have

thresholds in common.

We will present a proof by contradiction for the above claim. Note that all since all side quantizers

are active components, it follows that they are all convex, hence all component quantizers, active or

not, are convex too. Assume without restricting the generality that the first k side quantizers, for some

k ≥ 2, have a threshold in common. Then there are j1, · · · , jk with 1 ≤ ji ≤ Mi − 1, and v such that

vj1
1 = · · · = vjk

k = v and vj
i 6= v for any i > k and any j. We will construct a new convex K-DSQ Q′

starting from Q, such that D̄(Q′) < D̄(Q). The construction is based on a properly chosen perturbation

of the threshold v in Qk. For this we need to introduce first some notations. For each I ⊆ K, such that

{1, 2, · · · , k} ∩ I 6= ∅, let vl
I , respectively vr

I , denote the threshold preceding, respectively following,

v in the encoder partition of QI (note that superscript l stands for left and superscript r stands for

right). Further, let yl
I denote the reconstruction value (hence generalized centroid) of cell (vl

I , v], and yr
I

denote the reconstruction value of cell (v, vr
I ]. Recall that the generalized centroid is contained in the

interior of the cell. Also denote by S1 the set of all non-empty subsets I of K such that k ∈ I and

{1, 2, · · · , k − 1} ∩ I = ∅. Also, let S2 denote the set of all non-empty subsets I of K such that k ∈ I
and {1, 2, · · · , k − 1} ∩ I 6= ∅. Next we need to distinguish between two cases. The first case is when

the following inequality holds

∑

I∈S1

ωI
(
f(|v − yr

I |)− f(|v − yl
I |)

) ≥ 0. (25)

Let y0 = minJ∈S2 yr
J . Clearly, we have v < y0. Further, let y = v+y0

2 . Hence v < y < y0. These relations

together with the definition of y0 and the fact that f(·) is strictly increasing, imply that f(|v − yr
J |) >

f(|v−y|) for any J ∈ S2. Using (25) and the fact that there is some J ∈ S2 such that ωJ > 0 (precisely,

J = {k}), we conclude that the following inequality holds

∑

I∈S1

ωI
(
f(|v − yr

I |)− f(|v − yl
I |)

)
+

∑

J∈S2

ωJ
(
f(|v − yr

J |)− f(|v − y|)) > 0. (26)

Consider now the function g(x) defined for x ∈ [v, y] as follows

g(x) =
∑

I∈S1

ωI
(
f(|x− yr

I |)− f(|x− yl
I |)

)
+

∑

J∈S2

ωJ
(
f(|x− yr

J |)− f(|x− y|)).
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Equation (26) implies that g(v) > 0, and since g is continuous, it follows that there is some δ > 0 with

v + δ ≤ y, such that g(x) > 0 for all x ∈ [v, v + δ]. Finally, let u denote the threshold following v in the

central partition of Q, and define v′ = min(v + δ, v+u
2 ), hence v′ < u. Now we are ready to construct

the new convex K-DSQ Q′ starting from Q. For this we replace the threshold vjk

k in side quantizer Qk

by v′ and keep all other thresholds fixed. Note that this change does not affect the quantizers QI for

subsets I which do not contain k. For I ∈ S1 only two cells are affected. Precisely, cells (vl
I , v], (v, vr

I ]

are changed into (vl
I , v

′], (v′, vr
I ], respectively. Moreover, the effect on quantizers QJ with J ∈ S2 is

that one cell is split into two. Specifically, cell (v, vr
J ] is split into (v, v′] and (v′, vr

J ].

Now in order to completely characterize the new K-DSQ Q′ we have to specify its reconstruction

values as well. For all cells which have not been changed, we keep the same reconstruction values as

in Q. Further, for quantizers QI with I ∈ S1, we let yl
I , respectively yr

I , be the reconstruction values

of cells (vl
I , v

′], (v′, vr
I ], respectively. Finally, for quantizers QJ with J ∈ S2 we let y, respectively yr

J ,

be the reproduction value of cell (v, v′], respectively (v′, vr
J ]. Now it is clear that the change from Q to

Q′ incurs a change in the mapping of source samples to reproduction values only for the samples x in

(v, v′] and only for subsets I of descriptions with I ∈ S1 ∪ S2. Thus we obtain the following equality

D̄(Q)−D̄(Q′) =
∫ v′

v

( ∑

I∈S1

ωI
(
f(|x−yr

I |)−f(|x−yl
I |)

)
+

∑

J∈S2

ωJ
(
f(|x−yr

J |)−f(|x−y|)))p(x)dx.

It follows that

D̄(Q)− D̄(Q′) =
∫ v′

v
g(x)p(x)dx.

The definition of v′ implies that g(x) > 0 for all x ∈ (v, v′). Moreover, since p(x) > 0 for x ∈ (v, v′),

too, we obtain that g(x)p(x) > 0 for all x ∈ (v, v′), and further that
∫ v′

v g(x)p(x)dx > 0. This leads to

the conclusion that D̄(Q′) < D̄(Q), which contradicts the optimality of Q. Thus, the proof of this case

is completed. The case when relation (25) does not hold can be treated symmetrically by appropriately

choosing a value v′ < v and constructing Q′ by replacing vjk

k by v′. ¤

Remark 1. As an immediate corollary to the above proposition, it follows that all inequalities in (23)

are strict, and hence they define an optimal IA for symmetric 2-DSQ.

The next results establishes an optimal IA for symmetric convex K-DSQ, for general K.
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Theorem 4. Assume that Conditions A and B hold. Then there is an optimal symmetric convex K-DSQ

such that

v1
1 < v1

2 < · · · < vj
i < vj

i+1 < · · · < vj
K < vj+1

1 < · · · < vM1−1
K , (27)

in other words, where vj
i < vj

i+1 holds for all 1 ≤ i ≤ K−1 and 1 ≤ j ≤ M1− 1, and vj
K < vj+1

1 holds

for all 1 ≤ j ≤ M1 − 2. Moreover, if f(·) is additionally continuously differentiable, then any optimal

symmetric convex K-DSQ must satisfy the relations (27) possibly after a permutation of subscripts of

the side quantizers.

Proof. Note that by Theorem 3, an optimal symmetric convex K-DSQ with M1 cells in each side

quantizer must exist. Further, the idea of the proof is to show that by exchanging thresholds between

side quantizers such that (27) to be satisfied, the expected distortion of the K-DSQ does not increase. It

will be understood that after performing such an operation the decoder will be optimized, and we will

not explicitly state this.

First we permute the entire partitions among side quantizers (or equivalently, apply a permutation of

the side quantizers subscripts) such that v1
1 < v1

2 < · · · < v1
K , in other words such that the first K − 1

inequalities in (27) to be satisfied. This permutation results in a convex K-DSQ with the same expected

distortion. Further, let us order of thresholds vj
i , 1 ≤ i ≤ K, 1 ≤ j ≤ M1 − 1, in increasing order. Note

that according to Theorem 3, the elements of this sequence are pairwise distinct. Denote by tl the l-th

element in the ordered sequence, for 1 ≤ l ≤ K(M1−1). Further, let ≺ denote the lexicographical order

(l.o., for short) of pairs of integers (j, i). Precisely, (j, i) ≺ (j′, i′) if and only if either 1) j < j′ or 2)

j = j′ and i < i′. If (j, i) ≺ (j′, i′) we say that the pair (j, i) is smaller than the pair (j′, i′) in l.o.. Note

that the ordering of thresholds vj
i in (27) corresponds to the lexicographical order of the pairs (j, i). Now

let us order the pairs (j, i), 1 ≤ i ≤ K, 1 ≤ j ≤ M1 − 1, in l.o., and denote by o(j, i) the position of

pair (j, i) in this sequence. Then o(j, i) = (j − 1)K + i for all 1 ≤ i ≤ K, 1 ≤ j ≤ M1 − 1. Clearly, the

inequalities (27) are satisfied if

vj
i = to(j,i) (28)

for all 1 ≤ i ≤ K, 1 ≤ j ≤ M1 − 1.

To make the explanation more intuitive we say that the threshold vj
i is correctly placed if the above

equality is satisfied, and we say that it is misplaced, otherwise. Notice that, due to the permutation of
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quantizer subscripts applied earlier, the first K thresholds in sequence are correctly placed. We will

exchange thresholds between side quantizers in a series of steps such that after each step the number of

correct placements in the sequence of thresholds up to the first misplacement strictly increases, while the

expected distortion does not decrease. Assume that we are at the beginning of some step s, s ≥ 1, and

that the first misplacement occurs in the `-th position, for some ` > K. In other words, equality (28)

holds for all pairs (j, i) such that o(j, i) < ` and does not hold for the pair (j1, i1) satisfying o(j1, i1) = `.

Let (j2, i2) be the pair for which t` = vj2
i2

. Then clearly, j1 > 1 and the following relations are valid

(j1, i1) ≺ (j2, i2) (29)

and

vj2
i2

< vj1
i1

.

Since vj2−1
i2

< vj2
i2

, it follows that vj2−1
i2

= t`′ for some `′ < `, hence vj2−1
i2

is correctly placed. This implies

that o(j2−1, i2) = `′ ≤ `−1. Moreover, vj1−1
i1

is also correctly placed because o(j1−1, i1) < o(j1, i1) = `.

Inequality (29) implies that o(j1 − 1, i1) < o(j2 − 1, i2) (note that necessarily j2 > 1 since j1 > 1).

Furthermore, since both vj1−1
i1

and vj2−1
i2

are correctly placed, we obtain that

vj1−1
i1

< vj2−1
i2

Summarizing, we have established the following sequence of inequalities, which is crucial to our devel-

opment

vj1−1
i1

< vj2−1
i2

< vj2
i2

< vj1
i1

. (30)

In order to describe the interchanges that we will make, let k be the smallest nonnegative integer such

that k ≤ M1 − j2 and vj1+k
i1

≤ vj2+k
i2

. Such an integer always exists and is strictly positive because the

previous inequality is satisfied for k = M1 − j2 (since vM1
i2

= W ) and is not satisfied for k = 0 by (30).

Then the following sequence of inequalities holds:

vj2+k−1
i2

< vj1+k−1
i1

< vj1+k
i1

≤ vj2+k
i2

. (31)

Notice that we have vj1+k
i1

= vj2+k
i2

only if j1+k = j2+k = M1 (by Theorem 3), otherwise the inequality

is strict. Now interchange the thresholds vj2
i2

, · · · , vj2+k−1
i2

, with vj1
i1

, · · · , vj1+k−1
i1

, respectively, between

the side partitions Qi2 and Qi1 . This interchange is illustrated in Figure 3. Note that the number of cells
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in the two side quantizers is not affected by this operation. Moreover, this interchange does not affect the

first `− 1 = o(j1, i1)− 1 thresholds in the sequence, and causes the threshold on position ` to become

correctly placed, too. Thus, the number of correctly placed thresholds up to the first misplacement strictly

increases. It remains to show that the expected distortion of the K-DSQ does not increase. For this we

will consider pairs of component quantizers and analyze how their contribution to the expected distortion

is affected.

Let us first consider the side quantizers Qi2 and Qi1 . The partition of Qi2 is modified only between

thresholds vj2−1
i2

and vj2+k
i2

. The new cells are:

(vj2−1
i2

, vj1
i1

], (vj1
i1

, vj1+1
i1

], · · · , (vj1+k−2
i1

, vj1+k−1
i1

], (vj1+k−1
i1

, vj2+k
i2

].

The partition of Qi1 is modified only between vj1−1
i1

and vj1+k
i1

, the new cells being

(vj1−1
i1

, vj2
i2

], (vj2
i2

, vj2+1
i2

], · · · , (vj2+k−2
i2

, vj2+k−1
i2

], (vj2+k−1
i2

, vj1+k
i1

].

Note that the cells (vj2
i2

, vj2+1
i2

], · · · , (vj2+k−2
i2

, vj2+k−1
i2

], and (vj1
i1

, vj1+1
i1

], · · · , (vj1+k−2
i1

, vj1+k−1
i1

] have

simply been exchanged, respectively, between side quantizers Qi2 and Qi1 . Since the distortions of

Qi2 and Qi1 are weighted equally in the expected distortion of the K-DSQ, and since the distortion of

each quantizer is the sum of distortions of its cells, it follows that the exchange of cells does not affect

the overall contribution of the two side quantizers to the expected distortion. Thus, any change in the

expected distortion is due only to the modification of the old cells (vj2−1
i2

, vj2
i2

], (vj2+k−1
i2

, vj2+k
i2

] of Qi2

into (vj2−1
i2

, vj1
i1

], (vj1+k−1
i1

, vj2+k
i2

] respectively, and of the old cells (vj1−1
i1

, vj1
i1

], (vj1+k−1
i1

, vj1+k
i1

] of Qi1

into (vj1−1
i1

, vj2
i2

], (vj2+k−1
i2

, vj1+k
i1

] respectively.

Let ∆ denote the difference in the expected distortion due to the changes in Qi2 and Qi1 . Then

∆ = ω1[D(vj2−1
i2

, vj1
i1

) + D(vj1−1
i1

, vj2
i2

)−D(vj2−1
i2

, vj2
i2

)−D(vj1−1
i1

, vj1
i1

) +

+D(vj1+k−1
i1

, vj2+k
i2

) + D(vj2+k−1
i2

, vj1+k
i1

)−D(vj2+k−1
i2

, vj2+k
i2

)−D(vj1+k−1
i1

, vj1+k
i1

)]. (32)

At this point we apply Lemma 3, which is stated and proved in Appendix. Thus, from (30) we obtain:

D(vj2−1
i2

, vj1
i1

) + D(vj1−1
i1

, vj2
i2

)−D(vj2−1
i2

, vj2
i2

)−D(vj1−1
i1

, vj1
i1

) ≤ 0. (33)

Further, from (31), by applying Lemma 3 we obtain:

D(vj1+k−1
i1

, vj2+k
i2

) + D(vj2+k−1
i2

, vj1+k
i1

)−D(vj2+k−1
i2

, vj2+k
i2

)−D(vj1+k−1
i1

, vj1+k
i1

) ≤ 0. (34)
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Fig. 3. Interchange of thresholds between side partitions Qi2 and Qi1 .

Relations (33) and (34) together with ω1 > 0, imply that ∆ ≤ 0. Moreover, according to Lemma 3, when

the error function f(·) is additionally continuously differentiable, the inequality (34) is strict, which

implies that ∆ < 0.

Let us analyze now the modification incurred by the threshold interchange, on the other component

quantizers. Clearly, any QI such that i1 /∈ I, and i2 /∈ I, is not affected. Also, the partition of Q{i1,i2}

remains unchanged. Thus, the partition of any component quantizer QI such that i1, i2 ∈ I does not

change either. Consider now an arbitrary I ⊆ K, I 6= ∅, which does not contain either i1 or i2. We will

analyze the changes incurred in Q{i1}∪I and Q{i2}∪I . Consider the set V of thresholds t of quantizer QI

such that t ≥ vj2−1
i2

and t ≤ vj1+k
i1

. Assume first that V is non-empty and let v = minV and v′ = maxV .

Case 1. v < vj2
i2

and vj1+k−1
i1

< v′. This case is illustrated in Figure 4. The only effect in this case is that

all cells between v and v′ are exchanged between quantizers Q{i2}∪I and Q{i1}∪I . Since the distortions

of Q{i2}∪I and Q{i1}∪I are equally weighted in the total expected distortion, this exchange does not

affect the expected distortion of the K-DSQ.

Case 2. vj2
i2

< v and vj1+k−1
i1

< v′. Figure 5 illustrates this case. Let v1 denote the largest threshold of

Q{i1}∪I , which is smaller than vj2−1
i2

. Consequently, vj1−1
i1

≤ v1 < vj2−1
i2

. Also let v2 = min{v, vj1
i1
} (in
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Fig. 4. The effect of thresholds’ interchange on partitions Q{i1}∪I and Q{i2}∪I in Case 1.

Figure 5, v2 = v). As an effect of the threshold interchange, the old cells of Q{i2}∪I situated between

vj2
i2

and v′ are exchanged with the old cells of Q{i1}∪I situated between v2 and v′. This exchange does

not affect the expected distortion. Additionally, the old cell (vj2−1
i2

, vj2
i2

] of Q{i2}∪I , is transformed into

(vj2−1
i2

, v2], and the old cell (v1, v2] of Q{i1}∪I , is transformed into (v1, v
j2
i2

]. No other modifications

occur. Let ∆ denote the change in expected distortion due to the modifications in Q{i2}∪I and Q{i1}∪I .

Then

∆ = ω{i1}∪I [D(vj2−1
i2

, v2) + D(v1, v
j2
i2

)−D(vj2−1
i2

, vj2
i2

)−D(v1, v2)]. (35)

Because v1 < vj2−1
i2

< vj2
i2

< v2, by applying Lemma 3 and using the fact that ω{i1}∪I ≥ 0, it follows

that ∆ ≤ 0.

Case 3 (v < vj2
i2

and vj1+k−1
i1

> v′), Case 4 (v > vj2
i2

and vj1+k−1
i1

> v′) and the case when V is empty

can be treated by similar arguments. Note that equalities v = vj2
i2

and vj1+k−1
i1

= v′ can never hold due

to Theorem 3.

In conclusion the threshold interchange does not increase the expected distortion of the K-DSQ.

Moreover, if the error function f(·) is additionally continuously differentiable, the expected distortion

strictly decreases. With these, the proof is completed. ¤
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Fig. 5. The effect of thresholds’ interchange on partitions Q{i1}∪I and Q{i2}∪I in Case 2.

Relations (27) define the following IA: h : {1, 2, · · · ,K(M1 − 1) + 1} → {1, 2, · · · ,M1}K with

h(l) = (jl + 1, · · · , jl + 1︸ ︷︷ ︸
il

, jl, · · · , jl︸ ︷︷ ︸
K−il

) (36)

where jl = b(l−1)/Kc+1 and il = l−1−(jl−1)K, for all l, 1 ≤ l ≤ K(M1−1), and h(K(M1−1)+1) =

(M1,M1, · · · ,M1). According to Theorem 4 this IA is optimal for symmetric convex K-DSQ. Moreover,

when the error function f(·) is additionally continuously differentiable, this IA is the unique optimal IA

up to a permutation of subscripts of side quantizers. ¤

VII. CELL CONVEXITY

It has long been known that fixed-rate single description scalar quantizers can be made optimal with

convex cells [13]. However, it was recently shown by Gyorgy and Linder [15] that there exist discrete

distributions and an interval of rates, for which the optimal entropy-constrained scalar quantizer cannot

have convex cells. On the other hand, the same work proves that such an example cannot be found when

the source distribution is continuous, the number of quantizer cells is finite and the error function f(·)
is non-decreasing and convex. It is also pointed out in [15] that even for discrete distributions, all the

points on the operational R-D curve, which are on its convex hull can be achieved by a convex quantizer.
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The non-optimality of convex quantizers is not quite as pathological for K-DSQ as for the single

description counterpart. Effros and Muresan [10] proved that for both fixed-rate and entropy-constrained

situations there are discrete distributions and weights ωI such that the optimal K-DSQ cannot be convex.

Such examples can be constructed without too much effort even for continuous distributions. For instance,

for the uniform distribution over the interval [0, 1] and squared error distortion, the optimal fixed-rate

symmetric 2-DSQ whose side quantizers have 2 cells each, cannot be convex if ω1/ω{1,2} < 7/81.

Indeed, let Q be a convex 2-DSQ with 2 cells in each side quantizer. This 2-DSQ has at most 3 cells

in the central partition. By bounding from below the distortion of each component quantizer by the

lowest distortion achievable at the corresponding rate, we obtain that D̄(Q) > 1
24ω1 + 1

108ω{1,2}. Let

now Q′ be the non-convex 2-DSQ whose side partitions are Q′
1: [0, 1/2], (1/2, 1], and Q′

2: [0, 1/4] ∪
(1/2, 3/4], (1/4, 1/2]∪ (3/4, 1]. Assume that Q′ has optimal decoder. Then D̄(Q′) = 17

192ω1 + 1
192ω{1,2}.

Clearly, when ω1/ω{1,2} < 7/81, we have D̄(Q) > D̄(Q′).

However, the above results do not rule out the possibility that for many practically important distri-

butions, weights ωI and rate constraints, the optimal K-DSQ may have convex cells. A very simple

example is the case of fixed-rate MRSQ for a uniform source. Also, it was shown by Vaishampayan [26]

(for fixed-rate symmetric 2-DSQ) and by Effros and Muresan [10] (for general case of K-DSQ) that for

the squared distance distortion measure, convexity of cells in the central partition does not prevent the

K-DSQ from being optimal.

Intuitively, the optimal K-DSQ should be convex when the emphasis in the optimization is on mini-

mizing the side distortions rather than the distortions of other components. This may happen when the

ratios ωi

ωI
for |I| ≥ 2 are large enough. We conjecture that for any continuous probability distribution

p(x), and any K-tuple of positive integers M1, · · · ,MK (Mk is the number of cells of side quantizer

k), there are finite values λi,I such that the convexity of the optimal fixed-rate K-DSQ is necessary

when ωi

ωI
> λi,I for all i and I, with ωi, ωI 6= 0. A proof of this statement was given in [6] for

fixed-rate symmetric 2-DSQ under the high-resolution assumption (R → ∞) and r-th power distortion

measure (d(x, y) =| x − y |r), when the pdf has a compact support. Precisely, it was shown that under

the above conditions, when ω1
ω{1,2}

≥ 1/2r+1, there is an optimal 2-DSQ with all cells convex. This

result was obtained by comparison with the high resolution performance of a class of non-convex 2-
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DSQ’s provided in [28]. As a consequence, in the case when the 2-DSQ is designed for communication

over two independent channels, the convex-cell condition does not preclude optimality when the channel

probability of success q is at most 2r+1

2r+1+1 , asymptotically in R. Table 1 lists the value of this maximum

bound for several values of r. For r = 2 the cell convexity will not preclude optimality if the channel

has a failure rate of 12% or higher. The larger the value of r, the more relaxed the condition for the side

quantizers of optimal 2-DSQ to be convex.

r min ω1
ω{1,2}

max q

1 0.25 0.800

2 0.125 0.888

3 0.0625 0.941

4 0.03125 0.969

TABLE I

MINIMUM VALUE OF THE RATIO OF WEIGHTS ω1
ω{1,2}

AND MAXIMUM VALUE OF CHANNEL PROBABILITY OF SUCCESS FOR

WHICH THE OPTIMAL FIXED-RATE SYMMETRIC 2-DSQ MUST BE CONVEX, IN THE CASE OF CONTINUOUS DISTRIBUTION

AND r-TH POWER DISTORTION MEASURE.

For the case of fixed-rate MRSQ, a simple argument shows that at high rates cells convexity does

not preclude optimality for any values of the weights ωI , for the rth power distortion. The argument is

based on the analysis of optimal quantization at high rates using the companding approach [2], [1], [3],

[20], [14]. As Bennett [2] pointed out, any convex scalar quantizer can be implemented as a compandor.

Consider now the optimal companding function (which minimizes the distortion as the rate goes to

∞). Based on this companding function construct K fixed-rate convex quantizers of rates R1, R1 +

R2, · · · , R1 + R2 + · · · + RK , respectively, where Ri = log2 Mi, for 1 ≤ i ≤ K. These quantizers are

embedded, hence they are the active components of a fixed-rate convex MRSQ of K refinement stages.

When R1 + · · ·+Ri →∞ for all i, 1 ≤ i ≤ K, the distortion at each stage will become arbitrarily close

to the optimal distortion at the corresponding rate. Consequently, the overall expected distortion of the

MRSQ will approach the minimal expected distortion, for any values of the weights ωI .

Theorem 5 states formally the above result. In order to proceed to the statement of the theorem we

introduce first some notations. Let Qopt(R) denote the optimal fixed-rate quantizer of rate R, for any
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R > 0. Moreover, denote

J =
1

2r(r + 1)
( ∫ W

V
p1/(r+1)(x)dx

)r+1
.

Then, by [14, Theorem 6.2] we have

lim
R→∞

2rRD(Qopt(R)) = J . (37)

Theorem 5. Assume that the pdf p(x) is continuous and positive on [V,W ] ∩ R, and that p(x) = 0

outside [V,W ]. Consider the r-th power distortion function, i.e. d(x, y) = |x − y|r. Moreover, assume

that the inequality
∫ W
V |x|r+εp(x)dx < ∞ holds for some ε > 0 and that there is some τ > 0 such that

p(x)sgn(x) is non-increasing in x on each of the intervals (−∞,−τ ] and [τ,∞). Consider an arbitrary

sequence of K-tuples of rates (i.e. positive values) (R(n)
1 , R

(n)
2 , · · · , R

(n)
K )n≥1 such that

lim
n→∞(R(n)

1 + R
(n)
2 + · · ·+ R

(n)
i ) = ∞ for all 1 ≤ i ≤ K. (38)

Also assume that 2R
(n)
1 +R

(n)
2 +···+R

(n)
i is an integer for any 1 ≤ i ≤ K, n ≥ 1. Let Q(opt,n) denote the

optimal fixed-rate MRSQ achieving the rates R
(n)
1 , · · · , R

(n)
K , i.e., such that each side quantizer i has rate

R
(n)
i , for 1 ≤ i ≤ K, n ≥ 1. Then the following equalities hold

lim
n→∞ 2r(R

(n)
1 +···+R

(n)
i )D(Q(opt,n)

{1,··· ,i}) = lim
n→∞ 2r(R

(n)
1 +···+R

(n)
i )D(Qopt(R

(n)
1 + · · ·+ R

(n)
i )) = J ,

where Q
(opt,n)
{1,··· ,i} denotes the active component of Q(opt,n) obtained by intersecting the first i side quantizers.

Furthermore, there are convex fixed-rate MRSQ’s Q(n) achieving the rates R
(n)
1 , R

(n)
2 , · · · , R

(n)
K , for all

n ≥ 1, such that

lim
n→∞ 2r(R

(n)
1 +···+R

(n)
i )D(Q(n)

{1,··· ,i}) = J .

Proof. Note first that since the rate of component quantizer Q
(opt,n)
{1,··· ,i} is R

(n)
1 + · · ·+ R

(n)
i , it follows that

lim
n→∞ 2r(R

(n)
1 +···+R

(n)
i )D(Q(opt,n)

{1,··· ,i}) ≥ lim
n→∞ 2r(R

(n)
1 +···+R

(n)
i )D(Qopt(R

(n)
1 + · · ·+ R

(n)
i )), (39)

for all 1 ≤ i ≤ K. To complete the proof we will construct the fixed-rate convex MRSQ Q(n) using the

companding approach. For this, consider the function g : R → [0, 1] defined as g(x) , p1/(r+1)(x)∫ W

V
p1/(r+1)(x)dx

for

all x ∈ R. Clearly, g is continuous and positive on [V, W ]∩R. Moreover, g(x)sgn(x) is non-increasing

in x on each of the intervals (−∞,−τ ] and [τ,∞). Define now the function G : [V, W ] ∩R → [0, 1]
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as G(x) ,
∫ x
V g(t)dt for all x ∈ [V, W ] ∩ R. Obviously, G is continuous and differentiable and its

derivative G′ satisfies G′(x) = g(x) for all x ∈ [V, W ] ∩R. Consequently, G is strictly increasing and

invertible. Moreover, limx↘V G(x) = 0 and limx↗W G(x) = 1. Let h : Dh → [V, W ] ∩ R be the

inverse of G (h = G−1), where Dh denotes the domain of definition of h and it satisfies the relations

(0, 1) ⊆ Dh ⊆ [0, 1]. Then, for any R > 0 such that 2R is an integer, the function G defines a fixed-rate

convex quantizer Q(R) with N = 2R cells, via the companding approach, as follows. The partition

thresholds of Q(R) are V = t0 < t1 < t2 < · · · < tN−1 < tN = W , where ti = h(i/N) for all

1 ≤ i ≤ N − 1. The reproduction value for each cell (ti−1, ti] is yi = h(2i−1
2N ), 1 ≤ i ≤ N . By [20,

Theorem 1] we have1

lim
R→∞

2rRD(Q(R)) =
1

2r(r + 1)

∫ W

V

p(x)
gr(x)

dx = J . (40)

Finally, note that the quantizers Q(R(n)
1 ), Q(R(n)

1 +R
(n)
2 ), · · · , Q(R(n)

1 +R
(n)
2 +· · ·R(n)

K ) are embedded,

hence they are respectively, the active components Q
(n)
1 , Q

(n)
{1,2}, · · · , Q

(n)
K , of a fixed-rate convex MRSQ

Q(n), whose side quantizer i has rate R
(n)
i , for each 1 ≤ i ≤ K, n ≥ 1. Then (37), (38) and (40) imply

that

lim
n→∞ 2r(R

(n)
1 +···R(n)

i )D(Q(n)
{1,··· ,i}) = lim

n→∞ 2r(R
(n)
1 +···R(n)

i )D(Qopt(R
(n)
1 + · · ·R(n)

i )) = J ,

for all 1 ≤ i ≤ K. The above equality together with the optimality of MRSQ Q(opt,n) and the fact

that the weights of its active components are positive imply that relation (39) holds with equality. This

observation completes the proof. ¤

Remark 2. Note that a sufficient condition for (38) to hold is that limn→∞R
(n)
i = ∞ for all 1 ≤ i ≤ K.

However, this is not a necessary condition. For instance, (38) is still valid if limn→∞R
(n)
1 = ∞ while

limn→∞R
(n)
i = ci with ci ∈ R ∪ {∞}, for 2 ≤ i ≤ K.

Remark 3. As an immediate consequence of the above theorem we obtain the following approximation for

the expected distortion of the optimal fixed-rate MRSQ Qopt(R1, R2, · · · , RK) of rates R1, R2, · · · , RK ,

as R1 + · · ·+ Ri →∞ for all i, when the conditions of Theorem 5 are satisfied,

D̄(Qopt(R1, R2, · · · , RK)) ≈ J × ( K∑

i=1

ω{1,2,··· ,i}2−r(R1+R2+···+Ri)
)
.

1It can be easily checked that all conditions in the hypothesis of Theorem 1 of [20] are satisfied.
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Moreover this approximation is achieved by a convex fixed-rate MRSQ.

VIII. CONCLUSION

Sufficient conditions are proven for global optimality of a locally optimal fixed-rate multiple description

scalar quantizer (MDSQ) of convex cells, which are the same as those given by Trushkin [24] for fixed-

rate single description scalar quantizer counterpart. This work supports the use of generalized Lloyd-

algorithm-type methods for scalar multiple description and multiresolution quantizer (MRSQ) design for

log-concave probability density functions, such as generalized Gaussian distributions with shape parameter

β ≥ 1.

Moreover we address the problem of optimal index assignment for fixed-rate convex MRSQ and

symmetric MDSQ, when cell convexity is assumed. In both cases we prove that at optimality the number

of cells in the central partition has to be maximal, as allowed by the side quantizer rates. As long as

this condition is fullfilled, any index assignment is optimal for MRSQ, while for symmetric MDSQ, an

optimal index assignment is proposed.

The assumption of convex cells is also discussed. Notably, it is proved that cell convexity is asymp-

totically optimal for MRSQ at high resolution, for the rth power distortion measure.

Appendix

Here we state and prove Lemma 3 which is used in Section 6.

We mention that the first part of the following lemma was proved in [29]. However, we need to repeat

its proof in order to make clear the proof of the second part.

Lemma 3. Assume that Conditions A and B hold. Then, for V ≤ x ≤ x′ < y ≤ y′ ≤ W the following

inequality holds:

D(x, y) + D(x′, y′) ≤ D(x′, y) + D(x, y′). (41)

Moreover, if f is additionally continuously differentiable and x < x′, y < y′, then the inequality (41) is

strict.

Proof. When x = x′ or y = y′, relation (41) trivially holds with equality. Assume now that x < x′ and
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y < y′. Let µ1 = µ(x′, y) and µ2 = µ(x, y′). Then

D(x′, y) + D(x, y′) =
∫ y

x′
f(|t− µ1|)p(t)dt +

∫ y′

x
f(|t− µ2|)p(t)dt. (42)

Assume first that µ1 ≤ µ2. We will prove now that
∫ y

x
f(|t− µ1|)p(t)dt +

∫ y′

x′
f(|t− µ2|)p(t)dt ≤

∫ y

x′
f(|t− µ1|)p(t)dt +

∫ y′

x
f(|t− µ2|)p(t)dt. (43)

The above relation is equivalent to
∫ x′

x
f(|t− µ1|)p(t)dt ≤

∫ x′

x
f(|t− µ2|)p(t)dt. (44)

Because x′ ≤ µ1 ≤ µ2 we have |t−µ1| ≤ |t−µ2| for all t ∈ (x, x′), and further f(|t−µ1|) ≤ f(|t−µ2|)
since f is strictly increasing. Because p(t) ≥ 0 for any t, (44) follows. Clearly, the following inequality

also holds

D(x, y) + D(x′, y′) ≤
∫ y

x
f(|t− µ1|)p(t)dt +

∫ y′

x′
f(|t− µ2|)p(t)dt. (45)

Relations (42), (43) and (45) imply inequality (41).

Using the notation Da,b(ξ) =
∫ b
a f(|t− ξ|)p(t)dt introduced in Section 3, relation (45) can be written

as

Dx,y(µ(x, y)) + Dx′,y′(µ(x′, y′)) ≤ Dx,y(µ1) + Dx′,y′(µ2). (46)

Because µ(x, y) is the unique value satisfying Dx,y(µ(x, y)) = minξ∈[V,W ] Dx,y(ξ), it follows that, when

µ(x, y) 6= µ1, we have

Dx,y(µ(x, y)) < Dx,y(µ1),

and consequently inequality (46) is strict, which further implies that (41) is strict, too.

For the case when f is additionally continuously differentiable, it was proved in [19] (in the Proof of

Lemma 1) that the function µ(·, ·), defined on [V, W ] × [V,W ], is strictly increasing in each argument.

Thus, since x < x′, it follows that µ(x, y) < µ1, which, together with the abobe considerations, leads to

the strictness of inequality (41).

The case µ1 > µ2 can be treated by similar arguments. ¤
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