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Abstract– Multi-resolution quantization is a way of constructing a progressively re-

finable description of a discrete random variable. The underlying discrete optimization

problem is to minimize an expected distortion over all refinement levels weighted by the

probability or importance of the descriptions of different resolutions. This research is mo-

tivated by the application of multimedia communications via variable-rate channels. We

propose an O(rN2) time and O(N2 log N) space algorithm to design a minimum-distortion

quantizer of r levels for a random variable drawn from an alphabet of size N . It is shown

that for a very large class of distortion measures the objective function of optimal multi-

resolution quantization satisfies the convex Monge property. The efficiency of the proposed

algorithm hinges on the convex Monge property. But our algorithm is simpler (even though

of the same asymptotic complexity) than the well-known SMAWK fast matrix search tech-

nique, which is the best existing solution to the quantization problem. For exponential

random variables our approach leads to a solution of even lower complexity: O(rN) time

and O(N log N) space, which outperforms all the known algorithms for optimal quantization

in both multi- and single-resolution cases. We also generalize the multi-resolution quanti-

zation problem to a graph problem, for which our algorithm offers an efficient solution.

Key words: Quantization, multi-resolution signal representation, multimedia communi-

cations, convex Monge property, matrix search, dynamic programming.
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1 Introduction

Signal quantization is a subject of fundamental importance to the engineering fields of

digital communications and data compression. The problem of optimal quantization is

directly motivated by the desire to code and transmit signals as accurately and efficiently

as possible. The optimization objective is simple to state: coding of a random variable X

to the maximum precision (or minimum distortion) using a given number of bits. Consider

a discrete random variable X whose values are drawn from a finite alphabet A, A =

{x1, x2, · · ·xN} ⊂ R, where xi < xi+1, 1 ≤ i < N . Let p(xi), 1 ≤ i ≤ N , be the probability

mass function of the random variable X. We assume without loss of generality that p(xi) > 0

for all i, 1 ≤ i ≤ N . For any positive integer k, denote by {0, 1}k the set of all binary words

of length k. Let B be another finite alphabet such that A ⊆ B ⊂ R.

Definition 1. A fixed-rate scalar quantizer Q for the random variable X is a pair of two

mappings: the encoder fQ : A → {0, 1}r, where r is an integer such that 1 ≤ r ≤ log2N ,

and the decoder, which is a one-to-one function gQ : {0, 1}r → Y, Y ⊂ B. For each symbol

x ∈ A, the value gQ(fQ(x)), also denoted by Q(x), is called the reproduction codeword of

x, whereas fQ(x) is called the binary codeword index for x. The set Y of all reproduction

codewords is called a codebook.

The quantizer generates a partition of the input alphabet A: Cu = {x ∈ A|fQ(x) =

u}, u ∈ {0, 1}r. The sets Cu of this partition are called the codecells of the quantizer.

The quantizer maps all symbols x contained in a codecell Cu to a reproduction codeword

gQ(u) = Q(x). The quantizer mapping function Q induces a distortion d(x, Q(x)) between

a symbol x and its reproduction Q(x). The overall reproduction quality of quantizer Q is

measured by the expected distortion:

D(Q) = E{d(X, Q(X))} =
∑

u∈{0,1}r

∑

x∈Cu

d(x, gQ(u))p(x). (1)

Besides its expected distortion D(Q), a quantizer Q is also characterized by its bit rate R(Q)

which is the average number of bits per symbol required to label the codewords. Throughout

this paper we only consider the case of fixed rate quantizer for which all codewords have the

same code length. In the formulation above, the fixed code length is r, hence the quantizer

rate is R(Q) = r.

Since 1960’s the majority of work in the literature on scalar quantization addressed

the problem of designing optimal scalar quantizers that minimize D(Q), over all possible
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quantizers Q, given the random variable X, for a fixed rate R(Q) [3, 5, 13, 16, 18, 19, 20, 21,

22]. We call this class of quantizers single-resolution scalar quantizers. Recently, motivated

by the applications in the Internet and wireless communications, researchers turned their

attention to the problem of multi-resolution quantization [6, 7, 8, 9, 15, 23], as defined

below.

Definition 2. A multi-resolution scalar quantizer of L refinement stages is a sequence of

L scalar quantizers Q = (Q1, Q2, · · · , QL) such that R(Q1) < R(Q2) < · · · < R(QL), where

any rate R(Qi), 1 ≤ i ≤ L, is an integer, and for each x ∈ A and 1 ≤ i < L

fQi+1(x) ∈ fQi(x){0, 1}R(Qi+1)−R(Qi). (2)

The condition (2) states that the binary codeword index of x for Qi+1, the quantizer

at the (i + 1)-th refinement stage, is obtained by appending exactly 2R(Qi+1)−R(Qi) bits to

the end of the codeword index of x at the previous refinement stage corresponding to Qi.

It implies that each codecell of Qi is partitioned into 2R(Qi+1)−R(Qi) codecells of Qi+1. In

other words, the alphabet partitions formed by the sequence of L quantizers Q1, Q2, · · · , QL

are successively embedded into each other, and hence multi-resolution quantizer (MRQ) is

progressively refinable from Q1 to Q2, then to Q3, and so forth. The description of x can

be progressively refined by so-called embedded bit plane coding, which scans the bits of the

codeword index fQi+1(x), from the most significant to the least.

The advantage of multi-resolution quantizer over its single-resolution counterpart is that

it facilitates rate-distortion scalable compression of a signal. The rate-distortion scalability

is a very important mechanism for maintaining the quality of network service when the

bandwidth fluctuates in time due to network congestion and/or channel noise. When the

effective transmission rate drops below the target bit rate of a non-scalable code based on

single-resolution quantization, the code may fail abruptly, causing sudden outage of net-

work service. In contrast, a scalable embedded code stream of multi-resolution quantizer

code offers a graceful degradation in reconstruction quality when channel conditions dete-

riorate. This is because an embedded bit sequence can be truncated in the middle, and

the truncated code segment (a prefix of the sequence) can still be decoded to an overall

representation of the coded signal, with a reconstruction quality proportional to the length

of the truncated code segment. The effect of successive refinement of a coded image via

progressive transmission of embedded MRQ bit stream is illustrated by Figure 1.

One can also define a multi-resolution vector quantizer simply by replacing random
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Figure 1: Progressive image reconstruction via scalable embedded bit stream.

variable X with random vector X in the definition above. However, even single-resolution

optimal vector quantization is known to be NP-hard [12], whereas optimal single-resolution

scalar quantizers can be computed in O(KN) or O(N2) time depending on the distortion

metric d(X, Q(X)), where N is the size of symbol alphabet A and K = 2r is the number of

codewords [20, 21]. If d(X, Q(X)) is mean-square error, then the problem can be solved in

O(N
√

K log N +N log N) time [3], or even better in O(N2O(
√

log K log log N)) time [18]. Note

that K < N in data compression applications. Since efficient algorithms (polynomial in N ,

and pseudo-polynomial in K) exist for optimal scalar quantizer design but not for optimal

vector quantizer design unless P=NP, we restrict ourselves in this paper to the investigation

of algorithms for designing optimal scalar multi-resolution quantizers. In the sequel, the

terms quantizer and quantization, unless explicitly qualified, all refer to the scalar case.

The paper is organized as follows. In the next section we formulate the problem of

optimal multi-resolution quantization, which aims to minimize the expected distortion over

a set of bit rates rather than for a fixed bit rate as in optimal single-resolution quantization.

In Section 3 we present an O(rN3) time dynamic programming algorithm for designing

optimal MRQ of L refinement stages for a source alphabet of size N , where r is the rate of

the highest refinement level (r = R(QL)). The time complexity of optimal MRQ design can

be reduced to O(rN2) under a very mild monotonicity condition of the distortion function,
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which is the topic of Section 4. Section 5 addresses the space complexity of the MRQ

design algorithm. We show how the intermediate results of the dynamic programming

process, which are required to reconstruct the alphabet partition of the optimal quantizer,

can be efficiently stored. In Section 6 we present an O(MN) time and O(MN) space

algorithm that computes the distortions of all convex subsets of A, where M is the size

of alphabet B. This algorithm performs a necessary preprocessing to facilitate the optimal

MRQ design algorithm of Section 4. In practical cases of interest we have M = O(N),

hence the preprocessing step does not increase the complexity of the optimization problem.

Furthermore, the preprocessing can be completed in O(N) time and O(N) space for the

ubiquitous mean-square distortion measure. In Section 7 we show how the time complexity

of optimal MRQ design can be further lowered to O(rN) for exponential random variables

(commonly encountered in applications of signal compression). This result immediately

extends to the design of optimal single-resolution quantizer of exponential random variables,

since the problem is a special case of optimal MRQ design. The O(rN) time complexity is

the lowest so far in the literature. Section 8 generalizes the problem of optimal MRQ design

to a graph problem, which can be solved by using the algorithms presented in this paper.

2 Problem Formulation

Since an MRQ is to operate in a range of bit rates, its distortion should measure the expected

reconstruction quality weighted by the probability of its operational bit rates, rather than

at a single fixed rate r = R(Q). Let U(i) be the probability that the MRQ operates at the

i-th refinement stage, i.e., R(Qi) bits are used to represent X, 1 ≤ i ≤ L. The expected

distortion of the MRQ Q is defined as

D̄(Q) =
L∑

i=1

U(i)D(Qi). (3)

Now we can state the problem of designing optimal MRQ, the central thesis of this paper,

as the following.

Problem 1. Given the discrete random variable X, a sequence of L target rates R1 < R2 <

· · · < RL (all being positive integers) and a probability mass function U(i), 1 ≤ i ≤ L, with

U(i) being the probability that Ri bits are used to represent X, construct an MRQ with L

refinement stages Q = (Q1, Q2, · · · , QL) such that R(Qi) = Ri, 1 ≤ i ≤ L, and the expected

distortion D̄(Q) is minimal.
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A key to the tractability of the underlying optimization problem is the convexity of the

codecells. A single-resolution optimal quantizer (for a wide class of distortion measures) has

to have convex codecells Cu, i.e., for any two values x and x′ contained in Cu with x < x′, any

symbol x” ∈ A, x < x” < x′, is also contained in Cu [10, 11]. This property permits the use

of dynamic programming to design optimal single-resolution quantizers [3, 5, 13, 18, 19, 20,

21, 22]. Unfortunately, pathological cases were found in which an optimal multi-resolution

quantizer has non-convex codecells [10]. Also for entropy-constrained scalar quantizers,

even in the single-resolution case, codecell convexity might preclude optimality [14]. For

tractability, however, codecell convexity was imposed in the development of algorithms for

optimal MRQ design [6, 17, 23]. Under this constraint Brunk et al. [6] proposed an iterative

descent algorithm for MRQ design. However, their algorithm can only find a locally optimal

solution. In [23] we presented a dynamic programming algorithm that computes the globally

optimal MRQ of convex codecells. The same constraint is also respected in this paper, and

should be assumed by the reader in the sequel so that we will not have to state it everywhere.

The complexity of the algorithm of [23] is O(rN3), where r = RL is the bit rate of the finest

refinement level of MRQ.

The main contribution of the present paper is a reduction of the complexity to O(rN2)

for a wide class of distortion functions d(X, Q(X)). We call a distortion function d(x, y),

d : R × R → [0,∞), monotone, if for any real x, y1 and y2, if x ≤ y1 < y2 or x ≥ y1 > y2,

then d(x, y1) ≤ d(x, y2), All distortion measures of signal quantization used in practice fall

into the class of monotone distortion functions. Based on (1) and (3) the expected distortion

of the MRQ Q can be rewritten as:

D̄(Q) =
L∑

i=1

U(i)
∑

u∈{0,1}R(Qi)

∑

x∈Cu

d(x, gQi(u))p(x). (4)

It follows that for each codecell Cu of the optimal MRQ, the associated reproduction code-

word gQi(u) must satisfy

∑

x∈Cu

d(x, gQi(u))p(x) = min
y∈B

∑

x∈Cu

d(x, y)p(x). (5)

For each subset C of the input alphabet A, define the distortion of C, D(C) as:

D(C) = min
y∈B

∑

x∈C

d(x, y)p(x) (6)

if C 
= ∅, and D(C) = 0 if C = ∅. Hence the expected distortion of the MRQ can be
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expressed as:

D̄(Q) =
L∑

i=1

U(i)
∑

u∈{0,1}R(Qi)

D(Cu). (7)

For the sake of completeness, we note the necessity of allowing empty MRQ codecells.

For single-resolution quantizer the optimal quantizer with given rate r has all 2r codecells

nonempty, r ≤ log2 N , if the distortion function d(X, Q(X)) is monotone (this assertion

should be understood in a weaker sense: there exists an optimal quantizer with all codecells

nonempty). However, in the case of MRQ, imposing the condition that all the 2R(Qi)

codecells at each refinement stage Qi, be nonempty, might preclude the optimality, especially

when R(QL) is close to log2 N . We illustrate this by the following example.

Example. Let the two alphabets be A = {20, 40, 60, 140} and B = {y ∈ N|20 ≤ y ≤ 140}.
Consider the random variable X whose probability mass function is: p(20) = 1

8 , p(40) =
1
8 , p(60) = 3

8 and p(140) = 3
8 . Let the distortion function be the squared distance: d(x, y) =

(x− y)2. Now examine the problem of constructing the optimal MRQ with two refinement

stages and target rates R1 = 1 and R2 = 2. If we require all codecells to be nonempty,

then the only possible MRQ (up to a reindexing of codecells) must have the codecells:

C0 = {20, 40}, C1 = {60, 140} at the first refinement stage, and C00 = {20}, C01 = {40},
C10 = {60}, C11 = {140} at the second refinement stage. The expected distortion of this

MRQ is

D̄1 = U(1) · 625 + U(2) · 0. (8)

Consider now the MRQ with codecells: C ′
0 = {20, 40, 60}, C ′

1 = {140} and C ′
00 = {20, 40},

C ′
01 = {60}, C ′

10 = {140}, C ′
11 = ∅. The expected distortion of this MRQ is

D̄2 = U(1) · 160 + U(2) · 25. (9)

For U(1) = α and U(2) = 1 − α such that 5
98 < α ≤ 1, we have D̄2 < D̄1.

3 Optimal MRQ Design

By its definition an MRQ Q is completely specified by the encoder at the highest refinement

stage and all intermediate rates R(Q1), R(Q2), · · · , R(QL−1). Indeed, the condition (2) is

equivalent to the requirement that for each 1 ≤ i < L, and each u ∈ {0, 1}R(Qi), the codecell

Cu of the quantizer Qi is the union of the 2R(QL)−R(Qi) codecells of the quantizer QL whose

indices are binary numbers having the binary word u as their common most significant bits:

Cu = ∪v∈u{0,1}R(QL)−R(Qi)Cv. (10)
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where u{0, 1}k is the set of all binary words formed by appending to u all possible k-bit

binary numbers. In fact the encoder of QL defines a multi-resolution quantizer of not only

L, but R(QL) refinement stages, corresponding to all integer rates from 1 to R(QL).

In general, any quantizer Q of fixed rate r is naturally associated with an MRQ of r

refinement stages. Let Cv, v ∈ {0, 1}r, be the codecells of Q. For each i, 1 ≤ i < r, and

each binary word u of length i, define the set:

Cu = ∪v∈u{0,1}r−iCv. (11)

Denote by Qi, 1 ≤ i ≤ r, the quantizer of rate i consisting of the codecells Cu, u ∈ {0, 1}i,

and let Q̂ be the sequence of quantizers (Q1, Q2, · · · , Qr). Since condition (2) is clearly

satisfied, Q̂ is an MRQ. We call Q̂ the multi-resolution quantizer induced by the quantizer

Q. Given a probability mass function W (i), 1 ≤ i ≤ r, with W (i) being the probability

that the first i bits of the quantized random variable X are transmitted via the channel,

the expected distortion of the MRQ Q̂ is

D̄(Q̂) =
r∑

i=1

W (i)
∑

u∈{0,1}i

D(Cu). (12)

The objective of optimal MRQ design is to minimize D̄(Q̂). Note that Q̂ represents an MRQ

of the maximum number of refinement stages. However, in the general case of Problem 1

one can obtain the solution by minimizing D̄(Q̂), but letting W (i) = U(j) if there is some j

such that i = Rj , and W (i) = 0 otherwise. Thus we can restate Problem 1 as the following.

Problem 2. Given a random variable X, a positive integer r and the probability mass

function W (i), 1 ≤ i ≤ r, construct a single-resolution quantizer Q of rate r, such that the

multi-resolution quantizer induced by Q has the minimal expected distortion D̄(Q̂).

The convexity of codecells of Q̂ implies that for each nonempty codecell Cu there exist

a unique pair of integers (n1, n2), 0 ≤ n1 < n2 ≤ N , such that Cu = {xi|n1 < i ≤ n2}. For

all integers n1, n2, 0 ≤ n1 ≤ n2 ≤ N denote by c(n1, n2] the set {xi|n1 < i ≤ n2} (obviously,

c(n1, n1] = ∅). To shorten the notation, the distortion of the set c(n1, n2] as defined by (6)

is written as D(n1, n2] instead of D(c(n1, n2]).

There is a natural partial order ≺ on the set of nonempty convex subsets of A: c(n1, n2] ≺
c(n3, n4] if and only if n2 ≤ n3. This partial order induces a total order on the set of

nonempty codecells of each refinemet stage of the MRQ. To simplify the algorithm design

we would like to index the codecells of quantizer Q in such a way as to preserve the order
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of codecells. Specifically, for any two binary words u and u′ with equal length and such

that Cu and Cu′ are nonempty, if u < u′ in lexicographical sense, then Cu ≺ Cu′ . Since the

distortion of single-resolution quantizer clearly does not depend on how the codecells are

indexed, reindexing the codecells of quantizer Q in lexicographical order does not change

D(Q). On the other hand, since the codecells of MRQ Q̂ are structured on the codecells of

Q and the structure is labelled by (11), an arbitrary reindexing of the codecells of Q might

change the encoder partitions at previous refinement stages of Q̂, thus affecting D̄(Q̂).

However, if the codecells at all refinement stages of Q̂ are convex, the following reindexing

of the codecells of Q does preserve the order of codecells at each refinement stage Qi of

Q̂, and does not affect the expected distortion of the MRQ, D̄(Q̂). For each integer i,

0 ≤ i ≤ r − 1, in increasing order, and each binary word u of length i, test codecells Cu0

and Cu1 (on the (i+1)-th refinement stage of Q̂). If any of them is empty or Cu0 ≺ Cu1 do

nothing; otherwise reindex all the codecells of Q by interchanging the prefixes u0 and u1.

From now on we may assume that the indexing of codecells preserves the order of codecells.

To find an efficient solution to Problem 2 we exploit the structure of embedded codecells

of a quantizer Q: Cu = ∪v∈u{0,1}kCv, with u ∈ {0, 1}r−k, 1 ≤ k ≤ r − 1. Given a codecell

Cu, consider all possible partitions of Cu into sub-codecells Cv, v ∈ u{0, 1}k. These varying

partitions only affect the partial sum of (12):

k∑

i=1

W (r − k + i)
∑

v∈u{0,1}i

D(Cv). (13)

Furthermore, as long as Cu is fixed, the variation of the other codecells of quantizer Q:

Cw, w 
∈ u{0, 1}k, does not affect the above expression either. Since the codecells of Q̂ are

convex, we have Cu = c(a, b] for some integers a, b, 0 ≤ a ≤ b ≤ N , and the codecells

Cv ∈ u{0, 1}k form a convex partition of c(a, b]. Since the indexing of codecells preserves

the codecells order, it follows that there is a (2k + 1)-tuple of integers (s0, s1, · · · s2k−1, s2k)

such that a = s0 ≤ s1 ≤ · · · ≤ s2k−1 ≤ s2k = b and, for any j, 0 ≤ j ≤ 2k − 1,

c(sj , sj+1] = Cuu′ , (14)

where u′ is the k-bit binary representation of j. Consequently, the partial sum (13) can be

rewritten as

Dk(s0, s1, · · · s2k−1, s2k) =
k∑

i=1

W (r − k + i)
2i−1∑

j=0

D(sj2k−i , s(j+1)2k−i ]. (15)
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Hence, given Cu = c(a, b] with fixed a and b, minimizing (13) is equivalent to minimizing

Dk(s0, s1, · · · s2k−1, s2k) over all (2k + 1)-tuple of integers (s0, s1, · · · , s2k−1, s2k) satisfying

a = s0 ≤ s1 ≤ · · · ≤ s2k−1 ≤ s2k = b. The set of all these (2k + 1)-tuple of integers is

denoted by Ik(a, b]. For each pair of a and b, 0 ≤ a ≤ b ≤ N and each 1 ≤ k ≤ r, define

D̂k(a, b] = min
(s0,s1,···,s

2k−1
,s

2k )∈Ik(a,b]

k∑

i=1

W (r − k + i)
2i−1∑

j=0

D(sj2k−i , s(j+1)2k−i ]. (16)

Obviously, D̂k(a, a] = 0 for all a, 0 ≤ a ≤ N . By (16) the minimal expected distortion

D̄(Q̂) equals to D̂r(0, N ]. The following proposition shows that the values D̂k(a, b] can be

computed recursively. We set by convention D0(a, b] = 0 for all a, b, 0 ≤ a ≤ b ≤ N .

Proposition 1. For 1 ≤ k ≤ r, 0 ≤ a ≤ b ≤ N , the following relation holds

D̂k(a, b] = min
ξ,a≤ξ≤b

{W (r−k+1)(D(a, ξ] + D(ξ, b]) + D̂k−1(a, ξ] + D̂k−1(ξ, b]}. (17)

Proof.

Consider an arbitrary (2k + 1)-tuple of integers (s0, s1, · · · , s2k) in Ik(a, b] and let ξ =

s2k−1 . Then

Dk(s0, s1, · · · , s2k) = W (r−k+1)(D(a, ξ]+D(ξ, b])+Dk−1(s0, · · · , s2k−1)+Dk−1(s2k−1 , · · · , s2k).

When ξ is fixed, the first term of the above sum is constant, and the quantities

Dk−1(s0, · · · , s2k−1) and Dk−1(s2k−1 , · · · , s2k) can be minimized independently. Now the

conclusion follows. �

Further, for each 1 ≤ k ≤ r, 0 ≤ a ≤ b ≤ N , we define

ξk(a, b] = argminξ,a≤ξ≤b{W (r−k+1)(D(a, ξ] + D(ξ, b]) + D̂k−1(a, ξ] + D̂k−1(ξ, b]}. (18)

In case when the point of minimum of the underlying objective function is not unique, we

let ξk(a, b] be the largest among these points. Clearly, ξk(a, a] = a for all 0 ≤ a ≤ N .

Proposition 1 immediately suggests the following dynamic programming algorithm to

solve Problem 2.

Algorithm 1. Optimal MRQ Design.

Step 1. For increasing k, k = 1, 2, · · · , r, and for all integers a, b, 0 ≤ a ≤ b ≤ N , compute

and store the values D̂k(a, b] and ξk(a, b] using the recursion (17)(When k = r it

suffices to consider only a = 0 and b = N .)
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Step 2. Let q0 = 0 and q2r = N . For decreasing k, k = r, r − 1, · · · , 1 and each i =

0, 1, · · · , 2r−k − 1, set

q(2i+1)2k−1 = ξk(qi2k , q(i+1)2k ].

The algorithm outputs the (2r + 1)-tuple of integers (q0, q1, · · · , q2r), which specifies the

optimal scalar multi-resolution quantizer. Namely, for each u ∈ {0, 1}r, Cu = c(qi, qi+1],

where i is the integer whose r-bit binary representation is u.

The complexity of the above algorithm is dominated by the operations of Step 1. Here

we assume that a preprocessing step is taken to compute and store all the values D(a, b],

0 ≤ a ≤ b ≤ N . The details of this preprocessing are deferred to Section 6 where we will

show that the cost of the preprocessing does not affect the complexity of the algorithm. For

each triple k, a, b, the computation of D̂k(a, b] using (17) spends O(N) time if linear search

is applied. Since there are O(rN2) such triples to be considered, the total cost of Step 1

becomes O(rN3). We will show in the next section that solving (17) does not need linear

search, and reduce the time complexity to O(rN2).

4 Complexity Reduction by Monotonicity

The baseline algorithm for optimal MRQ design as given in the previous section can be

improved by exploiting a monotonicity property of ξk(a, b] stated below.

Proposition 2. For any integer k, 1 ≤ k ≤ r, and any integers a, a′, b, b′ such that

0 ≤ a ≤ b ≤ N , 0 ≤ a′ ≤ b′ ≤ N , a ≤ a′ and b ≤ b′, the following inequality holds:

ξk(a, b] ≤ ξk(a′, b′], (19)

if the distortion measure d(X, Q(X)) between a random variable X and its quantizer re-

production Q(X) is monotone (defined in Section 2).

This proposition says that the search range for ξk(a, b] can be reduced from the interval

[a, b] to the much smaller one [ξk(a, b − 1], ξk(a + 1, b]]. Later in this section we will use

this property to organize the computations of D̂k(a, b] and ξk(a, b] for all intervals (a, b],

0 ≤ a < b ≤ N , and for a given k in such a way that these O(N2) values can be computed

in O(N2) time. In fact, the counterpart of Proposition 2 for conventional single-resolution

quantization was shown by Wu and Zhang for all monotone distortion measures [21]. In what

follows we generalize the results of [21] to the case of optimal multi-resolution quantization

and eventually prove Proposition 2.
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To proceed we need a few notations. For any integer k, 1 ≤ k ≤ r, and any integers a,

b, 0 ≤ a ≤ b ≤ N , let

Ek(a, b) = W (r−k+1)D(a, b] + D̂k−1(a, b], (20)

and rewrite (17) and (18) respectively as

D̂k(a, b] = min
ξ,a≤ξ≤b

{Ek(a, ξ) + Ek(ξ, b)} (21)

and

ξk(a, b] = argminξ,a≤ξ≤b{Ek(a, ξ) + Ek(ξ, b)} (22)

The proof of Proposition 2 relies on the fact that the function Ek(·, ·) satisfies the so-called

convex Monge condition. A real valued function A(a, b) of integers a, b, 0 ≤ a ≤ b ≤ N , is

said to satisfy the convex Monge condition if and only if for all integers 0 ≤ a < a′ ≤ b <

b′ ≤ N , the following relation holds [4]:

A(a, b) + A(a′, b′) ≤ A(a, b′) + A(a′, b). (23)

Working toward the proof of Proposition 2, we present two lemmas.

Lemma 1. If A(a, b) and A′(a, b) are two real-valued functions defined on integers 0 ≤ a ≤
b ≤ N , which satisfy the convex Monge condition, then the function B(a, b) as defined by

B(a, b) = min
a≤μ≤b

(A(a, μ) + A′(μ, b)), 0 ≤ a ≤ b ≤ N, (24)

also satisfies the convex Monge condition.

Proof. We want to show that for 0 ≤ a < a′ ≤ b < b′ ≤ N

B(a, b) + B(a′, b′) ≤ B(a, b′) + B(a′, b). (25)

Consider the integers ξ and ν, a ≤ ξ ≤ b′ and a′ ≤ ν ≤ b, such that by (24)

B(a, b′) = A(a, ξ) + A′(ξ, b′), (26)

B(a′, b) = A(a′, ν) + A′(ν, b). (27)

There are two cases: ξ ≤ ν and ξ > ν. We present the proof only for the first case; the

second case can be treated analogously.
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Assuming that ξ ≤ ν, then clearly a ≤ ξ ≤ b and a′ ≤ ν ≤ b′. From (24) it follows that

B(a, b) ≤ A(a, ξ) + A′(ξ, b), (28)

B(a′, b′) ≤ A(a′, ν) + A′(ν, b′). (29)

Relations (26), (27), (28) and (29) imply that (25) holds if

A(a, ξ) + A′(ξ, b) + A(a′, ν) + A′(ν, b′) ≤ A(a, ξ) + A′(ξ, b′) + A(a′, ν) + A′(ν, b), (30)

which is equivalent to

A′(ξ, b) + A′(ν, b′) ≤ A′(ξ, b′) + A′(ν, b). (31)

The above inequality is valid because 1 ≤ ξ ≤ ν ≤ b < b′ ≤ N and the function A′ satisfies

the convex Monge condition. �

Lemma 2. For each integer k, 1 ≤ k ≤ r, the function Ek(a, b) satisfies the convex Monge

condition, if the distortion measure d(X, Q(X)) is monotone.

In the proof of Lemma 2 we use the fact that D(a, b], as a function of integers a, b,

satisfies the convex Monge condition. We borrow a result of Wu and Zhang [21]. They

prove that the function ε(a, b], defined as:

ε(a, b] = min
y∈R

b∑

i=a+1

d(xi, y)p(xi), (32)

for all 0 ≤ a < b ≤ N , satisfies the convex Monge condition if d(x, y) is monotone. Note

that the function ε(a, b] is not identical to D(a, b], because we have according to (6):

D(a, b] = min
y∈B

b∑

i=a+1

d(xi, y)p(xi), (33)

for all 0 ≤ a < b ≤ N , and B is strictly included in R. However, an attentive examination of

the proof of [21] shows that the result still stands if in the definition (32) the range of y over

which the minimum is taken is restricted to a subset of R which contains all elements of A.

Since A ⊆ B, we conclude that our function D(a, b] satisfies the convex Monge condition,

too.

Proof of Lemma 2. The proof is constructed by induction on k. If k = 1, then

E1(a, b) = W (r)D(a, b]. (34)
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Since D(a, b] satisfies the convex Monge condition, clearly E1(a, b) satisfies the condition,

too.

Fix some k, 1 ≤ k ≤ r − 1, and assume that the function Ek(a, b) satisfies the convex

Monge condition. Applying further the equality (21) and Lemma 1, we conclude that

D̂k(a, b] also satisfies the convex Monge condition. The relation

Ek+1(a, b) = W (r − k + 1)D(a, b] + D̂k(a, b], (35)

implies that Ek+1(a, b) is a linear combination of functions satisfying the convex Monge

condition, hence clearly it satisfies the condition, too. �

Now we are ready to construct the proof of Proposition 2.

Proof of Proposition 2. Assume that inequality (19) is not satisfied, in other words

ξk(a, b] > ξk(a′, b′]. (36)

Let ξ′ = ξk(a, b] and ξ = ξk(a′, b′]. It follows that a ≤ a′ ≤ ξ < ξ′ ≤ b ≤ b′. The definition

of ξk(a, b] implies that

Ek(a, ξ) + Ek(ξ, b) ≥ Ek(a, ξ′) + Ek(ξ′, b) (37)

Since the function Ek(·, ·) satisfies the convex Monge condition (Lemma 2), we have

Ek(a, ξ′) + Ek(a′, ξ) ≥ Ek(a, ξ) + Ek(a′, ξ′),

Ek(ξ, b′) + Ek(ξ′, b) ≥ Ek(ξ, b) + Ek(ξ′, b′). (38)

Summing up the above inequalities yields:

Ek(a, ξ′) + Ek(ξ′, b) + Ek(a′, ξ) + Ek(ξ, b′) ≥
Ek(a, ξ) + Ek(ξ, b) + Ek(a′, ξ′) + Ek(ξ′, b′). (39)

Relations (37) and (39) imply that

Ek(a′, ξ) + Ek(ξ, b′) ≥ Ek(a′, ξ′) + Ek(ξ′, b′), (40)

which contradicts the definition of ξk(a′, b′] (recall that ξ = ξk(a′, b′]). �

Proposition 2 implies that (21) is equivalent to

D̂k(a, b] = min
ξ,ξk(a,b−1]≤ξ≤ξk(a+1,b]

(Ek(a, ξ) + Ek(ξ, b)) (41)
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and (22) is equivalent to

ξk(a, b] = argminξ,ξk(a,b−1]≤ξ≤ξk(a+1,b]{Ek(a, ξ) + Ek(ξ, b)}. (42)

Now we see that the search range for ξk(a, b] can be reduced from the interval [a, b] to a much

smaller one [ξk(a, b − 1], ξk(a + 1, b]]. In order to take advantage of this, the computation

of ξk(a, b− 1] and ξk(a + 1, b] has to be completed before the computation of ξk(a, b] starts.

The required sequencing can be achieved if the entries of the upper triangular matrices D̂k

and ξk (whose entries are D̂k(a, b] and ξk(a, b], 0 ≤ a ≤ b ≤ N , where a is the row index and

b is the column index) are computed advancing from the leftmost column to the rightmost

one, and inside each column advancing from the bottom to the top. This strategy leads to

a surprisingly simple algorithm of computing all D̂k(a, b] for a given k as described by the

following pseudocode.

Algorithm 2.

for a = 0 to N do

ξk(a, a] := a; D̂k(a, a] := 0;

for i = 1 to a do

D̂k(a − i, a] := minξ,ξk(a−i,a−1]≤ξ≤ξk(a−i+1,a](Ek(a − i, ξ) + Ek(ξ, a));

ξk(a − i, a] := argminξ,ξk(a−i,a−1]≤ξ≤ξk(a−i+1,a](Ek(a − i, ξ) + Ek(ξ, a));

Note that for each pair of integers a, and b, Ek(a, b] is evaluated in constant time using

formula (20). Consequently, the evaluation of both D̂k(a−i, a] and ξk(a−i, a] takes O(ξk(a−
i+1, a]−ξk(a−i, a−1]) operations if i > 0, or O(1) operations if i = 0. The time complexity

Tk of Algorithm 2 is:

Tk = O(N) + O(
N∑

a=1

a∑

i=1

(ξk(a − i + 1, a] − ξk(a − i, a − 1]))

= O(N) + O(
N∑

a=1

a∑

i=1

ξk(a − i + 1, a] −
N−1∑

a=0

a+1∑

i=1

ξk(a − i + 1, a])

= O(N) + O(
N∑

i=1

ξk(N − i + 1, N ] −
N−1∑

a=0

ξk(0, a]) = O(N2). (43)

Consequently, replacing Step 1 of Algorithm 1 by r invocations of Algorithm 2 (one for

each k = 1, 2, · · · , r) reduces the time complexity of optimal MRQ design from O(rN3) to

O(rN2).
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Before ending this section we mention in passing that the same O(N2) time complexity

for the computation of all values D̂k(a, b] for a given k, can also be achieved by the fast

matrix search technique proposed by Aggarwal et al. [1]. Indeed, it can be easily shown

that this problem is equivalent to the problem of tube minima in a totally monotone three-

dimensional array [2]. Even though our algorithm achieves the same asymptotic complexity,

it is much simpler in structure.

But can this simpler algorithm be applied to optimal single-resolution quantization

(SRQ) as well? Clearly, SRQ is a special case of MRQ, where the finest resolution has

probability 1 (W (r) = 1) and all intermediate resolutions have probability 0 (W (k) = 0,

1 ≤ k < r). Thus the algorithm presented in this section offers a new solution to designing

optimal SRQ of K = 2r codecells, without using the SMAWK matrix reduction technique

introduced by Aggarwal et al. [1] for fast matrix search. But its time complexity is higher

than SMAWK: O(rN2) vs. O(N2) for general monotone distortion function, and vs. O(KN)

when the distortion function is the squared Euclidean distance [20, 21]. Interestingly though,

if the random variable to be quantized has exponential distribution, applying the simple

idea developed in this section in conjunction with the properties of exponential distribution

yields an O(rN) time algorithm for optimal MRQ design, and for optimal K = 2r-codecells

SRQ design, too. In this case our simple algorithm also has a lower asymptotical time

complexity than all previous algorithms of optimal SRQ design. We present this algorithm

in Section 7.

5 Space Complexity

Now we discuss the space complexity. For each k, the matrix D̂k, which is formed by the

k-th invocation of Algorithm 2, has to be stored until the completion of the (k + 1)-th

invocation. To store all the O(N2) entries of the matrix, at least O(N2 log2 N) bits are

required. In order to reconstruct the underlying partition of the resulting optimal MRQ

(Step 2 of Algorithm 1) the algorithm also needs to keep all intermediate values of ξk(a, b]. If

we simply stored all matrices ξk, 1 ≤ k ≤ r, we would need an additional O(rN2 log2 N) bits,

which dominates and determines the space complexity. We can reduce this space complexity

by storing the information about ξk(a, b] via a compact encoding scheme. Of course this

adds an extra time of decoding to Step 2 of Algorithm 1. But since only 2r+1 < 2N values

of ξk(·, ·] need to be back traced in Step 2, the decoding time is only O(rN), as we will show

below, being negligible comparing to the time complexity of O(rN2) for Step 1.
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By Proposition 2, for each k, any row a of the matrix ξk has the entries in nondecreasing

order. Hence any entry ξk(a, b] is either equal to or larger than the previous entry on the

row. We use one bit to encode which is the case, and create an N × N upper triangular

matrix Zk of binary entries Zk(a, b), 0 ≤ a ≤ N − 1, a + 1 ≤ b ≤ N . Namely, Zk(a, b) = 0

if ξk(a, b] = ξk(a, b − 1] and Zk(a, b) = 1 otherwise. Since the value of ξk(a, a + t] remains

a constant in a range t = 0, 1, · · ·, we can compactly encode these ranges. To this end we

use another N × N upper triangular matrix Z ′
k of binary entries Z ′

k(a, ξ), 0 ≤ a ≤ N − 1,

a + 1 ≤ ξ ≤ N , such that Z ′
k(a, ξ) = 1 if ξ = ξk(a, b] for some b, a ≤ b ≤ N , otherwise

Z ′
k(a, ξ) = 0.

Computing the two matrices Zk and Z ′
k incurs almost no cost. Algorithm 2 first ini-

tializes all the binary entries to 0. Upon obtaining each ξk(a, b], the algorithm sets both

Zk(a, b) and Z ′
k(a, ξk(a, b]) to 1 if ξk(a, b] 
= ξk(a, b− 1]. (The value ξk(a, b] is not discarded

immediately, but only after the computation of ξk(a, b + 1].)

Aided with Zk and Z ′
k, Algorithm 1 can reconstruct the value ξk(a, b] as follows. Given k

and a, keep an ordered list of the nonzero entries of matrix Z ′
k on row a in increasing column

indices. Then ξk(a, b] equals the j-th element of this list such that j =
∑b

t=a+1 Zk(a, t)

(if j = 0, then ξk(a, b] = a). To determine ξk(a, b), the algorithm firstly computes the

associated j value, which takes b − a additions. Then it finds the j-th nonzero entry on

row a of matrix Zk, which requires at most b − a comparisons (since ξk(a, b] ≤ b, only the

entries up to Zk(a, b) are checked). Thus, the time spent to reconstruct any ξk(a, b] is only

O(b − a).

In Step 2 of Algorithm there are 2r+1 quantizer end points to be reconstructed, namely,

ξk(qi2k , q(i+1)2k ] for each k = r, r − 1, · · · , 1 and each i = 0, 1, · · · , 2r−k − 1. Consequently,

the total extra time required by the compact encoding scheme to save space is

O(
r∑

k=1

2r−k−1∑

i=0

(q(i+1)2k − qi2k)) = O(
r∑

k=1

N) = O(rN). (44)

This is negligible comparing to the time complexity of Step 1. Hence, the total time com-

plexity of O(rN2) is not affected.

With the proposed compact encoding scheme we only need to store the two N ×N up-

per triangular binary matrices Zk and Z ′
k, 1 ≤ k ≤ r, to facilitate step 2 of the algorithm.

This space requirement is clearly only O(rN2) in bits. In addition to the space require-

ment of O(N2 log2 N) for matrix D̂k, the total space complexity is O(N2 log2 N + rN2), or

O(N2 log2 N) since r = O(log N).
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6 The Preprocessing Step

In this section we consider the computation of the distortions of all convex subsets of

alphabet A, i.e. all D(a, b], 0 ≤ a ≤ b ≤ N . The same task was addressed in [21] and was

solved with O(MN) time and space requirements, where M denotes the size of alphabet B.

We present here a different method, which achieves the same asymptotic complexity, but is

much simpler.

Recall that

D(a, b] = min
y∈B

b∑

i=a+1

d(xi, y)p(xi), (45)

for all 0 ≤ a ≤ b ≤ N . In [21] it is shown that the above minimum is achieved for some

y ∈ B ∩ [xa+1, xb] (see remarks after Lemma 2). Denote this by μ(a, b] (in case of multiple

points, the largest one is picked). It is also shown in [21] that the function μ(a, b] of integers

a and b is monotone in both a and b, i.e. for any integers a, a′, b, b′, such that 0 ≤ a < b ≤ N ,

0 ≤ a′ < b′ ≤ N , a ≤ a′ and b ≤ b′, the following inequality holds:

μ(a, b] ≤ μ(a′, b′]. (46)

The above property allows us to compute the values D(a, b] and μ(a, b] for all 0 ≤ a < b ≤ N ,

in O(MN) time (by using the same idea as in Section 4), provided that the expression
∑b

i=a+1 d(xi, y)p(xi) can be evaluated in constant time for any integers a, b, 0 ≤ a < b ≤ N ,

and any y ∈ B ∩ [xa+1, xb]. Let y1, y2, · · · yM denote the elements of B, listed in increasing

order.

Instead of precomputing and storing all the values
∑b

i=a+1 d(xi, y)p(xi) we use the ap-

proach of [21] to save time and space. Namely, we compute and store the (N + 1) × M

matrix S with entries S(b, j), 0 ≤ b ≤ N , 1 ≤ j ≤ M , defined as:

S(b, j) =
b∑

i=1

d(xi, yj)p(xi) (47)

if b > 0, and S(0, j) = 0. Then
∑b

i=a+1 d(xi, yj)p(xi) can be computed in constant time

according to
b∑

i=a+1

d(xi, yj)p(xi) = S(b, j) − S(a, j), (48)

for all a, b, 0 ≤ a < b ≤ N , and yj ∈ B ∩ [xa+1, xb]. Mention that the matrix S can be built

in O(MN) time since each column j can be incrementally computed in O(N) time.

The method of [21] consists of computing the distortions D(a, b] for fixed a and all

b, a < b ≤ N , by applying the fast matrix search technique. Indeed, this problem is
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equivalent to the problem of finding all the row minima of an (N − a) × Ma matrix, which

is totally monotone (due to the property of the distortion function d(x, y)), where Ma =

M −|B∩ [x1, xa+1]|. Note that Ma ≥ N −a since A ⊆ B. As proved in [1], this problem can

be solved in O(Ma) time. Applying this method for each a, 0 ≤ a < N , the total complexity

becomes O(MN) time.

We achieve the same time complexity but in a much simpler way using the idea exposed

in Section 4. The inequality (46) implies that

D(a, b] = min
j,μ(a,b−1]≤yj≤μ(a+1,b]

(S(b, j) − S(a, j)), (49)

for all a, b, 0 ≤ a < b− 1 ≤ N − 1. Obviously, μ(a, a+1] = a+1 and D(a, a+1] = 0 for any

a, 0 ≤ a ≤ N − 1. The pseudocode for computing all D(a, b] and μ(a, b] is the following:

Algorithm 3.

for b = 0 to N − 1 do

μ(b, b + 1] := b + 1; D(b, b + 1] := 0;

for i = 1 to b do

D(b − i, b + 1] := minj,μ(b−i,b]≤yj≤μ(b−i+1,b+1](S(b + 1, j) − S(b − i, j));

μ(b − i, b + 1] := max argminj,μ(b−i,b]≤yj≤μ(b−i+1,b+1](S(b + 1, j) − S(b − i, j));

The time complexity of this algorithm, via a similar analysis as that of Algorithm 2 in

Section 4, is O(MN). In most cases of interest M = O(N), hence the preprocessing step

does not increase the complexity of the algorithm for optimal MRQ design.

The most widely used distortion function in data compression is the square distance

d(x, y) = (x− y)2. In this case, the preprocessing step is even faster. Instead of computing

all O(N2) values D(a, b], only some O(N) quantities are computed in O(N) time. These

quantities allow the evaluation of D(a, b] in constant time, every time it is needed [20].

7 Optimal MRQ for Exponential Random Variable

In this section we treat the special case of quantizing an exponential random variable. We

will show that for a family of distortion measures, which includes the ubiquitous squared

Euclidean distance, the time complexity of the algorithm for optimal MRQ design can be

reduced to O(rN). This result presents complexity reduction for optimal SRQ design as

well. Indeed, it means that the optimal K-codecells SRQ design for an exponential random
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variable can be effected in O(N log K) time, which is the fastest among all known solutions

for optimal SRQ design [3, 5, 13, 16, 18, 19, 20, 21]. (The algorithm presented in this

section works for the case when the number of codecells is a power of two, but it can be

easily extended to the other cases, too.)

We assume the symbols of alphabet A to be xi = α+ iδ, 1 ≤ i ≤ N , for some real values

α, δ, δ > 0. The probability mass function is p(xi) = ceλi for all i, 1 ≤ i ≤ N , where λ is a

real value, λ 
= 0, and c is a constant such that
∑N

i=1 p(xi) = 1.

We also assume that the symbols of alphabet B are yj = α + j δ
m , 1 ≤ j ≤ M , where

m is a positive integer. The distortion function d(x, y) is assumed to be a nondecreasing

function of the absolute distance |x − y|, in other words, there is a nondecreasing function

f : R → [0,∞), such that d(x, y) = f(|x − y|), for all real x and y. Note that under this

assumption the distortion function d(x, y) is monotone, hence all the results obtained in the

previous sections hold.

The reduction in complexity of optimal MRQ design from O(rN2) to O(rN) follows

from the observation that there is no longer the need to evaluate the quantities D̂k(a, b] for

all pairs of integers a, b, 0 ≤ a ≤ b ≤ N , but only for the pairs with a = 0. This property is

a consequence of the following proposition.

Proposition 3. For any integers k, a, b, 1 ≤ k ≤ r, 0 ≤ a ≤ b ≤ N , the following equalities

hold:

D̂k(a, b] = eλaD̂k(0, b − a], (50)

ξk(a, b] = a + ξk(0, b − a]. (51)

Proof.

The proof proceeds in two steps. The first step is to show that the equality

D(a, b] = eλaD(0, b − a] (52)

is valid for all integers 0 ≤ a ≤ b ≤ N . The second step is to prove by induction on k, that

(50) and (51) hold, too.

Starting from the definition of D(a, b] (45) and the observation mentioned in Section 6

that μ(a, b] ∈ B ∩ [xa+1, xb], the following sequence of equalities follows:

D(a, b] = miny∈B∩[xa+1,xb]

b∑

i=a+1

f(|y − α − iδ|) · ceλi

= eλa · miny∈B∩[xa+1,xb]

b−a∑

j=1

f(|y − α − aδ − jδ|) · ceλj . (53)
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¿From the way the symbols of alphabets A and B were defined it follows that y ∈ B ∩
[xa+1, xb] if and only if y− aδ ∈ B∩ [x1, xb−a]. By a change of variable y′ = y− aδ, we have

D(a, b] = eλa · miny′∈B∩[x1,xb−a]

b−a∑

j=1

f(|y′ − α − jδ|) · ceλj

= eλaD(0, b − a], (54)

concluding the first step of the proof.

We now prove Proposition 3 by induction on k. Let k = 1 and a, b be arbitrary integers

such that 0 ≤ a ≤ b ≤ N . Then, from Proposition 1 it follows that

D̂1(a, b] = min
ξ,a≤ξ≤b

W (r)(D(a, ξ] + D(ξ, b]). (55)

Replacing D(a, ξ] and D(ξ, b] according to (52) yields

D̂1(a, b] = min
ξ,a≤ξ≤b

W (r)(eλaD(0, ξ − a] + eλξD(0, b − ξ])

= min
ξ,a≤ξ≤b

W (r)(eλaD(0, ξ − a] + eλaeλ(ξ−a)D(0, b − ξ])

= eλa min
ξ,a≤ξ≤b

W (r)(D(0, ξ − a] + D(ξ − a, b − a])

= eλa min
μ,0≤μ≤b−a

W (r)(D(0, μ] + D(μ, b − a])

= eλaD̂1(0, b − a]. (56)

The second last equality in the above sequence is obtained by replacing ξ − a by μ, which

also implies that

ξ1(a, b] = a + ξ1(0, b − a]. (57)

Thus the verification step of the inductive proof is completed. The inductive step k → k+1

follows easily using the same idea and we omit the proof. �

A direct consequence of Propositions 1 and 3 is the following recursive formula:

D̂k(0, a] = min
ξ,0≤ξ≤a

{W (r−k+1)(D(0, ξ] + eλξD(0, a − ξ])

+D̂k−1(0, ξ] + eλξD̂k−1(0, a − ξ]} (58)

for all 1 ≤ k ≤ r and 0 ≤ a ≤ N . On the other hand, Proposition 2 implies that

ξk(0, a − 1] ≤ ξk(0, a] ≤ ξk(1, a] (59)

for all 1 ≤ k ≤ r and 1 ≤ a ≤ N . Moreover, Proposition 3 implies ξk(1, a] = 1+ ξk(0, a− 1].

Summing up the above observations leads to the following recursion

D̂k(0, a] = min
ξ∈{ξk(0,a−1],1+ξk(0,a−1]

{W (r−k+1)(D(0, ξ] + eλξD(0, a − ξ])

+D̂k−1(0, ξ] + eλξD̂k−1(0, a − ξ]} (60)
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for all 1 ≤ k ≤ r and 1 ≤ a ≤ N .

Using the recursion above the minimal expected distortion D̄(Q̂), or D̂r(0, N ], can be

obtained by recursively computing all values D̂k(0, a] and ξk(0, a], 1 ≤ k ≤ r and 0 ≤ a ≤ N ,

in increasing order of k and a. According to (60) the computation of each such value requires

constant time, hence the whole process takes O(rN) time.

The space complexity of this algorithm for exponential random variable is also decreased

by a factor of N comparing to the general algorithm. Indeed, the matrix D̂k which has to be

stored at each current value of k has the dimension 1× (N + 1). Also for each k, 1 ≤ k ≤ r,

the matrix Zk with binary entries which encodes the information about the values ξk(0, a],

has only N entries: Zk(0, a), 1 ≤ a ≤ N . Mention that the matrix Z ′
k is no longer needed

(since ξk(0, a] is either ξk(0, a − 1] or 1 + ξk(0, a − 1], and ξk(0, a] is increasing in a, it

follows that ξk(0, a] =
∑a

i=1 Zk(0, a), 1 ≤ a ≤ N). Hence the space requirement amounts

to O(N log2 N + rN) = O(N log2 N) bits.

8 Generalization to A Graph Problem

The design of optimal K-codecells single-resolution quantizer is an instance of the problem of

finding a minimum-weight K-link path in a directed acyclic graph (DAG) [3]. Conversely,

we can generalize optimal MRQ design to a graph problem. First, let us introduce a

so-called multi-edge-sets weighted directed acyclic graph (MEWDAG), denoted by G =

(V, E1, ω1, · · ·Er, ωr), where for each k, 1 ≤ k ≤ r, Gk = (V, Ek, ωk) is a weighted directed

acyclic graph, with the set V of vertices, the set Ek of edges, and the function ωk assigning

weights to edges, ωk : Ek → R. Moreover, the topological order of the set V is the same

in all component graphs Gk, 1 ≤ k ≤ r. V is called the vertex set of the MEWDAG G.

Let v0, v1, · · · , vn be the vertices of the graph, in topological order. We call an r-layered

embedded path in G any sequence of paths P = (P1, P2, · · · , Pr), where each Pk is a path

from v0 to vn in graph Gk, and for any k, 1 ≤ k ≤ r − 1, and any link (vi, vj) of Pk, there

is a subpath of Pk+1 from node vi to node vj (this subpath is called the expansion of the

link (vi, vj)). We define the weight of the r-layered embedded path P, denoted by ω(P), to

be the sum of the weights ωk(Pk) of the component paths:

An interesting problem associated with G is the r-layered embedded path of minimum

weight, called the minimum-weight r-layered embedded path problem. Some exam-

ples of the applications of the minimum-weight layered embedded path are optimal multi-

resolution piecewise approximation of a discrete signal, and optimal entropy-constrained
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multi-resolution quantization [7]. The O(rN3) dynamic programming algorithm of [7] for

the latter problem can be generalized to solve the graph problem of the minimum-weight

layered embedded path. Of close relevance to optimal fixed-rate MRQ of r refinement levels

is a more restrictive variant of minimum-weight layered embedded path, as stated below.

Problem 3 (bifurcate minimum-weight r-layered embedded path). Let G =

(V, E1, ω1, · · ·Er, ωr) be an MEWDAG. Find the r-layered embedded path P =

(P1, P2, · · · , Pr) of minimum weight, which satisfies the additional constraint that the path

P1 contains at most two links and for any k, 1 ≤ k ≤ r−1, the expansion of any link (vi, vj)

of path Pk has at most two links, too.

Clearly, optimal MRQ design (Problem 2) is an instance of the bifurcate minimum-

weight r-layered embedded path problem. The corresponding MEWDAG is G =

(V, E1, ω1, · · ·Er, ωr), where V = {v0, v1, · · · , vN}, Ek = {(vi, vj)|0 ≤ i < j ≤ N} and

ωk(vi, vj) = W (k)D(i, j], for all 0 ≤ i < j ≤ N and 1 ≤ k ≤ r. Note that the r compo-

nent graphs Gk = (Vk, Ek, ωk) share not only the same vertex set, but also the same edge

set, which is the maximal possible given the topological order (i.e., all these r DAG’s are

complete and the corresponding MEWDAG G is also said to be complete).

In each component graph Gk, each edge (vi, vj) corresponds to a subset of alphabet A,

namely c(i, j]. Hence to each path in the graph Gk corresponds a partition of the alphabet

A into nonempty convex sets, and the correspondence is one-to-one. From the discussion

in Section 3 it follows that any quantizer can be identified with the partition of alphabet

A consisting of the quantizer’s nonempty codecells (because the distortion of the quantizer

depends only on its nonempty codecells and not on the way they are indexed; also recall

that the codecells are convex sets). It follows that there is a one-to-one correspondence

between the paths of the graph Gk and the quantizers, and the weight of each path is equal

to the distortion of the corresponding quantizer, multiplied by W (k).

Let now Q be a quantizer of rate r (i.e. with at most 2r nonempty codecells), and let

Q̂ = (Q1, Q2, · · · , Qr) be the MRQ induced by Q. Let Pk be the path in the graph Gk

corresponding to quantizer Qk, for each k, 1 ≤ k ≤ r. Each path Pk has as many links as

nonempty codecells of quantizer Qk, i.e. at most 2k (recall that the rate of Qk equals k).

The condition (2) is equivalent to the condition that for any k, 1 ≤ k ≤ r − 1, and any

link (vi, vj) of path Pk, there is a subpath of Pk+1 between nodes vi and vj and it has at

most two links. Thus, it follows that P = (P1, P2, · · · , Pr) is an r-layered embedded path

satisfying the constraint in Problem 3. Moreover, the weight of this r-layered embedded
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path, ω(P), equals the expected distortion of MRQ Q̂:

ω(P) =
r∑

k=1

ωk(Pk) =
r∑

k=1

W (k)D(Qk) = D̄(Q̂), (61)

Conversely, if P = (P1, P2, · · · , Pr) is an r-layered embedded path satisfying the conditions

in Problem 3, and Qk is the quantizer corresponding to each path Pk, 1 ≤ k ≤ r − 1,

it follows that the sequence of quantizers (Q1, Q2, · · · , Qr) is an MRQ, namely the MRQ

induced by quantizer Qr.

The equivalence we have shown between the problem of optimal MRQ design (Problem

2) and the bifurcate minimum-weight r-layered embedded path problem for the MEWDAG

G, allows the generalization of the algorithms presented in this paper to solve Problem 3.

Namely, the following proposition holds.

Proposition 4. Let G = (V, E1, ω1, · · ·Er, ωr) be an r-edge set WDAG, with the vertex

set V = {v0, v1, · · · vN}, the nodes being indexed in topological order. Then Problem 3 can

be solved in O(rN3) time. Moreover, if all the component WDAG’s Gk, 1 ≤ k ≤ r, are

complete and satisfy the convex Monge condition, i.e.

ωk(i, j) + ωk(i′, j′) ≤ ωk(i, j′) + ωk(i′, j), for all 0 ≤ i < i′ ≤ j < j′ ≤ N and all k, (62)

then Problem 3 can be solved in O(rN2) time. (In the above relations ωk(i, j) is a shortened

notation for ωk(vi, vj) if i < j, and ωk(i, j) = 0 if i = j.)

Proof. Note first that the MEWDAG G may be assumed to be complete (otherwise it can

be extended to a complete one simply by assigning the infinite value to the weights ωk(i, j)

for the pairs (vi, vj) which are not edges of Gk, without changing the solution of Problem

3). Then Algorithm 1 can be applied to solve Problem 3, where recursion (17) is replaced

by:

D̂k(a, b] = min
ξ,a≤ξ≤b

{ωr−k+1(a, ξ) + ωr−k+1(ξ, b) + D̂k−1(a, ξ] + D̂k−1(ξ, b]}. (63)

Note that the whole development of Section 4, which leads to the complexity reduction

of optimal MRQ design, henges on the fact that the function D(a, b] satisfies the convex

Monge condition. In order to extend this to the algorithm for the graph problem, each

weighting function ωk(·, ·), 1 ≤ k ≤ r, must satisfy the convex Monge condition. Hence, if

condition (62) is fulfilled, then the idea of Section 4 can be applied to solve Problem 3 in

O(rN2) time, too. �
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9 Conclusion

We present a simple algorithm of O(rN2) time and O(N2 log N) space complexity to design

an optimal multi-resolution quantizer of r refinement levels (or of bit rate r in case of

data compression) for a very general class of distortion measures, where N is the size of

alphabet of the input discrete random variable. The simplicity and relatively high efficiency

of the proposed algorithm hinge on the convex Monge property of the underlying objective

function. Our algorithm is simpler than the SMAWK matrix search technique, which is the

best existing solution to the quantization problem. Moreover, in the case of exponential

random variable, the time and space complexity of optimal MRQ design can be reduced to

O(rN) and O(N log N) respectively.

The proposed algorithm also offers a new simple solution to the conventional problem of

designing optimal single-resolution quantizer. In the case of exponential random variable,

this solution has lower time and space complexity than the best existing algorithms.

We also generalize the problem of optimal multi-resolution quantization to a new graph

problem, which can be solved by our O(rN2) time algorithm.
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