
1

Design of Optimal Entropy-constrained Unrestricted
Polar Quantizer for Bivariate Circularly Symmetric

Sources
Huihui Wu, Student Member, IEEE and Sorina Dumitrescu, Senior Member, IEEE

Abstract—This paper proposes an algorithm for the design of
entropy-constrained unrestricted polar quantizer (ECUPQ) for
bivariate circularly symmetric sources. The algorithm is globally
optimal for the class of ECUPQs with magnitude quantizer
thresholds confined to a finite set.

The optimization problem is formulated as the minimization
of a weighted sum of distortion and entropy and the proposed
solution is based on modeling the problem as a minimum-weight
path problem in a certain weighted directed acyclic graph. Each
graph edge corresponds to a possible magnitude quantizer bin
and computing its weight involves solving another optimization
problem. We develop a fast strategy for evaluating all edge
weights, leading to a O(K2 +KPmax) time solution algorithm,
where K is the size of the set of possible magnitude thresholds
and Pmax is the maximum number of phase levels.

The practical performance of the proposed algorithm is
assessed for a bivariate circularly symmetric Gaussian source,
at rates ranging from 0.5 to 6.0 bits/sample. Our results demon-
strate that the proposed approach achieves performance very
close to the asymptotically optimal ECUPQ at all rates, while at
low rates it significantly outperforms all previous UPQ schemes.
Notably, peak improvement of 0.755 dB can be achieved for rates
below 2.5.

Index Terms—Unrestricted polar quantization, entropy-
constrained quantizer, globally optimal algorithm, minimum
weight path problem.

I. INTRODUCTION

A polar quantizer quantizes the magnitude and the phase
of a two dimensional source vector represented in polar
coordinates. The phase quantizer is uniform while the mag-
nitude quantizer may be nonuniform. Polar quantization of
bivariate sources with circularly symmetric densities, has been
extensively investigated either for the general case or for the
specific Gaussian case [1]- [19].

Early work on polar quantization uses independent quantiz-
ers for the two components. Such a scheme is referred in the
literature as a strictly polar quantizer (SPQ) [4] or a conven-
tional polar quantizer [11]. In later work the unrestricted polar
quantizer is introduced (UPQ) [7], where the phase quantizer
depends on the magnitude level, which is shown to outperform
SPQ.

Polar quantization is useful in numerous applications, such
as image processing [1], [20], for the encoding of discrete
Fourier transform coefficients [2], [3], in holographic image
processing [21], as well as for the quantization of sinusoid

The authors are with the Department of Electrical and Com-
puter Engineering, McMaster University, Hamilton, Canada (Emails:
wuh58@mcmaster.ca;sorina@mail.ece.mcmaster.ca).

signals with application in audio coding [14]. More recently,
polar quantization was also used for wireless receiver design
in [22].

Most of the work on the analysis and design of polar
quantizers relies on the high resolution assumption. In partic-
ular, the asymptotic analysis of the uniform polar quantizers,
i.e., where the quantizer of the magnitude is also uniform,
was performed in [9], [12], [17] for the conventional case
and in [13] for the unrestricted case. We point out that the
above mentioned papers assume level-constrained (or fixed-
rate) quantization, i.e., where the goal is to minimize the
distortion for a fixed number of total quantization levels. The
asymptotic analysis of level-constrained non-uniform UPQ
was addressed in [10], [11], [16].

The design of optimal practical polar quantizers, i.e., with-
out the high rate assumption, was considered in [2], [4] for
the level-constrained SPQ and in [7] for the level-constrained
UPQ. The approach taken in the aforementioned work is to
solve iteratively the necessary conditions for optimal decision
thresholds and optimal reconstruction values. This iterative
procedure can be applied when the number M of magnitude
levels and the number P of phase levels are fixed, in the
case of SPQ, respectively, when the M -tuple of numbers of
phase levels (P1, · · · , PM) is fixed, in the case of UPQ. More
specifically, since each phase quantizer is uniform the problem
further reduces to finding the optimal decision thresholds and
reconstruction levels of the magnitude quantizer, which depend
on the number of phase levels of the phase quantizer(s).
The latter problem is solved in [4], [7] by using an iterative
algorithm similar to Max-Lloyd algorithm [23], [24] for opti-
mal scalar quantizer design, i.e., by iteratively optimizing the
encoder, respectively the decoder, while the other component
is kept fixed. However, the aforementioned works do not find
an efficient solution for optimizing the rate allocation between
the magnitude and phase quantizers, i.e. for finding the opti-
mum pair (M,P) satisfying the constraint MP = N in the
case of SPQ, respectively, finding the optimum configuration
(M,P1, · · · , PM) satisfying

∑M
m=1 Pm = N , where N is the

total number of polar quantizer bins. In absence of an efficient
strategy the authors of [4], [7] rely on exhaustive search to
optimize the rate allocation.

To increase the efficiency of the polar quantizer, entropy
coding may be applied to the quantizer’s outputs. This was
done, for instance, in [7]. However, for optimal performance
the polar quantizer has to be optimized under a constraint
on the entropy. Such a quantizer is called entropy-constrained

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

quantizer. Work [14] is the only work addressing the design
of entropy-constrained polar quantizers, up to our knowl-
edge. The authors of [14] derive the asymptotically optimal
entropy-constrained UPQ (ECUPQ) and entropy-constrained
SPQ (ECSPQ), as the rate approaches infinity. They further
consider a bivariate circularly symmetric Gaussian source
and compare the performance of the proposed ECUPQ to
other asymptotically optimal entropy-constrained quantizers.
As expected, they find that the asymptotical performance of
ECUPQ is significantly superior to that of ECSPQ. They
also perform the comparison against the entropy-constrained
rectangular quantizer (ECRQ), which uses scalar quantization
of each Cartesian coordinate. This comparison reveals that the
performance of ECUPQ and ECRQ are identical asymptoti-
cally. This conclusion is expected since, as the rate approaches
∞, the shape of most of the UPQ quantizer cells approaches
a rectangular shape. Moreover, the authors of [14] show that
the practical performance of the proposed ECUPQ is close to
the performance predicted by the asymptotic expression, when
the rates are high enough.

As the results of [14] illustrate, the asymptotical expression
of ECUPQ performance is not accurate if the rate is not
sufficiently high. In particular, in our implementation of the
ECUPQ proposed in [14] we found that the gap to the asymp-
totic performance is higher than 0.5 dB for rates between 2.050
and 2.495 bits per sample, and, although the gap gradually
decreases, it remains higher than 0.1 dB, for rates up to 4.0
bits/sample. Additionally, the asymptotic expression cannot be
applied to rates smaller than 0.5 log2(2πe) ≈ 2.047, thus
no comparison is possible for those rates. Furthermore, the
optimality of the ECUPQ of [14] holds as the rate approaches
infinity, but it is not guaranteed at finite rates.

The above observations raise two natural questions that
motivate our work:
Q1) Is it possible to further improve the performance of

ECUPQ at finite rates?
Q2) Does ECUPQ exhibit any advantage in terms of perfor-

mance versus ECRQ at finite rates?
In order to address these inquiries we propose the design of

ECUPQ for a bivariate circularly symmetric source, at finite
rates. Our design is globally optimal for the class of ECUPQs
with thresholds of the magnitude quantizer restricted to some
finite set. In practice this finite set can be a fine discretization
of the interval [0, B] for some sufficiently large B.

We formulate the problem of optimal ECUPQ design as the
minimization of the Lagrangian for a given multiplier λ, which
is the same formulation as in [14]. Thus, the cost function
is actually a weighted sum of the quantizer distortion and
entropy. This formulation readily simplifies the problem of rate
allocation between the magnitude quantizer and phase quan-
tizers. Specifically, for each bin of the magnitude quantizer
the optimal number of phase levels of the phase quantizer can
be determined independently of other bins. This observation
is critical for our approach since it allows us to convert the
cost function (after determining the optimal phase quantizer
corresponding to each magnitude bin) to a summation of the
costs of individual magnitude bins. Thus, this problem can
be modeled as a minimum-weight path (MWP) problem in a

certain weighted directed acyclic graph (WDAG), where each
edge represents a possible bin of the magnitude quantizer. In
order to expedite the computation of all weights we develop a
fast strategy for finding the optimal number of phase levels for
all possible magnitude bins. The overall running time of the
solution algorithm is O(K2 + KPmax) where K is the size
of the set from which the magnitude thresholds are selected,
while Pmax is an upper bound for the number of phase levels
corresponding to a magnitude bin.

Enabled with this tool we proceed to answer the initial
questions Q1 and Q2. For this we have tested the proposed
ECUPQ design algorithm for a bivariate Gaussian source for
rates up to 6 bits/sample. Our experiments show that the
proposed approach outperforms both the entropy-coded UPQ
of [7] and the practical ECUPQ of [14] designed based on the
high rate assumption. The comparison against the UPQ of [7]
was performed using the results reported in [7], which cover
a rate range between 0.5 and 2.5 bits/sample. The gain of our
scheme over the scheme of [7] ranges from 0.216 to 0.755 dB,
and is always higher than 0.6 dB when the rate is larger than
1.5 bits/sample. On the other hand, the comparison against the
practical ECUPQ of [14] was carried out for rates higher than
2.050. The improvement over the latter scheme is higher than
0.5 dB for rates in the range 2.050 to 2.495 bits/sample and
remains higher than 0.1 dB for rates up to 4.0 bits/sample.
Additionally, we have observed that the performance of our
design is very close to the asymptotic ECUPQ performance
derived in [14]. We have also compared the proposed ECUPQ
with the ECRQ obtained using the algorithm of [28] for
optimal entropy-constrained scalar quantizer design. We found
that ECUPQ has an advantage in terms of performance versus
ECRQ, even if small, for rates between 0.5 and 2.256. No-
tably, the highest improvements are achieved for rates ranging
from 1.0 to 1.377 and reach values higher than 0.1 dB. In
conclusion, our results show that the benefit of the proposed
ECUPQ scheme is most prominent for rates up to about 2.5
bits/sample. It is important to emphasize that this range of
encoding rates is of interest in lossy image coding, especially
for applications such as network image transmission or remote
sensing. Actually, one of the reasons of the development of
the JPEG2000 image compression standard was the need to
improve the performance at low bit rates [25].

We point out that the design approach based on modeling
the problem as an MWP problem in some WDAG, with or
without a constraint on the number of edges, has been used in
the past for the design of other scalar quantizer systems. For
instance, it was employed for the design of fixed-rate quantiz-
ers [26], entropy-constrained quantizers [27], [28], Wyner-Ziv
quantizers [27], [28], multi-resolution and multiple description
quantizers [27]–[31], joint source-channel quantizer with ran-
dom index assignment [32], as well as quantizers for sequential
source coding [33]. Other works using dynamic programming
to solve scalar quantization problems [34] also implicitly solve
an MWP problem, even if they do not formulate it as such.
The aspect which distinguishes the most our work from the
aforementioned work, is that the optimization problem that
needs to be solved in order to compute the weight of a graph
edge is of a different nature. Another notable contribution of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

our work is the efficient handling of all these optimization
problems, fact which allows for the computation of each edge
weight to be performed in constant time, on average, when
Pmax = O(K).

In summary, the main contribution of our work is as follows.
a) We propose the first globally optimal ECUPQ design

algorithm for finite rates. The optimality claim holds for
the class of UPQs with the thresholds for the magnitude
quantizer restricted to a finite set.

b) Practical results for a bivariate memoryless Gaussian
source show that for rates up to 2.5 bits/sample our
algorithm considerably outperforms the best entropy-
coded and entropy-constrained UPQ schemes known to
date.

c) Our proposed algorithm is the first algorithm for practical
polar quantizer design, which handles efficiently the
problem of rate allocation between the magnitude and
phase quantizers.

We would like to point out that [35] is a shortened con-
ference version of this work. In [35] the computation of each
edge weight is handled using binary search, which leads to a
running time of O(K2 log2 Pmax) operations for the overall
design algorithm. In the present work we propose a faster
method to compute the edge weights when Pmax

log2 Pmax
< K,

leading to the total time complexity of O(K2 + KPmax).
Paper [35] does not include Proposition 2 and the proof of
Proposition 1. Additionally, the current work contains a more
thorough experimental performance evaluation of the proposed
approach than [35]. Specifically, more rates are examined,
the configuration of the proposed ECUPQ at these rates is
included and discussed, the comparison with ECRQ and with
the asymptotical performance of the two-dimensional entropy-
constrained vector quantizer, are added.

The rest of the paper is organized as follows. The next sec-
tion introduces the notations and formulates the optimization
problem. Section III shows how the problem can be modeled
as the MWP in some WDAG. Section IV proposes an efficient
strategy for computing the optimal number of phase levels for
all possible magnitude bins and finalizes the design algorithm.
The experimental results and their discussion are presented in
Section V, while Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider a bivariate random variable with the following
circularly symmetric density, as a function of the polar co-
ordinates r and θ,

p(r, θ) =
1

2π
g(r), 0 ≤ r <∞, 0 ≤ θ < 2π.

Note that g(r) is the marginal probability density function
(pdf) of the magnitude variable, while the phase variable is
uniformly distributed over the interval [0, 2π). Additionally,
notice that the magnitude and phase variables are independent.
An example of such a variable is a two-dimensional memo-
ryless Gaussian vector (X1, X2), i.e., where X1 and X2 are
independent and have identical marginal pdfs. Quantization
of Gaussian variables is interesting since it has numerous

practical applications. For example, the joint distribution of
discrete Fourier transform coefficients of a stationary data
sequence is asymptotically Gaussian [3]. Also, the probability
density function of prediction error signal in a differential
pulse code modulation coder for moving pictures can be
modeled as Gaussian [36].

Let M denote the number of magnitude levels of the UPQ
and let r , (r1, r2, · · · , rM−1) denote the vector of thresholds
of the magnitude quantizer, where

r0 = 0 < r1 < r2 < · · · < rM−1 < rM =∞.

For 1 ≤ m ≤M , let Cm denote the m-th cell (or bin) of the
magnitude quantizer, i.e., Cm = {r|rm−1 ≤ r < rm}. Further,
let P , (P1, P2, · · · , PM), where Pm denotes the number of
phase regions of the phase quantizer corresponding to Cm,
1 ≤ m ≤ M . Each phase quantizer is uniform, consequently,
each quantization bin of the UPQ can be represented as

R(m, s) =

{
rejθ|rm−1 ≤ r < rm, (s− 1)

2π

Pm
≤ θ < s

2π

Pm

}
,

for 1 ≤ m ≤ M , and 1 ≤ s ≤ Pm. Clearly, the total number
of quantization bins of the UPQ is N =

∑M
m=1 Pm.

The reconstruction for quantizer bin R(m, s) is Amejθm,s ,
where Am is the reconstruction value of the magnitude for the
m-th magnitude level, and θm,s is the reconstruction value for
the phase.

We will use the squared error as a distortion measure.
Therefore, the expected distortion (per sample) of the UPQ
can be expressed as [1], [2], [7]

D =
1

2

M∑
m=1

Pm∑
s=1

∫ rm

rm−1

∫ s 2π
Pm

(s−1) 2π
Pm

‖rejθ −Amejθm,s‖2p(r, θ)dθdr

=
1

2

M∑
m=1

Pm∑
s=1

∫ rm

rm−1

∫ s 2π
Pm

(s−1) 2π
Pm

(r2 +A2
m−

2rAm cos(θ − θm,s))
g(r)

2π
dθdr.

(1)
The best reconstruction values, which minimize the distor-

tion, were determined in prior work [1], [2], [7] by solving
∂D/∂θm,s = 0 and ∂D/∂Am = 0, leading to

θm,s = (2s− 1)π/Pm, (2)

Am = sinc
(

1
Pm

) ∫ rm
rm−1

rg(r)dr∫ rm
rm−1

g(r)dr
, (3)

where sinc(1
Pm

) = sin(π/Pm)
π/Pm

. By exploiting (2) and (3), the
expected distortion can be simplified as

D =
1

2

(
M∑
m=1

∫ rm

rm−1

r2g(r)dr −
M∑
m=1

A2
m

∫ rm

rm−1

g(r)dr

)

=
1

2

(∫ ∞
0

r2g(r)dr −
M∑
m=1

A2
m

∫ rm

rm−1

g(r)dr

)
. (4)

Notice that, since the reconstruction values of the UPQ are
given by (2) and (3), it follows that the tuples r and P
completely specify the UPQ.

Let Ia and Iθ denote the random variables representing the
magnitude and phase quantization indexes, respectively. Let

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

H(Ia, Iθ) denote the joint entropy of (Ia, Iθ), which can be
expressed as follows

H(Ia, Iθ) = H(Ia) +H(Iθ|Ia)

=
M∑
m=1

q(m)(− log2 q(m) + log2 Pm), (5)

where q(m) is the probability of m-th magnitude level, i.e.,
q(m) =

∫ rm
rm−1

g(r)dr. Then the entropy of the UPQ (in
bits/sample) is defined H(Ia, Iθ)/2.

Following prior work on entropy-constrained quantization
[14], [28], [37] we formulate the problem of ECUPQ design
as follows

min
M,r,P

L(r,P, λ), (6)

for fixed Lagrangian multiplier λ > 0, where

L(r,P, λ) , D + λH(Ia, Iθ)/2.

It is known [38], [39] that the set of solutions to problem
(6), when λ varies over (0,∞), is the set of UPQs such
that the corresponding pair (H(Ia, Iθ)/2, D) is on the lower
boundary of the convex hull of the set of all possible pairs
(H(Ia, Iθ)/2, D). Thus, a UPQ which is a solution to problem
(6) minimizes the distortion for the corresponding entropy,
thus it is an ECUPQ.

We will solve problem (6) under the constraint that the
thresholds of the UPQ take values in a finite set A =
{a1, a2, · · · , aK}. This set can be obtained by finely dis-
cretizing the interval [0, B], for some B chosen such that the
probability that the magnitude level is larger than B, to be
sufficiently small.

Thus, the problem that we will solve in this work is the
following

minM,r,P L(r,P, λ), (7)
subject to ri ∈ A, 1 ≤ i ≤M − 1.

Its solution is discussed in the following two sections.

III. GRAPH MODEL

In this section we show how the minimization problem (7)
can be modeled as an MWP problem in a certain WDAG. For
this we need first to perform some manipulation of the cost
function. Notice that the first term in (4) is constant, therefore
we can remove it from the cost function. Thus, minimizing
L(r,P, λ) is equivalent to minimizing C(r,P), where

C(r,P) ,
1

2

(
−

M∑
m=1

A2
m

∫ rm

rm−1

g(r)dr + λH(Ia, Iθ)

)
.

Further, substituting (3) and (5) into the above equation leads
to

C(r,P) =
1

2

M∑
m=1

∫ rm

rm−1

g(r)dr

(
−sinc2

(
1

Pm

)
x2
m+

λ log2

Pm∫ rm
rm−1

g(r)dr

)
, (8)

where xm =

∫ rm
rm−1

rg(r)dr∫ rm
rm−1

g(r)dr
.

Now it can be seen that if the vector of thresholds r is fixed,
then Pm can be optimized separately for each m. Specifically,
the optimal value of Pm, 1 ≤ m ≤M , is

P ∗m = arg min
Pm

(
−sinc2

(
1

Pm

)
x2
m + λ log2 Pm

)
,

since
∫ rm
rm−1

g(r)dr and xm are fixed, for fixed r.
Consider now the following notations. For each 0 ≤ α <

β ≤ ∞, denote

q(α, β) ,
∫ β

α

g(r)dr,

x(α, β) ,

∫ β
α
rg(r)dr∫ β

α
g(r)dr

,

P ∗(α,β) , min arg min
P

(
−sinc2

(
1

P

)
x(α, β)2 + λ log2 P

)
,

(9)
where the minimization is over all positive integers P . Note
that, if there are more values P minimizing the cost in (9),
we select the smallest one as P ∗(α,β).

Further, by replacing Pm in (8) by P ∗(rm−1,rm), we obtain a
new cost function which only depends on r

C̄(r) ,
1

2

M∑
m=1

q(rm−1, rm)

(
λ log2

P ∗(rm−1,rm)

q(rm−1, rm)
−

sinc2

(
1

P ∗(rm−1,rm)

)
x(rm−1, rm)2

)
. (10)

According to the above discussion, problem (7) is equivalent
to the following

minM,r C̄(r) (11)
subject to ri ∈ A, 1 ≤ i ≤M − 1.

The next step is based on the observation that the cost C̄(r)
can be expressed as a summation of costs of the individual
intervals (rm−1, rm), fact which allows us to regard it as the
weight of a path in a certain WDAG, as we show next.

Let us assume that the elements of A are labeled in increas-
ing order, i.e., 0 < ai < ai+1, for 1 ≤ i ≤ K−1. Additionally,
let us denote a0 = 0 and aK+1 = ∞. Construct now the
WDAG G = (V,E,w), where V = {0, 1, 2, · · · ,K + 1} is
the vertex set, and E = {(u, v) ∈ V 2 | 0 ≤ u < v ≤ K+1} is
the edge set. Further, the weight of each edge (u, v) is defined
as follows,

w(u, v) ,
1

2
q(au, av)

(
−sinc2

(
1

P̂ (u, v)

)
x(au, av)

2+

λ log2

P̂ (u, v)

q(au, av)

)
, (12)

where we use the new notation P̂ (u, v) instead of P ∗(au,av),
for simplicity.

The source node in this graph is vertex 0 and the final node
is K+1. A path in this graph from some node u to some node

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

0 1 2 3 4

0 1 2 3 4

Fig. 1: Illustration of the graph G (top) for K = 3 and a path
in the graph (bottom). Nodes are depicted with circles and
edges with arcs. The path shown on the bottom corresponds
to the magnitude quantizer with bins [0, a2) and [a2,∞).

v is any sequence of connected edges starting at u and ending
at v. Clearly, any path from the source to the final node can be
represented as an (s+1)-tuple of vertexes t = (t0, t1, · · · , ts),
satisfying t0 = 0, ts = K+1 and tm−1 < tm, 1 ≤ m ≤ s, for
some s ≥ 1. Note that s equals the number of edges on the
path. Let us denote by T(s) the set of all paths from the source
to the final node with exactly s edges, for each s ≥ 1. The
weight W (t) of path t is defined as the sum of the weights
of its edges, i.e.,

W (t) ,
s∑
i=1

w(ti−1, ti).

Let us associate now to each (M − 1)-tuple of thresholds
r, with components from the set A, where M ≥ 1, the
M -edge path t ∈ T(M), such that rm = atm for each
1 ≤ m ≤ M − 1. In other words, the m-th edge on this
path, which is (tm−1, tm), corresponds to the m-th magnitude
cell [rm−1, rm). Then it is easy to see that the weight of path t
equals the cost C̄(r). Additionally, the above correspondence
is one-to-one. Therefore, we conclude that problem (11) is
equivalent to the MWP problem in the graph G, i.e., the
problem of finding the path with the smallest weight, from
the source to the final node.

Figure 1 illustrates the graph G (top) for the case when
K = 3, and a path in the graph (bottom). The vertexes are
represented with circles and the edges are represented with
arcs. The path depicted on the bottom consists of two edges
(0, 2) and (2, 4) and corresponds to the magnitude quantizer
with bins [0, a2) and [a2,∞).

It is known that solving the MWP problem in the WDAG
G takes O(|V | + |E|) = O(K2) operations, if the edge
weights can be evaluated in constant time. However, in our
case, evaluating the weight of an edge requires solving the
corresponding optimization problem (9). Therefore, we have
to solve problem (9) for all the edges. In the next section we
present an efficient way to accomplish this goal.

IV. EDGE WEIGHTS COMPUTATION AND SOLUTION
ALGORITHM

In order to be able to compute each edge weight in constant
time when it is needed, we can include a preprocessing stage
which solves problem (9) for all the edges and stores the

0 0.5 1 1.5 2 2.5

g(P)=ln P

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

f(
P

)=
-s

in
c

2
(1

/P
)

-0.623

-0.440

-0.289

-0.202

-0.148
-0.112

-0.088
-0.071 -0.058

P=1

P=3

P
*
=4

P=5 P=6 P=7 P=8 P=9

P=10

P=11

P=2

-µ=-0.35

Fig. 2: Illustration of the set U of points of coordinates
(g(P), f(P)), and of the set Û, the lower boundary of the
convex hull of U, for Pmax = 11. The number near each
convex hull edge represents its slope. When µ = 0.35 the
solution to problem (14) is P ∗ = 4 since the line of slope
−0.35 passing through S(4) is a support line for U. Note that
S(2) is the only point in U which is not an extreme point.

results. First we derive an important property of the optimal
number of phase regions P̂ (u, v), based on which an efficient
search strategy can be developed.

Let us assume we know some value Pmax such that

P̂ (u, v) ≤ Pmax, for all (u, v) ∈ E. (13)

We will explain later how to find such a value. Further, denote
P , {1, 2, 3, · · · , Pmax}. Moreover, for any y > 0, we denote
f(y) = −sinc2(1

y) and g(y) = ln y and consider the following
minimization problem

min
P∈P

(f(P) + µg(P)), (14)

where µ > 0. In view of (9) and (13) it can be easily verified
that P̂ (u, v) is a solution to problem (14) for µ = λ

x(au,av)2 ln 2 .
The straightforward approach to solve (14) is by computing

the cost for each value of P and then determining the
minimum. Doing so for each edge of the graph amounts to
O(K2Pmax) operations for the preprocessing step. We will
show that the procedure can be considerably sped up by
exploiting properties of the solutions to problem (14).

For P ∈ P let us denote by S(P) the point in the plane of
coordinates (g(P), f(P)). Additionally, let U denote the set
of points {S(P)|P ∈ P}. It is known [38], [39] that some
value P ∗ minimizes the cost in (14) if and only if the point
S(P ∗) is situated on the lower boundary of the convex hull
of U, and the line of slope −µ passing through S(P ∗) is a
support line for U.

Let us denote by Û the lower boundary of the convex hull of
U. Note that any point S(P) ∈ U∩Û is called an extreme point

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

of U. Consider ordering the set of extreme points in increasing
order of P . Since the function g(·) is strictly increasing, the
aforementioned order is consistent with the increasing order
of g(P). We will say that two extreme points are consecutive
if they are consecutive with respect to the above order. Notice
that since the set U is finite, the set Û is the union of line
segments connecting any two consecutive extreme points. Any
such line segment is called a convex hull edge. Figure 2
illustrates the sets U and Û for Pmax = 11. It also shows
that P ∗ = 4 is the solution to problem (14) when µ = 0.35
since the line of slope −0.35 passing through S(4) is a support
line for U.

Let P̂ denote the set of integers P ∈ P such that S(P) is an
extreme point of U. For each P ∈ P̂, except for the first and
the last ones, further denote by left slope(P) (respectively,
right slope(P)) the slope of the convex hull edge to the left
(respectively, right) of S(P), i.e., connecting S(P) with the
previous (respectively, next) extreme point. Then the following
relations hold

left slope(P) ≤ right slope(P), for any P ∈ P̂. (15)

An intuitive interpretation of the above relations is that when
traversing the set of convex hull edges from left to right, i.e.,
when moving through the extreme points in increasing order
of P , the slope of the convex hull edge does not decrease. We
see that condition (15) is verified in Figure 2.

Finally, the condition that the line of slope −µ passing
through some extreme point S(P) is a support line to U, is
equivalent to the following

left slope(P) ≤ −µ ≤ right slope(P).

In light of the above discussion we obtain the following
characterization of P̂ (u, v), stated as a lemma.

Lemma. For each (u, v) ∈ E, the value P̂ (u, v) equals the
smallest P ∈ P̂ satisfying

left slope(P) ≤ − λ

x(au, av)2 ln 2
≤ right slope(P).

(16)

The above lemma together with (15) implies that P̂ (u, v) can
be found using a binary search over the set P̂. For this the
knowledge of the set P̂ is needed, which is settled by the
following result, proved in the appendix.

Proposition 1. P̂ = P \ {2}.

Note that Figure 2 confirms the above result for the case when
Pmax = 11.

By applying the aforementioned strategy for each graph
edge leads to a time complexity of O(K2 log ˆ|P|) for the
preprocessing step. However, we will show that the complexity
can be even further reduced when Pmax << K log ˆ|P|. For
this we use the following monotonicity result.

Proposition 2. For any integers u, u′, v, v′ such that 0 ≤ u <

Algorithm 1: Efficient procedure to precompute all values
P̂ (u, v).

for v = 1 to K + 1 do
P̂ (v − 1, v) := min arg minP∈P̂E(P, v − 1, v)
for u = v − 2 down to 0 do

P̂ (u, v) :=
min arg minP̂ (u,v−1)≤P≤P̂ (u+1,v)E(P, u, v)

v ≤ K + 1, 0 ≤ u′ < v′ ≤ K + 1, and such that u ≤ u′ and
v ≤ v′, the following inequality holds:

P̂ (u, v) ≤ P̂ (u′, v′). (17)

Proof: Notice that x(α, β) is the centroid of the interval
(α, β). It is known that x(α, β) ≥ α and that x(α, β) is a
non-decreasing function of both α and β1. Then, under the
conditions specified in the hypothesis, it follows that

0 ≤ x(au, av) ≤ x(au′ , av′),

which further leads to

− λ

x(au, av)2 ln 2
≤ − λ

x(au′ , av′)2 ln 2
, (18)

since λ and ln 2 are positive. The above inequality together
with Lemma and relations (15) implies inequality (17), thus
proving the claim.

Remark. Proposition 2 implies that

P̂ (u, v) ≤ P̂ (K,K + 1) for all 0 ≤ u < v ≤ K + 1.

Then the value of P̂ (K,K + 1) can be set as Pmax. In view
of Lemma and Proposition 1, the value P̂ (K,K + 1) can be
determined by inspecting all positive integers P, P 6= 2, in
increasing order until relation (16) is satisfied.

Proposition 2 implies that the search range for P̂ (u, v) can
be reduced from P̂ to the smaller set [P̂ (u, v − 1), P̂ (u +
1, v)] ∩ P̂, if P̂ (u, v − 1) and P̂ (u + 1, v) are evaluated
first. Therefore, in order to exploit this observation we need
to choose carefully the order of computation of the values
P̂ (u, v). To facilitate a visual representation of this ordering
imagine that P̂ (u, v) is the element on row u and column v
of an upper triangular matrix P̂ . Note that the row indexes
range from 0 to K while the column indexes range from 1
to K + 1, hence the main diagonal contains the elements
P̂ (u, u + 1), 0 ≤ u ≤ K. We will compute the elements
of this upper triangular matrix starting in the top left corner,
i.e., with P̂ (0, 1), then proceeding in increasing order of the
columns. Further, on each column we start with the element
on the main diagonal and move up to the top.

The pseudocode of the above procedure is described in
Algorithm 1, where we denote

E(P, u, v) ,

(
−sinc2

(
1

P

)
x(au, av)

2 + λ log2 P

)
.

1A proof of this result can be found in [41].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

In order to evaluate the running time of Algorithm 1 note
that the computation of each entry on the main diagonal takes
O(Pmax) time, therefore O(KPmax) time is needed for all of
them. On the other hand, evaluating all entries on any of the
other K superdiagonals takes only O(Pmax +K) operations.
To see this consider the j-th superdiagonal for some j ≥ 1.
Its elements are P̂ (u, u + j + 1), 0 ≤ u ≤ K − j. The entry
P̂ (u, u + j + 1) is evaluated in O(P̂ (u + 1, u + j + 1) −
P̂ (u, u + j) + 1) time. Therefore, the total time for the j-th
superdiagonal is

O

(
K−j∑
u=0

(
P̂ (u+ 1, u+ j + 1)− P̂ (u, u+ j) + 1

))
= O

(
P̂ (K − j + 1,K + 1)− P̂ (0, j) +K − j + 1

)
= O (Pmax +K) .

It follows that the total running time of Algorithm 1 is
O(KPmax + K2) time, which equals O(K2) when Pmax <
K. Additionally, since the upper triangular matrix needs to be
stored an extra O(K2) storage space is required.

In order to enable the computation of each edge weight
in constant time, the following cumulative probabilities and
first moments are also precomputed and stored during the
preprocessing step,

Cumi(u) ,
∫ au

0

rig(r)dr,

for i = 0, 1, and 0 ≤ u ≤ K + 1, where a0 = 0 and aK+1 =
∞ by convention. The values Cumi(u) can be computed in
increasing order of u using

Cumi(u) = Cumi(u− 1) +

∫ au

au−1

rig(r)dr.

Thus, assuming that the evaluation of each integral∫ au
au−1

rig(r)dr takes constant time, the computation of all
these cumulative values takes O(K) time. Additionally, O(K)
storage space is needed to store them. Based on these values,
when the weight of edge (u, v) is needed, the quantities
q(au, av) and x(au, av) will be computed in O(1) time using

q(au, av) = Cum0(v)− Cum0(u),

x(au, av) =
Cum1(v)− Cum1(u)

q(au, av)
.

Recall that if all values P̂ (u, v) are precomputed, O(K2)
storage space is required. If K is large and memory is an
issue, we can avoid this by computing the values P̂ (u, v) on
the fly during the algorithm execution and storing them only
temporarily.

This can be done by organizing the computations of the
MWP algorithm such that the edges are traversed in the same
order as in Algorithm 1, then computing the value P̂ (u, v)
when the edge (u, v) is traversed, and storing this value only
until all the values corresponding to column v+1 in the upper
triangular matrix P̂ are evaluated. This way the extra memory
is reduced to O(K).

The following pseudocode in Algorithm 2 describes the
algorithm to solve problem (7) including the above procedure

for determining the values P̂ (u, v). We point out that Ŵ (v)
denotes the weight of the minimum-weight path from the
source to node v, and ε(v) records the node preceding v
on this optimal path. At the end, the MWP can be tracked
back by utilizing the values of ε(v). The output is the
vector t representing the nodes on the path. During the
preprocessing stage the value of Pmax is evaluated using
Pmax = P̂ (K,K + 1), and the cumulative probabilities and
first moments are computed and stored.

Algorithm 2: Solution algorithm for problem (7).

Preprocessing Stage
begin

Ŵ (0) = 0
for v = 1 to K + 1 do

Allocate memory of size v to store P̂ (·, v)

P̂ (v − 1, v) := min arg minP∈P̂E(P, v − 1, v)

Ŵ (v) := Ŵ (v − 1) + w(v − 1, v)
ε(v) := v − 1
for u = v − 2 down to 0 do

P̂ (u, v) :=
min arg minP̂ (u,v−1)≤P≤P̂ (u+1,v)E(P, u, v)

if
(
Ŵ (u) + w(u, v) < Ŵ (v)

)
then

Ŵ (v) := Ŵ (u) + w(u, v)
ε(v) := u

Deallocate memory of P̂ (·, v − 1)

// Restoring the MWP using back-tracking.
i = K + 1
j = 0
s(j) = i
while (i 6= 0) do

j := j + 1
s(j) := ε(i)
i := ε(i)

// Reverse array s to obtain the vector t.
while (i ≤ j) do

ti := s(j − i)
i := i+ 1

In conclusion, solving problem (7) takes O(K2 +KPmax)
time in total. If the condition Pmax < K is satisfied, which
is the case in our experiments, then the total time complexity
for solving problem (7) is O(K2).

V. EXPERIMENTAL RESULTS

This section assesses the practical performance of the pro-
posed ECUPQ design algorithm and compares it with the
designs of [7], [14] and with ECRQ. The experiments are
conducted for a two-dimensional random vector (X1, X2),
where X1 and X2 are independent and identically distributed
Gaussian variables with zero-mean and unit-variance. After
conversion to polar coordinates the joint pdf becomes

p(r, θ) =
r

2π
exp

(
−r

2

2

)
, 0 ≤ r <∞, 0 ≤ θ < 2π,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

TABLE I: Performance comparison of the proposed ECUPQ
with the entropy-coded UPQ of [7] and DG(R), for rates R <
2.5 bits/sample.

Rate 10 log10 D 10 log10 D
[7] 10 log10

D[7]

D
10 log10

D
DG(R)

0.500 −2.127 −1.662 0.465 0.883

0.793 −3.560 −3.344 0.216 1.211

1.000 −4.692 −4.401 0.291 1.328

1.157 −5.596 −5.100 0.496 1.369

1.278 −6.305 −5.952 0.353 1.391

1.377 −6.879 −6.517 0.362 1.411

1.570 −7.996 −7.282 0.714 1.450

1.636 −8.392 −7.721 0.671 1.460

1.754 −9.089 −8.447 0.642 1.473

1.815 −9.444 −8.762 0.682 1.479

1.948 −10.235 −9.626 0.609 1.492

2.256 −12.069 −11.314 0.755 1.515

2.422 −13.056 −12.336 0.720 1.524

2.495 −13.496 −12.774 0.722 1.527

where r =
√
x2

1 + x2
2, and θ = tan−1(x2/x1). It then follows

that g(r) = r exp(−r2/2).
The finite set of possible thresholds A is obtained by

dividing the range [0, 6] into subintervals of size 0.001 and
picking the thresholds between intervals. In other words,
K = 6000 and ai = 0.001i, for 1 ≤ i ≤ K. Moreover,
we set Pmax = 600 in the optimization of the number of
phase regions. In order to design an ECUPQ achieving some
target rate Rt we run the algorithm for various values of λ
until the entropy of the UPQ becomes sufficiently close to
Rt. We use D to denote the distortion (per sample) of the
proposed approach, computed based on (4). The distortion is
converted in dB using 10 log10D. The rate R, in bits/sample,
is computed as the entropy of the ECUPQ, i.e., as H(Ia, Iθ)/2.

The comparison against the entropy-coded UPQ of [7] is
performed for rates in the range from 0.5 to 2.5, bits/sample
based on the results reported in [7]. The comparison with the
asymptotically optimal ECUPQ of [14] is performed for rates
higher than 2.05.

Table I illustrates the performance comparison with [7].
Recall that the UPQ of [7] is level-constrained, i.e., it is
designed with the aim of minimizing the distortion for a fixed
number N of quantization bins. However, the rate reported is
computed as the entropy of the quantizer. Note that all the
results related to the UPQs of [7] are taken from [7]. The
second last column in the table shows the gain in performance
of the proposed approach versus the method of [7]. It can be
seen that our algorithm always outperforms the design of [7]
with gains always higher than 0.2 dB, and even larger than
0.6 dB when R ≥ 1.5. Additionally, a peak improvement of
0.755 dB is achieved for R = 2.256 bits/sample.

The last column in Table I lists the gap between the
ECUPQ distortion and the distortion-rate function DG(R) of
a univariate Gaussian source, given by

DG(R) = 2−2R.

Note that the gap takes values between 0.883 dB, at rate
R = 0.5, and 1.527 dB, at R = 2.495 bits/sample.

The vectors of thresholds r and the configurations
(N,M,P1, · · · , PM) for the proposed ECUPQ and for the

UPQ of [7] are presented in Table II. We observe that for the
same output entropy the level-constrained UPQ of [7] has a
much smaller number of quantizer bins N than our ECUPQ.
The same observation holds for the number M of magnitude
bins. On the other hand, such a conclusion does not hold for
Pm. In particular, we see that ECUPQ has P1 = 1 always,
which means (since M > 1) that it has a disc-shaped cell
around the origin (see Figure 3a), while for the UPQ of [7],
P1 can take any value between 1 and 5.

By examining the number of phase levels Pm for the
proposed ECUPQ we see that for each rate, Pm increases with
increasing m. This is expected in view of Proposition 2. On
the other hand, it can be noticed that for ECUPQs with the
same number of magnitude levels M , Pm remains the same
for each m, 1 ≤ m ≤M−1, while as M increases Pm is non-
decreasing most of the time. It would be interesting to find out
if the above observations can be confirmed theoretically and
whether they can be exploited in order to reduce the ECUPQ
design complexity. The investigation of such possibilities is
deferred to future work.

Next we compare the performance of the proposed design
scheme with the ECUPQ optimized in [14] based on the high
resolution assumption. We will use the acronym ASY to refer
to the asymptotical ECUPQ performance derived in [14]. Note
that the asymptotical distortion (per sample) of ASY obtained
in [14] is

DASY =
2−(2R−log2(2πe))

12
, (19)

for rates R ≥ 0.5 log2(2πe) ≈ 2.047.
Table III illustrates the performance of the proposed algo-

rithm in comparison with ASY for several rates in the range
2.050 to 5.996 bits/sample. We see that the proposed algorithm
performs extremely close to ASY. Specifically, for the rates
higher than 2.495 the absolute value of the performance
difference is smaller than 0.01 dB, while for the rates lower
than 2.495, our design is actually slightly better reaching
improvements of up to 0.032 dB.

Table III also shows the gap between the performance of
the proposed ECUPQ and the asymptotical performance (per
sample) of the two-dimensional entropy-constrained vector
quantizer (ECVQ), computed based on [40]

DECVQ =
5

36
√

3
2−(2R−log2(2πe)).

Moreover, the difference in performance versus the
distortion-rate function is also presented in Table III. As we
can observe the gap between the proposed scheme and ECVQ
is small, taking values from 0.135 dB to 0.175 dB, while
the gap to the theoretical limit given by the distortion-rate
function, ranges from 1.501 dB to 1.541 dB.

In addition, we also compare the proposed ECUPQ design
with the practical ECUPQ based on the asymptotic point
density functions given in [14]. We refer to the latter scheme
using the acronym PASY. The asymptotically optimal magni-
tude and phase quantization point densities, denoted by gA(a),
gΘ(θ, a), respectively, which are defined as the inverse of the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

TABLE II: Configuration of the proposed ECUPQ, of the entropy-coded UPQ of [7] and of the optimal ECRQ, for rates
R < 2.5 bits/sample.

Rate (N,M,P1, · · · , PM) r (N,M,P1, · · · , PM)[7] r[7] NECRQ rECRQ

0.500 (7, 2, 1, 6) (1.947) (2, 1, 2) − 9 (−1.730, 1.728)

0.793 (22, 3, 1, 6, 15) (1.593, 4.892) (3, 1, 3) − 25 (−4.833,−1.408, 1.407, 4.832)

1.000 (20, 3, 1, 6, 13) (1.360, 3.987) (4, 1, 4) − 25 (−3.979,−1.210, 1.209, 3.978)

1.157 (20, 3, 1, 6, 13) (1.185, 3.384) (5, 2, 1, 4) (0.752) 25 (−3.422,−1.067, 1.066, 3.421)

1.278 (40, 4, 1, 6, 12, 21) (1.060, 2.973, 5.437) (6, 2, 1, 5) (0.752) 25 (−3.038,−0.963, 0.961, 3.036)

1.377 (39, 4, 1, 6, 12, 20) (0.971, 2.695, 4.780) (7, 2, 1, 6) (0.752) 49
(−5.067,−2.759,−0.884,

0.883, 2.758, 5.066)

1.570 (38, 4, 1, 6, 12, 19) (0.827, 2.265, 3.885) (9, 2, 3, 6) (1.066) 49
(−4.068,−2.317,−0.759,

0.744, 2.301, 4.049)

1.636 (68, 5, 1, 7, 13, 19, 28)
(0.839, 2.272, 3.815,

5.633)
(10, 2, 3, 7) (1.051) 64

(−4.721,−2.979,−1.453,−0.019
1.415, 2.937, 4.671)

1.754 (67, 5, 1, 7, 13, 19, 27)
(0.767, 2.066, 3.430,

4.952)
(12, 2, 4, 8) (1.163) 64

(−4.161,−2.669,−1.308,−0.005
1.299, 2.659, 4.150)

1.815 (66, 5, 1, 7, 13, 19, 26)
(0.733, 1.971, 3.259,

4.670)
(13, 2, 5, 8) (1.247) 81

(−4.191,−2.775,−1.473,−0.226,
1.014, 2.290, 3.656, 5.185)

1.948
(99, 6, 1, 7, 13, 19,

26, 33)
(0.664, 1.779, 2.921,

4.1345, 5.4675)
(16, 3, 1, 6, 9) (0.475, 1.400) 100

(−5.211,−3.861,−2.627,−1.464,−0.338
0.781, 1.918, 3.104, 4.378)

2.256
(136, 7, 1, 7, 13, 19,

25, 32, 39)
(0.530, 1.414, 2.305,
3.217, 4.163, 5.157)

(25, 3, 4, 10, 11) (0.798, 1.674) 169
(−5.212,−4.195,−3.227,−2.295,−1.387,−0.495,

0.394, 1.286, 2.191, 3.119, 4.082, 5.093)

2.422
(180, 8, 1, 7, 13, 19,

25, 32, 38, 45)
(0.470, 1.253, 2.040,

2.838, 3.655, 4.497, 5.368)
(32, 4, 1, 7, 12, 12) (0.363, 1.031, 1.846) 196

(−4.916,−4.044,−3.204,−2.385,−1.582,−0.789,
−0.001, 0.788, 1.581, 2.384, 3.203, 4.044, 4.914)

2.495
(180, 8, 1, 7, 13, 19,

25, 32, 38, 45)
(0.445, 1.188, 1.933,

2.687, 3.455, 4.243, 5.056)
(36, 4, 1, 8, 13, 14) (0.369, 1.051, 1.848) 256

(−5.461,−4.628,−3.819,−3.032,−2.261,−1.502,−0.751,
−0.004, 0.744, 1.495, 2.254, 3.024, 3.811, 4.620, 5.453)

TABLE III: Performance comparison of the proposed ECUPQ with ASY, ECVQ and DG(R), for rates R ≥ 0.5 log2(2πe)
bits/sample.

Rate 10 log10 D 10 log10 DASY 10 log10
DASY

D
10 log10

D
DECVQ

10 log10
D

DG(R)

2.050 −10.842 −10.810 0.032 0.135 1.501

2.151 −11.442 −11.417 0.025 0.143 1.509

2.256 −12.069 −12.051 0.018 0.150 1.515

2.422 −13.056 −13.046 0.010 0.158 1.524

2.495 −13.496 −13.490 0.006 0.161 1.527

2.998 −16.511 −16.517 −0.006 0.173 1.539

3.498 −19.517 −19.524 −0.007 0.175 1.541

4.000 −22.542 −22.550 −0.008 0.174 1.540

4.500 −25.557 −25.560 −0.003 0.172 1.538

4.995 −28.538 −28.540 −0.002 0.171 1.536

5.496 −31.555 −31.556 −0.001 0.170 1.536

5.996 −34.560 −34.564 −0.004 0.170 1.536

TABLE IV: Performance comparison of the proposed ECUPQ
with PASY.

Rate 10 log10 D 10 log10 DPASY 10 log10
DPASY

D
2.050 −10.842 −10.223 0.619

2.151 −11.442 −10.841 0.601

2.256 −12.069 −11.491 0.578

2.422 −13.056 −12.521 0.535

2.495 −13.496 −12.983 0.513

2.998 −16.511 −16.154 0.357

3.498 −19.517 −19.297 0.220

4.000 −22.542 −22.418 0.124

4.500 −25.557 −25.491 0.066

4.995 −28.538 −28.504 0.034

5.496 −31.555 −31.538 0.017

5.996 −34.560 −34.553 0.007

corresponding quantization step sizes, are derived in [14] as

gA(a) =

√
1

6λ log2(e)
, (20)

gΘ(θ, a) =

√
a2

6λ log2(e)
, (21)

where λ > 0 is the Lagrangian multiplier and a denotes

the reconstructed magnitude value. Notice that the magnitude
quantizer corresponding to (20) is uniform with step size
1/gA(a), while the phase quantizer corresponding to (21) has
step size 1/gΘ(θ, a).

To implement the UPQ based on equations (20) and (21)
we proceed as follows. The vector r of thresholds of the
magnitude quantizer is obtained by dividing the interval [0, 6]
in subintervals of size 1/gA(a). The middle of each magnitude
quantizer bin is taken as the reconstruction, except for the
first bin, for which the reconstruction is always set to 0.
Subsequently, the number of phase regions corresponding to
each magnitude level is computed as the value of 2πgΘ(θ, a)
rounded to the closest integer, where a is reconstruction value
of the magnitude. Moreover, the quantized phase value is taken
as the middle of the corresponding phase region as in (2).
We evaluate the distortion and entropy of PASY using (1),
respectively, H(Ia, Iθ)/2, where H(Ia, Iθ) is given in (5).

Table IV depicts the performance of the proposed ECUPQ
in comparison with PASY for rates from 2.050 to 5.996
bits/sample. It can be observed that the proposed algorithm
outperforms PASY for all rates examined. The performance
improvement is between 0.5 and 0.619 dB for rates up to
2.495. The gap gradually decreases as the rate increases, but

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

it still remains higher than 0.1 dB for rates up to 4. Finally,
for R ≈ 5.996 the gap falls below 0.01 dB.

TABLE V: Performance comparison of the proposed ECUPQ
against ECRQ.

Rate 10 log10 D 10 log10 DECRQ 10 log10
DECRQ

D
0.500 −2.127 −2.093 0.034

0.793 −3.560 −3.483 0.077

1.000 −4.692 −4.579 0.113

1.157 −5.596 −5.470 0.126

1.278 −6.305 −6.180 0.125

1.377 −6.879 −6.767 0.112

1.570 −7.996 −7.920 0.076

1.636 −8.392 −8.321 0.071

1.754 −9.089 −9.030 0.059

1.815 −9.444 −9.393 0.051

1.948 −10.235 −10.192 0.043

2.256 −12.069 −12.053 0.016

2.422 −13.056 −13.048 0.008

Since the authors of [14] show that the asymptotical perfor-
mance of ECUPQ and of ECRQ are identical, we are interested
in comparing the proposed approach against ECRQ at small
rates. For this we implement the ECRQ using as the scalar
quantizer for each Cartesian coordinate the entropy-constraint
scalar quantizer designed using the algorithm of [28]. We point
out that the algorithm of [28] guarantees the globally optimal
solution for the problem of minimizing the Lagrangian, when
the quantizer thresholds are confined to a finite set. For fairness
of comparison we use the same discretization step size as for
ECUPQ. In other words, to obtain the finite set of possible
thresholds we divide the interval [−6, 6] in subintervals of
size 0.001. This algorithm was used to optimize the ECRQ
for rates in the range from 0.5 to 6 bits/sample.

We list in Table II the number of quantization levels
NECRQ of the optimal ECRQ, and the corresponding vector
of thresholds rECRQ = {rECRQ1 , rECRQ2 , · · · , rECRQ√

N ′−1
} for

the scalar quantizer partition, where rECRQ0 = −∞ and
rECRQ√

N ′
= ∞ by default, for various rates between 0.5

and 2.495 bits/sample. The performance comparison between
ECUPQ and ECRQ is illustrated in Table V only for the range
of rates from 0.5 to 2.422, since for higher rates the absolute
value of the performance difference is less than 0.01 dB. The
results in Table V show that the proposed ECUPQ outperforms
ECRQ in the low-rate region with improvements reaching up
to 0.126 dB. Specifically, the performance improvement first
increases as the rate increases up to about 1.2 bits/sample,
after which it gradually deceases. We note that the gap remains
above 0.1 dB for rates between 1 and 1.377.

In order to understand why ECUPQ is better than ECRQ
at low rates it is instructive to analyze the structure of the
quantizer partition. This is depicted in Figure 3a for the
ECUPQ at rate 1.157 and in Figure 3b for the ECRQ at the
same rate. Two possible reasons for the superiority of ECUPQ
at low rates are:

1) ECUPQ has higher flexibility in the choice of the number
N of quantization bins, as it can be seen in Table II.
Namely, for ECUPQ N could be any positive integer,
while for ECRQ NECRQ can only be a perfect square.

-6 -3.384 -1.185 0 1.185 3.384 6
-6

-3.384

-1.185

0

1.185

3.384

6

(a) ECUPQ.

-6 -3.422 -1.067 0 1.066 3.421 6
-6

-3.422

-1.067

0

1.066

3.421

6

(b) ECRQ.

Fig. 3: The partitions of proposed ECUPQ (a) and ECRQ (b)
at rate R = 1.157 bits/sample.

We see that the ECUPQ with rate 1.157 has N = 20,
while the ECRQ cannot select such a value for NECRQ.
Instead it has NECRQ = 25. The same conclusion holds
for all the rates illustrated in Table II.

2) We observe in Figure 3a that the cell in the center
of the ECUPQ is a disc, which is the perfect shape
to minimize the distortion, while in ECRQ all cells
are squares. Actually, by inspecting the configurations
(N,M,P1, · · · , PM) in Table II, we see that the proposed
ECUPQ always has a disc-shaped cell around the origin.

To summarize, we conclude that the proposed ECUPQ
design algorithm outperforms the algorithm of [7] and PASY at
low rates, reaching peak improvements of 0.755 dB and 0.619
dB, respectively. We point out that the peak improvements are
achieved for rates lower than 2.495 bits/sample. Additionally,
the proposed scheme is slightly better than ECRQ for rates
R ≤ 2.256, with improvements of up to 0.126 dB achieved
at R = 1.157 bits/sample. Additionally, for rates higher than
2.050 our ECUPQ is extremely close in performance to ASY
and is only about 0.175 dB away from the asymptotic ECVQ,
while maintaining a lower implementation complexity.

Before ending this section we would like to briefly address
the problem of choosing the set A of possible thresholds.
Although the focus of this work is on solving problem (7),
which assumes that the set A is given, the choice of A

determines how well the solution of (7) approximates the
solution to the unconstrained problem (6). A straightforward
choice for the set A is the one we used in our experiments,
namely, to divide some interval [0, B] into small intervals of
equal size ∆. The smaller the value of ∆, the better the
approximation. However, if the function g(r) is decreasing
for r larger than some value r0 ∈ [0, B], it is natural to
think that an error of size ∆ at a higher magnitude quantizer
threshold has a smaller impact on the performance than an
error of the same size at a smaller threshold. This suggests that
a non-uniform discretization of the interval [0, B], where the
sizes of the sub-intervals start with ∆, but gradually increase,
may lead to the same performance, but with reduced time and
space complexities since the value of K would be lower. The
investigation of such a possibility deserves attention and we
will address it in future work.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

VI. CONCLUSION

This paper focuses on the design of entropy-constrained
unrestricted polar quantizer for bivariate circularly symmetric
sources. We propose a design algorithm which is globally op-
timal when the thresholds of the magnitude quantizer are con-
fined to a finite set. Our solution algorithm consists of solving
the minimum-weight path problem in a certain weighted di-
rected acyclic graph, in conjunction with an efficient procedure
to find the optimal number of phase regions for each possible
magnitude quantizer bin. The experimental results, performed
for a bivariate circularly symmetric Gaussian source, demon-
strate significant improvements over the prior practical designs
at rates up to 2.5 bits/sample, and performance very close to
the optimal asymptotical performance.

REFERENCES

[1] G. H. Senge, “Quantization of image transforms with minimum distor-
tion”, Technical Report No. ECE-77-8, Dept. of Elec. and Comp. Eng.,
University of Wisconsin, Madison, WI, Jun. 1997.

[2] N. C. Gallagher, Jr., “Quantizing schemes for the discrete Fourier
transform of a random time-series,” IEEE Trans. Inform. Theory, vol.
IT-24, no. 2, pp. 156-163, Mar. 1978.

[3] W. A. Pearlman and R. M. Gray, “Source coding of the discrete Fourier
transform”, IEEE Trans. Inform. Theory, vol. IT-24, no. 6, pp. 683-692,
Nov. 1978.

[4] W. A. Pearlman, “Polar quantization of a complex Gaussian random
variable”, IEEE Trans. Commun., vol. COM-27, no. 6, pp. 892-899,
Jun. 1979.

[5] J. A. Bucklew and N. C. Gallagher, Jr., “Quantization schemes for
bivariate Gaussian random variables,” IEEE Trans. Inform. Theory, vol.
IT-25, pp. 537-543, Sept. 1979.

[6] J. A. Bucklew and N. C. Gallagher, Jr., “Two-dimensional quantization
of bivariate circularly symmetric densities,” IEEE Trans. Inform. Theory,
vol. IT-25, no. 5, pp. 667-671, Nov. 1979.

[7] S. G. Wilson, “Magnitude/phase quantization of independent Gaussian
variates”, IEEE Trans. Commun., vol. COM-28, no. 11, pp. 1924-1929,
Nov. 1980.

[8] P. F. Swaszek and J. B. Thomas, “Optimal circularly symmetric quan-
tizers,” Franklin Inst. J., vol. 313, no. 6, pp. 373-384, Jun. 1982.

[9] P. F. Swaszek, “Uniform spherical coordinate quantization of spherically
symmetric sources,” IEEE Trans. Commun., vol. COM-33, no. 6, pp.
518-521, Jun. 1985.

[10] P. F. Swaszek and T.W. Ku, “Asymptotic performance of unrestricted
polar quantizers,” IEEE Trans. Inform. Theory, vol. IT-32, no. 2, pp.
330-333, Mar. 1986.

[11] D. L. Neuhoff, “Polar quantization revisited,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT 1997), pp. 60, Ulm, Germany, Jun. 1997.

[12] P. W. Moo and D. L. Neuhoff, “Uniform Polar Quantization Revisited”,
in Proc. IEEE Int. Symp. Inform. Theory (ISIT 1998), pp. 100, Cam-
bridge, MA, USA, Aug. 1998.

[13] Z. H. Peric and M. C. Stefanovic, “Asymptotic analysis of optimal
uniform polar quantization,” AEU Int. J. Electron. Commun., vol. 56,
no. 5, pp. 345-347, 2002.

[14] R. Vafin and W. B. Kleijn, “Entropy-constrained polar quantization and
its application to audio coding”, IEEE Trans. Speech and Audio Process.,
vol. 13, no. 2, pp. 220-232, Mar. 2005.

[15] M. D. Petkovic, Z. H. Peric, and A. Z. Jovanovic, “An iterative method
for optimal resolution-constrained polar quantizer design,” COMPEL:
Int. J. Comput. and Math. Elect. and Electron. Eng., vol. 30, no. 2, pp.
574-589, 2011.

[16] Z. Peric and J. Nikolic, “Design of asymptotically optimal unrestricted
polar quantizer for Gaussian source”, IEEE Signal Process. Lett., vol.
20, no. 10, pp. 980-983, Oct. 2013.

[17] A. Z. Jovanovic, Z. H. Peric, J. R. Nikolic and M. R. Dincic, “Asymptotic
analysis and design of restricted uniform polar quantizer for Gaussian
sources”, Digital Signal Process., vol. 49, pp. 24-32, Feb. 2016.

[18] H. Pobloth, R. Vafin, and W. B. Kleijn, “Multivariate block polar
quantization”, IEEE Trans. Commun., vol. 53, no. 12, pp. 2043-2053,
Dec. 2005.

[19] E. Ravelli and L. Daudet, “Embedded polar quantization”, IEEE Signal
Process. Lett., vol. 14, no. 10, pp. 657-660, Oct. 2007.

[20] N. Kingsbury and T. Reeves, “Redundant representation with complex
wavelets: How to achieve sparsity”, in Proc. Int. Conf. Image Pro-
cess.(ICIP 2003), pp. 45-48, Barcelona, Spain, Sep. 2003.

[21] A. M. Bruckstein, R. J. Holt and A. N. Netravali, “Holographic repre-
sentations of images”, IEEE Trans. Image Process., vol. 7, no. 11, pp.
1583-1597, Nov. 1998.

[22] P. Nazari, B-K. Chun, F. Tzeng and P. Heydari, “Polar quantizer for
wireless receivers: theory, analysis, and CMOS implementation”, IEEE
Trans. Circuits and Systems-I: Regular Papers, vol. 61, no. 3, pp. 877-
887, Mar. 2014.

[23] J. Max, “Quantizing for minimum distortion”, IRE Trans. Inform.
Theory, vol. 6, no. 1, pp. 7-12, Mar. 1960.

[24] S. P. Lloyd, “Least squares quantization in PCM”, IEEE Trans. Inform.
Theory, vol. IT-28, no. 2, pp. 129-137, Mar. 1982.

[25] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still
image compression standard,” IEEE Signal Process. Magazine, vol. 18,
no. 5, pp. 36-58, Sep. 2001.

[26] A. Aggarwal, B. Schieber, and T. Tokuyama, “Finding a minimum
weight k-link path in graphs with the concave monge property and
applications,” Discr. Computat. Geometry, vol. 12, no. 1, pp. 263-280,
Dec. 1994.

[27] D. Muresan and M. Effros, “Quantization as histogram segmentation:
globally optimal scalar quantizer design in network systems”, in Proc.
Data Compression Conf. (DCC 2002), pp. 302-311, Snowbird, UT, USA,
Apr. 2002.

[28] D. Muresan and M. Effros, “Quantization as Histogram Segmentation:
Optimal Scalar Quantizer Design in Network Systems,” IEEE Trans.
Inform. Theory, vol. 54, no. 1, pp. 344-366, Jan. 2008.

[29] S. Dumitrescu and X. Wu, “Optimal Multiresolution Quantization for
Scalable Multimedia Coding,” in Proc. IEEE Inform. Theory Workshop
(ITW 2002), pp. 139-142, Bangalore, India, Oct. 2002.

[30] S. Dumitrescu and X. Wu, “Optimal two-description scalar quantizer
design,” Algorithmica, vol. 41, no. 4, pp. 269-287, Feb. 2005.

[31] S. Dumitrescu and X. Wu, “Lagrangian optimization of two-description
scalar quantizers,” IEEE Trans. Inform. Theory, vol. 53, no. 11, pp.
3990-4012, Nov. 2007.

[32] S. Dumitrescu, “On the Design of Optimal Noisy Channel Scalar Quan-
tizer with Random Index Assignment,” IEEE Trans. Inform. Theory, vol.
62, no. 2, pp. 724-735, Feb. 2016.

[33] H. Wu and S. Dumitrescu, “Design of optimal entropy-constrained scalar
quantizer for sequential coding of correlated sources,” to appear in Proc.
IEEE Inform. Theory Workshop (ITW 2017), Kaohsiung, Taiwan, Nov.
2017.

[34] X. Wu, “Optimal quantization by matrix searching,” J. Algorithms, vol.
12, no. 4, pp. 663-673, Dec. 1991.

[35] H. Wu and S. Dumitrescu,“Design of optimal entropy-constrained un-
restricted polar quantizer for bivariate circularly symmetric sources”,
submitted to IEEE Int. Conf. Acoust., Speech, and Signal Process.
(ICASSP), 2018.

[36] P. Vogel, “Source coding by classification-91-715,” IEEE Trans. Com-
mun., vol. 43, no. 11, pp. 2821-2832, Nov. 1995.

[37] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-constrained vector
quantization”, IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no.
1, pp. 31-42, Jan. 1989.

[38] H. Everett III, “Generalized lagrange multiplier method for solving
problems of optimum allocation of resources,” Operat. Res., vol. 11,
no. 3, pp. 399-417, Jun. 1963.

[39] D. G. Luenberger, Optimization by Vector Space Methods. New York:
Wiley, 1969.

[40] A. Gersho, “Asymptotically optimal block quantization,” IEEE Trans.
Inform. Theory, vol. IT-25, no. 4, pp. 373-380, Jul. 1979.

[41] A. V. Trushkin, “Sufficient conditions for uniqueness of a locally optimal
quantizer for a class of convex error weighting functions”, IEEE Trans.
Inform. Theory, vol. 28, no. 2, pp. 187-198, Mar. 1982.

APPENDIX

In this appendix we present the proof of Proposition 1.
Proof of Proposition 1: Recall that f(P) = −sinc2(1

P),
and g(P) = lnP . Let us make the change of variable u =
g(P), for P ≥ 1. Then P = g−1(u) = eu, for u ≥ 0. Further,
define

y(u) , f(g−1(u)) = −sinc2(e−u), for u ≥ 0.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

It follows that the following equality holds U = {(u, y(u))|u ∈
{ln 1, ln 2, · · · , lnPmax}}. Thus, in order to find the lower
convex hull of U, it is useful to determine the intervals on
which the function y(u) is convex, when u takes values in the
continuous domain (0,∞).

By computing the second order derivative of y(u), we obtain

y′′(u) =

1

x(u)2

(
−2 + (2− 2x(u)2) cos(2x(u)) + 3x(u) sin(2x(u))

)︸ ︷︷ ︸
β(x(u))

,

where x(u) = πe−u. Note that when u ≥ 0 we have x(u) ∈
(0, π]. Further, we aim at determining the sign of β(x) as a
function of x instead of u, for x ∈ (0, π]. For this we compute
the first and second order derivatives

β′(x) = 2x cos 2x− sin 2x+ 4x2 sin 2x,

β′′(x) = 4x (sin 2x+ 2x cos 2x)︸ ︷︷ ︸
γ(x)

.

Next we will determine the sign of γ(x). For this divide first
the domain of x into the following intervals: I1 = (0, π/4],
I2 = (π/4, π/2], I3 = (π/2, 3π/4] and I4 = (3π/4, π]. Note
that when x ∈ I1, we have x > 0, sin 2x > 0 and cos 2x ≥ 0,
which lead to γ(x) > 0. Additionally, for x ∈ I3 we have
x > 0, sin 2x < 0 and cos 2x ≤ 0, yielding γ(x) < 0. Further,
to determine the sign of γ(x) on I2 and I4 we will analyze
its derivative

γ′(x) = 4(cos 2x− x sin 2x).

It can be easily seen that γ′(x) < 0 holds for x ∈ I2,
while γ′(x) > 0 holds for x ∈ I4. These imply that γ(x)
is decreasing for x ∈ I2 and increasing for x ∈ I4.

Further, we obtain that for x ∈ I2, γ(x) decreases from
γ(π/4) = 1 > 0 to γ(π/2) = −π < 0, yielding that there
exists a unique point x1 ∈ I2 where γ changes signs from
positive to negative. In other words, γ(x1) = 0, γ(x) > 0 for
x ∈ (π/4, x1) and γ(x) < 0 for x ∈ (x1, π/2].

Similarly, for x ∈ I4, we have that γ(x) increases from
γ(3π/4) = −1 < 0 to γ(π) = 2π > 0, which implies that
there exists a unique point x2 ∈ I4 where γ changes signs from
negative to positive. In other words, γ(x2) = 0, γ(x) < 0 for
x ∈ (3π/4, x2) and γ(x) > 0 for x ∈ (x2, π].

By summarizing the analysis of the sign of γ(x) and using
the fact that β′′(x) has the same sign as γ(x), we conclude
that β′′(x) > 0 holds for (0, x1) and (x2, π], while β′′(x) < 0
holds for x ∈ (x1, x2). This observation implies that: 1) β′(x)
increases for x ∈ [0, x1] from β′(0) = 0 to β′(x1) (thus β′(x1)
must be positive); 2) β′(x) decreases for x ∈ [x1, x2]; 3) β′(x)
increases again for x ∈ [x2, π] up to β′(π) = 2π > 0. Using
further the fact that β′(π/2) = −π < 0, we conclude that there
are exactly two points x3, x4 ∈ (0, π], x3 < x4, where β′(x)
changes signs. Specifically, we have β′(x3) = β′(x4) = 0,
β′(x) > 0 for x ∈ (0, x3) ∪ (x4, π], and β′(x) < 0 for x ∈
(x3, x4).

The aforementioned observation implies that β(x) increases
on (0, x3] (from β(0) = 0 to a value which must be positive),
further, β(x) decreases on [x3, x4] and increases again on

[x4, π] up to β(π) = −2π2 < 0. Considering the fact that
β(π/2) = π2

2 − 4 > 0, it follows that there exists a unique
point x5 ∈ (π/2, π) such that β(x5) = 0, β(x) > 0 holds for
x ∈ (0, x5) and β(x) < 0 for x ∈ (x5, π].

Let u0 be the unique point in (0,∞) such that x(u0) = x5.
Since the sign of y′′(u) coincides with the sign of β(x(u)) we
conclude that y(u) is concave for u ∈ [0, u0) and is convex
for u ∈ [u0,∞). Further, the fact that x5 > π/2 implies that
u0 < ln 2. Leading to the conclusion that y(u) is convex on
[ln 2,∞).

Recall that S(P) denotes the point in the plane of coordi-
nates (g(P), f(P)). Then the above considerations imply that
the elements of P̂ are 1 and all points P0 + i, for 0 ≤ i ≤
Pmax − P0, where P0 is the smallest integer larger than π

x5
,

such that the slope of segment (S(0), S(P0)) is smaller than
or equal to the slope of segment (S(P0), S(P0+1)). We found
numerically that P0 = 3, thus the conclusion follows.

PLACE
PHOTO
HERE

Huihui Wu (S’14) received the B.Sc degree from
Southwest University for Nationalities, Chengdu,
China, in 2011 and the M.S. degree from Xiamen
University, Xiamen, China, in 2014. Both are in
communication engineering. He is currently pursu-
ing the Ph.D. degree in electrical and computer engi-
neering at McMaster University, Hamilton, Canada.
His research interests include channel coding, joint
source and channel coding, multiple description cod-
ing and signal quantization.

PLACE
PHOTO
HERE

Sorina Dumitrescu (M’05-SM’13) received the
B.Sc. and Ph.D. degrees in mathematics from the
University of Bucharest, Romania, in 1990 and
1997, respectively. From 2000 to 2002 she was a
Postdoctoral Fellow in the Department of Computer
Science at the University of Western Ontario, Lon-
don, Canada. Since 2002 she has been with the De-
partment of Electrical and Computer Engineering at
McMaster University, Hamilton, Canada, where she
held Postdoctoral, Research Associate, and Assistant
Professor positions, and where she is currently an

Associate Professor. Her current research interests include multimedia coding
and communications, network-aware data compression, multiple description
codes, joint source-channel coding, signal quantization. Her earlier research
interests were in formal languages and automata theory. Dr. Dumitrescu held
an NSERC University Faculty Award during 2007-2012.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2017.2789221

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

