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Abstract

This work addresses the rate-distortion optimal packetization (RDOP) of embedded bitstreams into

independent source packets, in order to limit error propagation in transmission of images over packet noisy

channels. The input embedded stream is assumed to be an interleaving of K independently decodable

basic streams. To form N (N < K) independent source packets, the set of basic streams is partitioned into

N groups. The streams within each group are then interleaved to generate a source packet. Error/erasure

protection may be further applied along/across source packets, to produce the channel packets to be

transmitted.

The RDOP problem previously formulated by Wu et al. has the goal of finding the partitioning which

minimizes the distortion when all source packets are decoded. We extend the problem formulation such

that to also include the minimization of the expected distortion for general transmission scenarios which

may apply uneven erasure/error protection. Further, we show that the dynamic programming algorithm

of Wu et al. can be extended to solve the general RDOP problem.

The main contribution of this work is a fast divide and conquer algorithm to find the globally optimal

solution, under the assumption that all basic streams have convex rate-distortion curves. Instrumental in

obtaining the fast solution is our result which proves that the problem can be formulated as a series of

matrix search problems in totally monotone matrices. The proposed divide and conquer algorithm reduces

the running time from O(K2LN) achieved by the dynamic programming solution, to O(NKL logK).

Experiments on SPIHT coded images demonstrate that the speed up is significant in practice.
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Rate-distortion optimization, partitioning in independent source packets, robust image/video trans-

mission, totally monotone matrix, divide and conquer algorithm.

I. INTRODUCTION

The problem of robust data transmission over packet noisy channels has been the subject of intense

research during the past fifteen years. A plethora of techniques to alleviate the effect of packet loss or cor-

ruption have been proposed, based on retransmission, forward error correction (FEC), error concealment

or combinations of these.

Progressive image or video coders such as SPIHT [1], EBCOT [2], or 3DSPIHT [3], are very attractive

due to their ability to easily adapt to rate variations. However, they are highly susceptible to error

propagation. In an embedded (or progressive) data stream the quality of the reconstruction increases

gradually as more symbols are decoded. On the other hand, a symbol can be decoded only if all

the previous symbols are available. Thus, a lost or corrupted packet inevitably disables the decoding

of other source symbols from received and correct packets. A natural way to confine the error only

within the packet it occurs, is to break the decoding dependence between packets. This can be done

by partitioning the data samples (for instance, the wavelet coefficients) into groups, then encoding each

group independently and transmitting the resulting progressive stream within a packet. This idea has

been used in [4]-[12] in conjunction with FEC or error concealment and in several multiple description

schemes designed for image or video transmission [13]-[18].

On the other hand, progressive image coders already employ the partitioning of the set of samples

into basic subsets, which are independently encoded producing embedded substreams. These substreams

are further interleaved in optimal rate-distortion (R-D) sense to generate a single coded stream for the

entire data. Specifically, in SPIHT, each basic subset is a spatial orientation tree of coefficients, while

in JPEG2000 each basic subset is a block of coefficients of fixed dimension, within a subband. We will

use the term basic or primary streams for these embedded bitstreams encoding each basic subset of

samples. This feature can be exploited in the construction of independent source packets. In particular,

in the case when the number K of basic streams is higher than the required number N of packets, the

primary streams can be grouped into N pairwise disjoint groups. Next the streams within each group are

interleaved to generate a separate source packet. Adopting this procedure reduces the task of partitioning

the whole set of samples to the simpler task of partitioning the smaller set of basic subsets, or in other

words, into partitioning the set of basic streams. Many researchers have taken this approach to generate

independent source packets, however most have used ad-hoc methods to choose the partition. One such

example is the work of Rogers and Cosman [5]. They developed a scheme for robust transmission of

DRAFT



3

SPIHT coded images over packet lossy channels, where no channel coding is applied to the independent

source packets, but error concealment is used at the decoder to recover from losses. The basic streams

(i.e., the code streams corresponding to individual trees) are assumed to be in a fixed order known to

both the encoder and decoder. The groups are formed with consecutive basic streams until approximately

reaching the capacity of the fixed size packet. To fit exactly the size of the packet, the interleaved stream

is either truncated or extended, as necessary.

The first work which clearly addresses the problem of optimal packetization of embedded streams into

independent source packets, is the work of Wu et al. [9]. The construction of source packets is also based

on partitioning the set of basic streams into groups, but the packetization constraints are more relaxed

than in [5] by also allowing a group which contains only one basic stream, to occupy more than one

packet. On the other hand, the condition that each group is formed only from consecutive packets in the

fixed ordering, is maintained in order to reduce the amount of side information needed to specify the

composition of each group. The goal of the optimization problem is, given a fixed budget of N packets,

each containing L symbols, to minimize the distortion when all the packets are decoded. The authors of

[9] propose a globally optimal dynamic programming solution. However, as their simulations show, this

solution is impractical due to the high overload of precomputations.

This work reexamines the problem of R-D optimal packetization (RDOP) of embedded streams into

independent source packets based on partitioning the set of basic streams. In our formulation we impose

the constraint of [5] that each group is formed out of consecutive primary streams according to a

fixed ordering, and that the interleaved stream of each group occupies a single packet. We assume a

general transmission scenario where the source packets may be further protected against bit errors and/or

erasures. We consider a general formulation of the RDOP problem which includes as special cases: 1) the

minimization of the expected distortion and 2) the minimization of the total distortion when all source

packets are decoded.

Due to similarities in the problem formulation, the dynamic programming algorithm of [9] can be

extended to solve the general RDOP problem. Our main contribution is a more efficient globally optimal

solution to the problem. To make possible the accelerated solution, we assume that the R-D curve of each

basic stream is a convex function. This assumption has been widely used in previous work and is a good

approximation for practical situations. Based on this assumption we prove that the problem can be reduced

to a series of matrix search problems in totally monotone matrices1. Leveraging this result we devise

an efficient globally optimal solution based on the divide and conquer strategy. The proposed algorithm

1This notion was introduced in [19] and will be defined precisely in Section IV.
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Fig. 1. Block diagram of the general transmission scheme.

reduces the running time from O(K2LN), achieved via dynamic programming, to O(NKL logK). We

mention that the divide and conquer solution for the special case of the RDOP problem which minimizes

the distortion when all source packets are decoded, appeared first in the conference publication [20].

The structure of the paper is as follows. In section II the RDOP problem is formulated for a general

transmission scenario which consists of a source packetization module followed by a channel coding

module. Section III presents the globally optimal dynamic programming solution algorithm. The next

section contains the main contribution of this work. First the RDOP problem is equivalently cast as

a series of matrix search problems and it is proved that each component matrix is totally monotone.

Based on this result the efficient globally optimal divide and conquer algorithm is developed. Further,

Section V discusses the application of the RDOP problem in specific transmission schemes using uneven

erasure/error protection, including the schemes introduced in [12]. Experimental results with SPIHT coded

images are presented in Section VI and Section VII concludes the paper.

II. PROBLEM FORMULATION

A. General Transmission Scheme

We consider a general scheme for image transmission over noisy channels, which is composed of a

source packetization module (SPM) followed by a channel coding module (CCM). The block diagram

of such a system is depicted in Fig. 1. The SPM generates N independent source packets, where each

source packet is an embedded bitstream of some given size. The CCM applies FEC to protect against

erasures and/or bit errors, and outputs a number of channel packets, which are further transmitted over

the noisy channel. At the receiver side all or only a subset of the transmitted channel packets may arrive

at destination. Additionally, if the channel also incurs bit errors, some of the received packets may be

corrupted. From the received data the channel decoder recovers part or all of the transmitted source

symbols using the channel error protection. Further, the source decoder decodes the available source

symbols providing a reconstruction for each data sample.

Let us now give some more details about the SPM. It is assumed that the set of samples is divided
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into non-overlapping basic subsets B1, · · · ,BK , for some K,K > N . The SPM partitions the total set

of samples into N non-overlapping groups G1, · · · ,GN , such that each group to be the union of some

basic subsets. Further, a progressive coder is used to encode the samples in each group. We will denote

by Gn the progressive codestream encoding group Gn at the highest possible resolution. Further, for each

n, 1 ≤ n ≤ N , source packet Sn consists of a prefix of Gn, if necessary also including a header to

specify the grouping.

In practical examples for image transmission where the progressive encoder is SPIHT or JPEG2000,

the data samples are the wavelet coefficients. In the case of SPIHT, each basic subset of samples can

be a spatial orientation tree of coefficients, while for JPEG2000, each basic subset can be a block of

coefficients of fixed dimension, within a subband.

B. Assumptions

Our problem formulation is based on some assumptions which hold approximately in practice. Specif-

ically, for each k, 1 ≤ k ≤ K, let Bk denote the bitstream encoding subset Bk at the highest resolution,

by using the specified progressive coder. We will refer to bitstreams B1, · · · , BK , as basic streams.

Notice that when the progressive coder is SPIHT, the bitstream Gn is actually an interleaving of the

basic bitstreams Bk corresponding to the basic sets Bk which form the group Gn. This statement is also

true for the JPEG2000 coder if we disregard the side information which needs to be inserted in Gn to

specify the composition of each quality layer. In this work rather then regarding Bk and Gn as sequences

of bits, we will regard them as sequences of symbols, where a symbol is a sequence of a fixed number

of bits (8 bits in our tests). We will consider a stronger assumption, namely that individual symbols are

basic data units, which are not broken in the interleaving. This assumption is formulated next.

A1. For each n, 1 ≤ n ≤ N , the sequence of symbols Gn is an interleaving of the sequences of symbols

Bk corresponding to the basic sets Bk which form the group of samples Gn.

The next assumption is based on the practical observation that the R-D curve of a codestream output

by SPIHT or JPEG2000 is nearly convex.

A2. Each basic codestream Bk, 1 ≤ k ≤ K, has a convex R-D curve.

For each k, 1 ≤ k ≤ K, let lk denote the number of symbols in Bk, and let ∆k(i) denote the decrease

in distortion induced by decoding the i-th symbol of Bk, given that all previous i−1 symbols have been

decoded, for 1 ≤ i ≤ lk. Then Assumption A2 is equivalent to

∆k(i) ≥ ∆k(i+ 1), for all 1 ≤ i ≤ lk − 1, 1 ≤ k ≤ K. (1)
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Further, the assumption that the R-D curve of a codestream output by SPIHT or JPEG2000 is convex,

together with A1 and A2 lead naturally to assumption A3 stated next.

A3. For each n, 1 ≤ n ≤ N , the interleaving of symbols of basic streams in Gn is performed in optimal

R-D manner, in other words, such that the symbols are ordered in non-increasing order of their associated

distortion reductions.

C. Constraint on Source Packetization

In order to reduce the amount of side information needed to describe the grouping to the decoder

we impose the same constraint as in [5] and [9], specifically, that each group of samples Gn is the

union of consecutive basic sets according to some fixed ordering known to both encoder and decoder.

Let us assume that the basic sets Bk are labeled according to this ordering. Then this constraint can be

equivalently formulated as follows.

C1. There are N +1 integers p0, p1, . . . , pN , such that 0 = p0 < p1 < p2 < · · · < pN = K, and for each

n, 1 ≤ n ≤ N , the following holds

Gn = Bpn−1+1 ∪ Bpn−1+2 ∪ · · · ∪ Bpn
. (2)

Finally, source packet Sn is formed out of the first Ln source symbols of codestream Gn, to which a

header of 2⌈log2K⌉ bits is appended. The header encodes the pair of integers (pn−1 + 1, pn).

D. RDOP Problem

The aim of this section is to formulate an R-D optimization problem for the SPM. A commonly used

criterion in R-D optimization is the minimization of expected distortion. In this work we will also consider

the expected distortion as a performance measure. However, rather than formulating the problem with

this specific goal in mind, we consider a more general formulation which includes the case when the

cost function is the expected distortion, but also includes other cases where the cost function may have

different meanings. The reason for this generality is to be able to accommodate cases when the expected

distortion of the whole transmission scheme depends on more variables which may be unknown to the

SPM.

We will assume that the values Ln, 1 ≤ n ≤ N , are fixed and that some positive coefficients γ(n, r), 1 ≤
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r ≤ Ln, 1 ≤ n ≤ N , are given2, satisfying the condition3

γ(n, r) ≥ γ(n, r + 1), for all r, n, 1 ≤ r ≤ Ln, 1 ≤ n ≤ N. (3)

We will further assume that statements A1, A2 and A3 hold. Then the problem of R-D optimal source

packetization (RDOP) is formulated as

minimizeG1,G2,··· ,GN

(
D0 −

∑N
n=1

∑Ln

r=1 γ(n, r)∆DGn
(r)

)
, (4)

subject to constraint C1

where D0 is the distortion achieved by the signal reconstruction when no information is available, and

∆DGn
(r) denotes the distortion decrease incurred by decoding the r-th symbol of codestream Gn.

The meaning of the cost function in (4) depends on the choice of the coefficients γ(n, r). If the channel

statistics are known and the redundancy allocation (RA) in the CCM is decided independently of the

SPM, then after determining the RA, the values Ln can be computed and each γ(n, r) can be chosen

as the probability that the r-th symbol of codestream Gn, is decoded by the source decoder. Then the

objective function of (4) represents the expected distortion of the signal reconstruction at the receiver.

Notice that with this choice of the coefficients, γ(n, r) is actually the probability that all first r source

symbols of source packet Sn are correctly recovered by the channel decoder, because the r-th source

symbol cannot be successfully decoded by the source decoder if any of the previous r − 1 symbols is

missing. Therefore, relations (3) hold. Recall that we use the expected distortion as a measure of the

system performance. Therefore, for such a choice of coefficients γ(n, r), the RDOP problem finds the

source packetization which maximizes the system performance. This formulation of the RDOP problem

is possible when the RA in the CCM is determined without needing the knowledge of the partitioning

performed in the SPM. This is the case of the FMUEP scheme introduced in [12], which will be discussed

in more detail in Section V.

Now notice that by letting γ(n, r) = 1 for all 1 ≤ r ≤ Ln, 1 ≤ n ≤ N , the cost function in

(4) becomes the distortion achieved when all source packets are decoded. This cost function was used

in [9] to optimize the SPM for a transmission scheme over packet lossy channels, which does not

contain the CCM, but uses error concealment at the source decoder. Such a criterion was used for SPM

2Examples of choices of such coefficients and the corresponding meaning of the cost function will be discussed shortly.
3This condition is essential for achieving the fast solution algorithm and, as it will be seen shortly, it is satisfied in the cases

of interest, in particular when the cost function of (4) is the expected distortion.
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optimization in [12] too, for both MUEP and FMUEP schemes, before optimizing the RA4. In both works

[9] and [12] the optimized packetization under this criterion showed consistent performance improvement

comparing with non-optimized packetization. Thus, the results of [9] and [12] support the hypothesis that

the RDOP problem with a heuristic choice of coefficients γ(n, r) can also be useful for increasing the

system performance in transmission scenarios where the formulation of the RDOP problem for minimum

expected distortion is not possible, such as schemes where the RA in the CCM is decided depending on

the output of the SPM. On the other hand, for such schemes there is another obvious way to use the

RDOP problem to improve the performance, as follows. After an initial choice of the source packetization,

optimize the RA. Then, for the given RA optimize the SPM for minimum expected distortion by solving

the RDOP problem. The process may stop here or continue iteratively by optimizing again the RA for the

fixed source packetization, then the source packetization for the fixed RA and so on, until no additional

performance improvement is achieved.

E. Equivalent Formulation of the RDOP Problem

In this subsection we provide an equivalent formulation of the RDOP problem which is more convenient

for the description of the solution algorithms.

In view of assumptions A1, A2 and A3, and of relation (2), codestream Gn is the interleaving in optimal

R-D manner of codestreams Bpn−1+1, Bpn−1+2, · · · , Bpn
. Thus, the SPM problem of partitioning the data

samples into groups can be actually regarded as the problem of partitioning the set of basic streams into

groups. Further, notice that this partitioning is completely specified by the (N + 1)-tuple of integers

p = (p0, p1, . . . , pN ). To make more clear the dependence of the cost function on p0, p1, . . . , pN , we will

introduce the following notation. For each pair j, k, 1 ≤ j ≤ k ≤ K, let B(j, k) denote the sequence of

symbols obtained by interleaving in optimal R-D manner the basic streams Bj , Bj+1, · · · , Bk. We will

refer to such a codestream as a composite stream. We point out again that, based on assumption A3,

B(j, k) is actually the codestream encoding the set of samples Bj∪Bj+1∪· · ·∪Bk at the highest resolution.

Now, for each composite stream B(j, k), 1 ≤ j ≤ k ≤ K, and for each packet index n, 1 ≤ n ≤ N , let

the quantity wn(j, k) be defined as

wn(j, k) =

Ln∑
r=1

γ(n, r)∆j,k(r), (5)

4In MUEP and FMUEP each channel packet includes symbols from a source packets along with additional redundancy

symbols. The size of a channel packet is fixed, thus, the size of a source packet is determined by the RA. However, in the

RDOP problem formulation considered in [12], source packets were assumed to be equal in size with channel packets.
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where ∆j,k(r) denotes the distortion decrease incurred by decoding the r-th symbol of B(j, k). It is clear

now that the objective function of (4) equals

D0 −
N∑

n=1

wn(pn−1 + 1, pn).

We conclude that the RDOP problem (4) can be equivalently cast as

max
p

N∑
n=1

wn(pn−1 + 1, pn), (6)

where the maximization is performed over all (N +1)-tuples of integers p = (p0, p1, . . . , pN ) satisfying

0 = p0 < p1 < p2 < · · · < pN = K.

III. DYNAMIC PROGRAMMING SOLUTION

This section presents the globally optimal solution to the RDOP problem, obtained by adapting the

dynamic programming algorithm of [9]. The algorithm complexity is analyzed and a special case which

leads to computational savings is pointed out.

Notice that each source packet n contributes one term in the objective function of (6). Let Copt(n, k)

denote the maximumum contribution due to the first n source packets, assuming that they are formed by

partitioning the subset of basic streams B1, B2, . . . , Bk, i.e.,

Copt(n, k) = max
0=p0<p1<p2<···<pn=k

n∑
i=1

wi(pi−1 + 1, pi).

Then the following recursion holds

Copt(n, k) = max
0≤j<k

{Copt(n− 1, j) + wn(j + 1, k)}, (7)

for 1 ≤ n ≤ N , 1 ≤ k ≤ K, where Copt(0, j) = Copt(n, 0) = 0 for 0 ≤ j ≤ K − 1, 1 ≤ n ≤ N . The

dynamic programming algorithm computes the values Copt(n, k) for all 1 ≤ n ≤ N and 1 ≤ k ≤ K,

in lexicographical order of the pairs n, k. At the end, the quantity Copt(N,K) is the optimal value of

the objective function of (6). If all values wn(j, k) are already known, then the number of operations to

solve (7) for fixed pair n, k is O(K), amounting to a total of O(K2N) operations over all pairs n, k.

On the other hand, the computation of the N upper triangular matrices Wn with elements wn(j, k),

1 ≤ j ≤ k ≤ K, 1 ≤ n ≤ N , has to be accounted for as well. For this, matrix positions (j, k) with

1 ≤ j ≤ k ≤ K, are visited starting at the top left corner and proceeding through the columns from left

to right. For each column k, its positions are visited starting at the main diagonal (j = k) and progressing

up (i.e., decreasing j). When j = k clearly, B(j, k) = Bk, while when j < k, the composite stream

B(j, k) is computed by merging Bj with B(j + 1, k), which was computed previously. Then the N
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weights w1(j, k), · · · , wN (j, k) are evaluated, the memory for B(j + 1, k) is deallocated, and B(j, k)

is stored to be used at the next step. Notice that only the prefix of length L of each composite stream

B(j, k) needs to be evaluated, where L = max1≤n≤N Ln. The merge procedure to accomplish this goal

requires only O(L) running time, while the number of multiplications and additions used to evaluate

each element wn(j, k) amounts to O(L) operations as well. Thus, the total time needed for all N upper

triangular matrices is O(K2LN).

It is clear that in the case when all functions wn(·) for 1 ≤ n ≤ N , are identical, computational

savings can be achieved since only one matrix needs to be evaluated. This special case appears when

L1 = L2 = · · · = LN and γ(1, r) = γ(2, r) = · · · = γ(N, r), for each 1 ≤ r ≤ L1. We will say that the

RDOP problem is uniform if the above conditions are satisfied.

In conclusion, the time complexity of the dynamic programming solution is O(K2LN) for the general

RDOP problem and O(K2(L + N)) for the uniform RDOP problem. As for the space complexity,

notice that, in order to store temporary results, only O(max(K,L)) storage space is enough, while

O(K2) memory locations are required to store each matrix Wn. Thus, the algorithm space complexity

is O(max(K2N,L)) for the general RDOP and O(max(K2, L)) for the uniform RDOP.

IV. FAST DIVIDE AND CONQUER SOLUTION BASED ON TOTAL MONOTONICITY

This section contains the main contribution of this work. We first show that the RDOP problem obeys a

nice monotonicity property and then exploit it to develop an efficient divide and conquer globally optimal

solution algorithm.

The first observation is that the RDOP problem can be regarded as the problem of finding the column

maxima in N matrices. To see this, for each 1 ≤ n ≤ N , let Mn denote the K ×K-dimensional upper

triangular matrix with elements defined as follows

Mn(j, k) = Copt(n− 1, j) + wn(j + 1, k), (8)

for all 0 ≤ j < k ≤ K. It is clear now that solving (7) for fixed n and all k, is equivalent to finding

the maximum value in each column of the matrix Mn. We will also refer to this problem as the matrix

search problem. This observation alone is not sufficient to speed up the computations, however, as we will

soon see, each matrix Mn has a special property, termed total monotonicity, which serves this purpose.

Specifically, an upper triangular matrix Mn is said to be totally monotone [19] if the following relation

holds

Mn(j, k) ≤ Mn(j
′, k) ⇒ Mn(j, k

′) ≤ Mn(j
′, k′), j < j′ < k < k′. (9)
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The following property represents the key result toward the fast solution algorithm.

Proposition 1. For every n, 1 ≤ n ≤ N , the upper triangular matrix Mn is totally monotone.

To avoid disrupting the flow of the exposition we defer the proof of Proposition 1 to the appendix.

However, we emphasize that two crucial factors in the proof are the assumption that the R-D curves of

the basic streams are convex and the fact that coefficients γ(n, r) are non-increasing in r, stated in (3).

Due to Proposition 1, the matrix search algorithm, which normally requires all matrix elements to be

examined, can be accelerated by leveraging a pleasing property of the row indices where the maxima

occur. Specifically, let j(k) denote the row index where the maximum occurs on column k. If the

maximum occurs on several rows we take the largest index. Clearly, property (9) implies that j(1) ≤

j(2) ≤ · · · ≤ j(K). This property enables a fast divide and conquer algorithm to solve the matrix

search problem. Notice that if the value j(⌊K/2⌋)5 is known, then, in order to find the maxima for the

columns 1 through ⌊K/2⌋− 1, one only needs to look at the elements on the rows 0 through j(⌊K/2⌋).

Likewise, to find the maxima on the columns with index higher than ⌊K/2⌋ one only needs to check

the rows with indices higher or equal than j(⌊K/2⌋). Therefore, we start by determining the maximum

in the middle column (i.e., ⌊K/2⌋), which further reduces the problem of searching matrix Mn into

two subproblems of smaller sizes, namely searching submatrices Mn(0 : j(⌊K/2⌋), 1 : ⌊K/2⌋ − 1) and

Mn(j(⌊K/2⌋) : K − 1, ⌊K/2⌋ + 1 : K), where Mn(j : j′, k : k′) denotes the submatrix containing the

rows in the range j to j′ and columns in the range k to k′, inclusive. Further, the column maxima problem

in each submatrix is solved recursively using the same procedure, i.e. first the maximum on the middle

column is found, then the problem is divided into two subproblems, and so on. Notice that the divide

and conquer algorithm does not examine all elements of Mn, and therefore not all the weights wn(j, k)

need to be computed. Actually, it turns out that, only O(K logK) matrix elements need to be checked,

thus only O(K logK) weights wn(j, k) have to be evaluated. We will see that the computations can be

organized in such a way so that only O(L) operations per checked matrix element to suffice, leading to

a running time of O(KL logK) for searching matrix Mn.

The pseudocode of the divide and conquer algorithm (D&C, for short) is presented in Fig. 2. Note

that D&C(Mn, j1 : j2, k1 : k2) denotes the recursive procedure to solve the matrix search in submatrix

Mn(j1 : j2, k1 +1 : k2). In order to search matrix Mn, first all composite streams B(k, k) are initialized

as Bk, for 1 ≤ k ≤ K, then D&C(Mn, 0 : K−1, 0 : K) is invoked. Referring to the pseudocode in Fig.2,

it is easy to see that, if j2 ≤ k1 − 1, then B(j2 + 1, k1) has already been evaluated during one of the

5For any real value x, ⌊x⌋ denotes the largest integer smaller than or equal to x.
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D&C(Mn, j1 : j2, k1 : k2)

01. if k1 + 1 > k2 stop

02. else do k := ⌊(k1 + k2 + 1)/2⌋

03. if j2 ≤ k1 − 1 do

04. {for i := k1 + 1 to k do

05. {B(j2 + 1, i) := merge(B(j2 + 1, i− 1), Bi)

06. compute wn(j2 + 1, i) and Mn(j2, i) via (8)}

07. for j := j2 − 1 downto j1 do

08. {B(j + 1, k) := merge(B(j + 2, k), Bj+1)

09. compute wn(j + 1, k) and Mn(j, k) via (8)}}

10. else do

11. {for j := k − 2 downto j1 do

12. {B(j + 1, k) := merge(B(j + 2, k), Bj+1)

13. compute wn(j + 1, k) and Mn(j, k) via (8)}}

14. j(k) := argmaxj1≤j≤min(j2,k−1)Mn(j, k)

15. D&C(Mn, j1 : j(k), k1 : k − 1)

16. D&C(Mn, j(k) : j2, k : k2)

Fig. 2. Divide and conquer algorithm to search submatrixMn(j1 : j2, k1 + 1 : k2).

previous invocations, therefore the operation on line 5 is correctly defined. The merge procedure on lines

5, 8 and 12 takes only O(L) operations. Lines 6, 9 and 13 also require O(L) operations. The number

of composite streams evaluated when j2 ≤ k1 − 1 (lines 4-9), is ⌊(k2 − k1 + 1)/2⌋+ j2 − j1, while for

the case j2 ≥ k1, it is ⌊(k1 + k2 +1)/2⌋− j1 − 1 < (k2 − k1 +1)/2+ j2 − j1. Further, since the number

of operations needed to execute line 14, is proportional to j2 − j1, it follows that the overhead needed

to reduce the problem Mn(j1 : j2, k1 + 1 : k2) into two subproblems is at most c1L(k2 − k1 + j2 − j1)

for some c1 > 0.

In order to evaluate the total running time needed to execute D&C(Mn, 0 : K−1, 0 : K), it is instructive

to analyze the associated recursion tree, where each node represents a subproblem solved recursively. In

particular, the root represents the initial problem Mn(0 : K − 1, 1 : K). For every tree node, the left,
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Fig. 3. Recursion tree associated to the divide and conquer algorithm.

respectively right, child represents the first, respectively second, subproblem invoked recursively at that

node. Fig. 3 illustrates levels 0, 1 and 2 of the recursion tree.

To simplify the running time evaluation we assume that K is a power of 2. The total run-time can

be obtained by adding up the overhead needed to reduce the problem at every tree node. An important

observation to aid this task is that the summation of the overheads for all nodes on any given level of

the tree is at most c2LK for some c2 > 0. To see this, notice first that any level l has 2l nodes and

each node corresponds to a submatrix with K/2l columns, i.e., k2 − k1 = K/2l. Thus, the summation

of values k2 − k1 over all nodes at this level is K. On the other hand, as we scan the nodes on level l

from left to right, the value j2 for a node (the last row in the submatrix) is identical to the value of j1

for the next node (the first row). Thus, the summation of j2 − j1 over all nodes is K − 1. Now, having

established that the total overhead on any level is O(LK), and since the height of the recursion tree

is log2K, it follows that the number of operations to solve the matrix search problem is O(LK logK)

as claimed. The space complexity of the algorithm is O(K2 + LK logK) due to the need to store the

composite streams.

Finally, to solve the RDOP problem (6), the divide and conquer algorithm is applied to search each of

the matrices M1, · · · ,MN , yielding an O(NLK logK) time complexity algorithm. On the other hand,

for the uniform RDOP problem the weights wn(j, k) evaluated for some matrix Mn can be reused for

subsequent matrices, thus their computation on lines 6, 9 and 13, and the invocation of the ”merge”

routine on lines 5, 8 and 12, are not performed all the time. Thus, the number of operations to search

matrix Mn decreases as n increases. This observation suggests that for the uniform RDOP the running

time estimate of O(NLK logK) is a loose upper bound, claim which is supported by our experimental
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results.

V. APPLICATIONS OF THE RDOP PROBLEM

In this section we present specific examples of transmission scenarios which fit into the framework

of Section II-A and discuss the application of the RDOP problem. Specifically, we describe first the

MUEP scheme (Unequal Erasure Protection for progressive Multi-streams) and its particular case termed

FMUEP, which were introduced in [12]. Then we adress the extension of MUEP/FMUEP to a product

code.

A. MUEP and FMUEP

MUEP ([12]) is a transmission scheme as described in Section II-A, where the CCM applies unequal

erasure protection using permuted systematic Reed-Solomon (RS) codes across source packets. The term

”permuted” refers to the fact that the systematic symbols of the RS codeword do not necessarily appear at

the beginning or end of the codeword, as is usually assumed in unequal erasure protection (UEP) schemes

([21]-[24]), but are interleaved with the redundancy symbols, according to some specified permutation.

The CCM produces N channel packets of L′ symbols each, for some value L′. The packetization strategy

of the CCM can be visualized by means of the the L′-by-N packetization array, where each column

represents a channel packet and each entry represents a channel symbol. Such an array is illustrated in

Fig. 4. The n-th column contains the symbols of source packet Sn interleaved with redundancy symbols,

which come from the RS codes applied across packets. More specifically, each row i of the array is

a permuted systematic (N,m(i)) RS codeword, thus, it contains m(i) source symbols and N − m(i)

redundancy symbols. Such a code is able to recover all symbols from at most N −m(i) erasures. The

strength of the RS codeword decreases as i increases, i.e., m(i) ≤ m(i+ 1), in order to provide higher

erasure protection to source symbols which appear earlier in the source packets. The rows consisting of

(N,m) RS codewords form layer m.

The MUEP strategy is designed for packet lossy channels, where packets are either lost or delivered

uncorrupted. If only a subset of k channel packets out of all N , are received at destination, then all

source symbols in these packets can be recovered and decoded, while additionally, the source symbols

situated in layers 1 through k from the missing packets are recovered using the erasure protection, and

further decoded.

An important problem in this scenario is the optimal redundancy allocation (RA). This problem was

addressed in [12] with the goal of minimizing the expected distortion. For 1 ≤ n,m ≤ N , let xm denote
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Fig. 4. Example of MUEP packetization array with N = 4 and L′ = 8. Gray boxes represent redundancy symbols and white

boxes source symbols. Symbol sn,i denotes the i-th symbol of source packet Sn.

the number of rows in layer m, and let x(n)m be the number of source symbols in the n-th source packet,

which are situated in layer m. Then the expected distortion at the receiver is

D0 −
N∑

m=1

N∑
n=1

C(n,m)

 ∑m
ℓ=1 x

(n)
ℓ∑

r=1+
∑m−1

ℓ=1 x
(n)
ℓ

∆DGn
(r)

 , (10)

where C(n,m) denotes the probability that a source symbol in packet n situated in layer m, is recovered

and decoded at the receiver. Clearly, (10) has the form of (4), by letting γ(n, r) be equal to C(n,m)

if the r-th symbol of Gn resides in layer m. Due to non-increasing strength of the RS code applied to

consecutive source symbols in each source packet, once a source symbol is recovered, it is guaranteed

that all previous source symbols in the packet are recovered. Thus, C(n,m) equals the probability that

one of the following events occurs: 1) channel packet n is received at the destination, or 2) packet n is

lost and at least m other packets are received.

The special case of MUEP termed FMUEP, was considered in [12], in order to decrease the amount

of side information needed at the decoder to specify the RA. The additional constraint in FMUEP is that

the number of source symbols in each layer m is the same for all packets: x(n)m = mxm/N for all m,n.

The optimization of RA for MUEP and FMUEP in [12] was formulated as the problem of minimizing

(10) under the assumption that the size L′ is fixed and that the partitioning of the set of samples into groups

G1, · · · ,GN is given. It is shown that for general channels the globally optimal solution is computationally

demanding, and an efficient suboptimal algorithm is proposed for the case of symmetric channel, i.e., a

channel where the probability that the packets in some subset I ⊂ {1, 2, · · · , N} are lost, while the rest

of packets are received, is the same for all subsets I of equal size. The experiments reported in [12]

use SPIHT as the progressive encoder in the SPM and compare two grouping strategies: 1) a predefined
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grouping where each group contains K/N consecutive basic subsets of samples; 2) an optimized grouping,

determined by solving the RDOP problem with Ln = L′ for all n, and γ(n, r) = 1 for all n and r. For

both strategies the fixed ordering of the basic subsets is the same. According to the results of [12], for

MUEP the two strategies can have comparable performance for small values of N , but the optimized

grouping becomes consistently better as N increases. Moreover, the optimized grouping has performance

very close to the MUEP upper bound determined in [12]. For FMUEP the optimized strategy is also

better than the predefined one for higher N , except for the case of exponential packet loss channel with

high loss rate6.

It is important to note that the RA optimization algorithm used in [12] for FMUEP actually does not

use the knowledge of the grouping in the SPM since it computes the values x1, · · · , xN only based on

the R-D curve of the encoded stream for the whole set of data samples. After computing the RA the size

of each source packet and the probability for each symbol to be decoded are determined. Then clearly,

the partitioning can be optimized for minimum expected distortion by solving the RDOP problem after

the RA is optimized. We will test this approach in the experimental section. Unfortunately, for MUEP

the SPM cannot be directly optimized for minimum expected distortion, since the RA algorithm in [12]

uses the knowledge of the R-D curves of individual codestreams G1, · · · , Gn. On the other hand, the

empirical results of [12] suggest that by using an approximation for the size of the source packets and

further solving the RDOP problem for minimum total distortion when all source packets are decoded, is

useful to increase the performance. A further performance improvement for MUEP is possible by solving

again the RDOP problem for minimum expected distortion after the RA optimization based on the initial

SPM. However, we expect the additional improvement to be small since the initial SPM already achieves

performance very close to the MUEP upper bound.

B. Product Code based on MUEP/FMUEP

The MUEP or FMUEP transmission schemes can be extended to incorporate bit error protection

within each packet in the case when the channel incurs packet losses and bit errors, or only bit errors.

For this, after constructing the MUEP/FMUEP packetization array as described above, each column (of

L′ symbols) is further applied a bit error correction code of some length L′′ (L′′ > L′). We will refer to

this code as the intra packet channel code. The N codewords formed in this way are the channel packets.

At destination, upon receiving each channel packet, the intra packet channel code is used first to correct

bit errors, if possible. We assume that the decoder of the intra packet channel code either corrects all

6In the exponential channel model the probability of losing k packets out of N decreases exponentially in k.
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errors or declares a decoding failure7. Thus, if the bit errors within the packet cannot be corrected , then

the packet is declared unavailable. Further, all the packets which are corrected enter the MUEP/FMUEP

decoder. Thus, assuming that channel packets i1, i2, · · · , ik are received and corrected, then columns

i1, i2, · · · , ik in the channel packetization array are recovered, hence source packets Si1 , Si2 , · · · , Sik are

recovered. Additionally all source symbols in layers 1 through k from the other packets will be further

recovered by the MUEP/FMUEP decoder.

Clearly, the expected distortion still has the form of (10), where C(n,m) equals the probability that

one of the following events occurs: 1) channel packet n is received at the destination and is recovered

from bit errors, or 2) channel packet n is either lost or not recovered from bit errors, but at least m other

channel packets are correctly recovered. Thus, C(n,m) depends on the channel statistics, but also on the

error correction ability of the intra packet channel code.

Optimizing the RA comprises optimizing the code rate of the intra packet channel code and the RA

for MUEP/FMUEP, assuming fixed N and L′′. One possibility to perform the optimization is to consider

different values for the rate of the intra packet channel code, for each such value optimize the RA in

the MUEP/FMUEP scheme, and then take the best overall. Notice that for given rate of the intra packet

channel code, the value L′ and coefficients C(n,m) are determined, thus the optimization of the RA for

the MUEP/FMUEP scheme can proceed as in [12]. This means that the overall optimization of the RA

does not depend on the SPM in the case of FMUEP, thus the SPM can be further optimized for minimum

expected distortion by solving the RDOP problem. On the other hand, for MUEP, we speculate that the

SPM optimized by solving the RDOP problem with Ln = L′ and γ(n, r) = 1, for all n, r, can be used

to increase the system performance.

Such a product code scheme was used in [10], with the notable difference that the RS codes used

across packets are strictly systematic codes, i.e., the redundant symbols appear only after the information

symbols.

VI. EXPERIMENTAL RESULTS

The goal of this section is twofold. First we assess empirically the increase in speed of the proposed

divide and conquer (D&C) algorithm for the RDOP problem, versus the dynamic programming (DP)

counterpart. Next we attest the practical impact on performance of using an R-D optimized partitioning

via the D&C algorithm, versus a non-optimized one, in an FMUEP scenario.

7This can be realized in practice via a concatenated code with an outer error detection code and an inner error correction

code.
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N 8 16 24 32 40

L 819 409 273 204 163

uRDOP
D&C (s) 0.184 0.112 0.082 0.069 0.055

DP (s) 17.237 8.647 5.836 4.472 3.518

gRDOP
D&C (s) 0.253 0.174 0.165 0.167 0.171

DP (s) 19.077 10.535 7.810 6.620 5.979

TABLE I

RUNNING TIME COMPARISON D&C VERSUS DP; IMAGE LENA, Rs = 0.2 BPP.

N 8 16 24 32 40

L 819 409 273 204 163

uRDOP
D&C (s) 0.193 0.118 0.087 0.072 0.059

DP (s) 17.267 8.660 5.885 4.482 3.530

gRDOP
D&C (s) 0.259 0.177 0.172 0.177 0.185

DP (s) 19.160 10.595 7.877 6.719 6.075

TABLE II

RUNNING TIME COMPARISON D&C VERSUS DP; IMAGE PEPPERS, Rs = 0.2 BPP.

A. General Experimental Setting

Two 512 × 512 images (Lena and Peppers) were tested. In both cases, after subtracting the mean8

from the original image, a 5-level Cohen-Daubechies-Feauveau 9/7 wavelet transform was applied. The

wavelet coefficients constitute the data samples. The progressive source coder employed in our tests is the

SPIHT encoder without arithmetic coding. We have used the QccSPIHT encoder from QccPack library

[25]. We consider K = 256 basic subsets of samples, 192 corresponding to spatial orientation trees and

64 to non-root coefficients. Since the proposed D&C algorithm relies on the convexity of the R-D curves,

we approximate the R-D curve of each primary codestream Bk by its convex hull. Moreover, a symbol

consists of 8 bits. In our experiments, the fixed ordering of the basic streams is the subband dispersed

order introduced in [12]. The packet header encoding the composition of the group contains log2K = 16

bits, in other words, 2 symbols.

8We assume that this value is available at the decoder.
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N 8 16 24 32 40

L 2048 1024 682 512 409

uRDOP
D&C (s) 0.586 0.268 0.187 0.146 0.124

DP (s) 45.899 21.365 14.548 10.962 8.699

gRDOP
D&C (s) 0.758 0.487 0.378 0.363 0.371

DP (s) 51.622 25.889 19.055 15.614 13.981

TABLE III

RUNNING TIME COMPARISON D&C VERSUS DP; IMAGE LENA, Rs = 0.5 BPP

N 8 16 24 32 40

L 2048 1024 682 512 409

uRDOP
D&C (s) 0.647 0.285 0.203 0.159 0.137

DP (s) 46.155 21.279 14.602 11.111 8.771

gRDOP
D&C (s) 0.807 0.507 0.396 0.383 0.394

DP (s) 52.235 26.021 19.186 15.828 14.117

TABLE IV

RUNNING TIME COMPARISON D&C VERSUS DP; IMAGE PEPPERS Rs = 0.5 BPP.

B. Speed Assessment of D&C Algorithm

For the speed comparison we have run tests for two source coding rates Rs: Rs = 0.2 bpp and Rs = 0.5

bpp, and number of packets N = 8, 16, 24, 32, 40. We assume that all source packets have the same

number L of symbols, thus, for each N and Rs, L is computed such that Rs = 8 ·N(L+2)/(512×512)

(notice that L+ 2 is the length of the packet after including the header).

For the purpose of speed assessment we have considered the general RDOP problem, as well as

the uniform RDOP problem where the matrices W1, · · · ,WN defined in section III, are identical. The

coefficients γ(n, r) used in the RDOP problems are computed as follows. For each N and L we first

solve the RA problem for an FMUEP scenario using the algorithm of in [12], assuming that the size of

a channel packet is L′ = L. We assume an exponential packet loss model for the channel, i.e., where the

probability PN (k) of losing k packets out of the transmitted N packets, decreases exponentially with k.

As shown in [12], the probability C(n,m) that a source symbol in channel packet n situated in layer m,
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is recovered and decoded by the source decoder, is

C(n,m) = 1− µ+

N−m∑
k=0

k

N
PN (k), (11)

for 1 ≤ n ≤ N, 1 ≤ m ≤ N , where µ is the mean packet loss rate. The RA algorithm determines the

values xm, 1 ≤ m ≤ N , based on the R-D curve of the SPIHT coded stream for the whole image. Then

we set x(n)m = ⌊mxm/N⌋ for 1 ≤ n ≤ N − j, and x
(n)
m = ⌈mxm/N⌉ for N − j ≤ n ≤ N , where j is

the remainder of the division of mxm by N . Let Ln denote the number of source symbols in the n-th

channel packet obtained according to this solution, after subtracting the two symbols used in the header.

In other words, Ln =
∑N

m=1 x
(n)
m − 2. The coefficients γ(n, r) for the general RDOP problem are then

set as γ(n, r) = C(n,m) if
∑m−1

k=1 x
(n)
k < r+2 ≤

∑m
k=1 x

(n)
k , for some m, 1 ≤ m ≤ N , (i.e., if the r-th

symbol of Gn is in layer m), and γ(n, r) = γ(n,Ln) when Ln < r ≤ L. Notice that the above procedure

produces coefficient vectors (γ(n, r))1≤r≤L very similar or even identical for different values of n. Thus,

the corresponding RDOP problem is actually very close to a uniform RDOP problem. However, in order

to evaluate the running time for the general RDOP problem, we deliberately disregard similarities of the

coefficients from packet to packet. Finally, for the uniform RDOP problem solved in our tests for speed

assessment, we compute the coefficients γ(1, r) as described above, and let γ(n, r) = γ(1, r) for all n

and r.

The D&C and DP algorithms were implemented in the C programming language, and run on a 2.4

GHz Intel Core 2 Duo MacBook with 2GB 1067 MHz DDR3 main memory. The input in each case

consists of the K primary streams, each of L bytes.

The speed assessment results are shown in Tables I-IV. Each table contains the running time in seconds

for one image at one source coding rate. We use the notation gRDOP and uRDOP for general, respectively,

uniform RDOP problems. It can be seen that D&C is significantly faster than DP making RDOP feasible

in practice. Moreover, for fixed value of the product NL (notice that this value is constant for each table),

the running time spent by D&C to solve the uRDOP problem consistently decreases as N increases, fact

which supports the claim that the time complexity estimate of O(NKL logK) is not tight. Furthermore,

the D&C algorithm is faster for uRDOP than for gRDOP, as expected, the speed up being accentuated

as N increases. On the other hand, the rate of relative speed increase is slow, such that, even at N = 40,

the the D&C solution for gRDOP remains competitive with the uRDOP counterpart.

C. Performance Assessment of RDOP

Next we assess the practical impact in performance of using an R-D optimized partitioning via D&C,

versus a non-optimized one, for the FMUEP transmission scenario. It is important to point out that
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although we use the assumptions in Section II-B to solve the RDOP problem, after doing so, the source

packets are constructed by running the SPIHT encoder for the set of samples in each group Gn determined

by the algorithm.

We consider two transmission rates Rt = 0.2 bpp and Rt = 0.5 bpp, and two channel models:

EXP (exponential packet loss) and IPL (independent packet loss) with three mean packet loss rates

µ = 0.05, 0.1, 0.15. The same two images are tested. For each transmission rate, all even values of

N in the range 8 to 40 are considered. The FMUEP redundancy allocation is obtained by using the

algorithm described in [12], where the size L′ of each channel packet is computed such that Rt =

8 ·NL′/(512× 512). We compare three partitioning strategies, termed RDOP, eRDOP and PSD. RDOP

is the partitioning optimized for minimum expected distortion, i.e., the values Ln and γ(n, r), 1 ≤ r ≤ Ln,

1 ≤ n ≤ N , used in the cost function of (4), are computed as explained in the previous subsection. eRDOP

(RDOP with Equal coefficients) is optimized for minimum distortion when all N packets are received,

assuming that each source packet has the same size as the channel packet (i.e., Ln = L′ and γ(n, r) = 1

for all r and n). RDOP and eRDOP partitionings are obtained using the D&C algorithm. Finally, PSD is

obtained by allocating an equal number of consecutive basic streams, according to the same fixed ordering,

to each source packet9, thus there is no need to include a header in each source packet to specify the

basic streams in the group. FMUEP with these partitioning strategies are also compared against UEP,

which is the classic unequal erasure protection scheme [23] applied to a progressive codestream, without

having independently decodable source packets. All the aforementioned strategies are compared by using

the expected distortion at the receiver as a performance measure. We point out that the FMUEP decoder

needs to know the values x1, · · · , xN , which specify the FMUEP packetization array. As usual in the UEP

literature, we assume that this information is transmitted via a noiseless channel and it is not included

in the total transmission budget.

Our tests reveal that RDOP outperforms PSD most of the time and the gap can reach up to 0.5 dB.

The only cases when PSD is better are only for the EXP channel at high loss rate (0.15) and small or

moderate values of N , but the margin is slim. Moreover, given fixed image, channel model, packet loss

rate and transmission rate, the gap between RDOP and PSD tends to increase with N . As expected, the

RDOP performance is greater or equal to that of eRDOP with a difference of at most 0.073 dB. This

result demonstrates that optimizing the partitioning for minimum expected distortion (RDOP case) rather

than for minimum distortion when all packets are received (eRDOP case) can improve the performance.

9More specifically, the first N − j source packets are assigned ⌊K/N⌋ basic streams each, and the last j source packets are

assigned ⌈K/N⌉ basic streams each, where j is the remainder of the division of K by N .
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Fig. 5. PSNR values for various N , for Lena, EXP channel with µ = 0.15.
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Fig. 6. PSNR values for various N , for Lena, Rt = 0.5 bpp, EXP channel with lower packet loss rate.

On the other hand, the improvement is small, fact which suggest that small changes in the coefficients

γ(n, r) for the RDOP problem do not have a big impact. This observation further supports the use

of the RDOP problem with a heuristic choice of the coefficients γ(n, r), to boost the performance in

transmission schemes where the probability of decoding each symbol cannot be accurately estimated.

To illustrate our observations we plot in Figs. 5 and 6 the performance of the above mentioned

partitionings for various values of N , for image Lena under EXP channel for the following settings: Fig.

5a): Rt = 0.2 bpp, µ = 0.15; Fig. 5b): Rt = 0.5 bpp, µ = 0.15; Fig. 6a): Rt = 0.5 bpp, µ = 0.05; Fig.

6b): Rt = 0.5, µ = 0.1. For each case the performance is measured by converting the expected distortion

to PSNR.

We mention that the impact of eRDOP versus PSD was tested in [12] as well, where the two

partitionings were termed OptSD and PSD, respectively. The experimental setting of [12] is similar
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to ours with only one exception. In [12], the image mean is not subtracted from the value of each pixel,

before applying the wavelet transform, as we have done in our experiments. It turns out that subtracting

the mean first from the image, enhances the performance of eRDOP since in our experiments eRDOP is

always better than or competitive with PSD, while in [12], for exponential channel with loss rate 0.15

the eRDOP results were far worse than PSD and even below UEP level [12].

D. Application of the RDOP Problem with the JPEG2000 Encoder

In our tests we have chosen the SPIHT encoder as the progressive coder in the SPM due to its simplicity.

However, our RDOP problem formulation and the proposed D&C algorithm can also be used with the

JPEG2000 encoder. Notice that in the case of JPEG2000, assumption A1 (formulated in Section II-B) is a

looser approximation than for SPIHT because JPEG2000 encodes the set of samples in group Gn not just

by interleaving the corresponding basic streams Bk, but by additionally inserting side information (SI)

at the beginning of each quality layer. To account for the inclusion of SI let us break the SPM module

into two submodules. The first submodule partitions the set of basic streams and forms each codestream

Gn by interleaving the basic streams from the corresponding group. Then it takes the size Ln prefix to

form source packet Sn. The second submodule inserts SI symbols in the codestream Sn in the manner

of JPEG2000, to form source packet S′
n of size L′

n. Further, source packets S′
1, · · · , S′

N are fed to the

CCM. Then the idea is to convert the problem of optimizing the SPM into an RDOP problem for the

first submodule.

Consider first the objective of minimizing the distortion when all source packets S′
n are decoded,

assuming that each L′
n is fixed. Since the SI symbols do not contribute to the decrease of distortion, the

cost function still has the form of (4) with all γ(n, r) = 1. The only difference versus the RDOP problem

is the fact that Ln is not fixed since the inserted SI depends on the composition of each group. A simple

approach to circumvent this problem is to use a fixed value as an estimate for Ln and solve the RDOP

problem to determine the grouping. We speculate that even a crude estimate such as Ln = L′
n should lead

to good performance because the amount of SI is small comparing to Ln. This claim is also supported by

the good results reported in [12] and in our experiments with eRDOP, where a loose overestimate of the

size of source packets was used in the grouping optimization (the size of the source packet was assumed

to be equal to the size of a channel packet, which actually contains additional redundancy symbols).

Consider now the objective of minimizing the expected distortion. The expected distortion still has the

form of (4). However, each coefficient γ(n, r) is no longer fixed for given n and r, but depends on the

position r′ of the r-th symbol of packet Sn in the source packet S′
n. Clearly, r′ equals r plus the number

of SI symbols inserted in the current and previous quality layers, thus it depends on the grouping. One

DRAFT



24

approach to circumvent this difficulty is to use a fixed estimate for the amount of SI and for the positions

where it is inserted in Sn
10. Based on this estimate compute r′ and set γ(n, r) to the probability that

the r′-th symbol of source packet S′
n is decoded, value which is fixed for fixed n, r′ and RA. Notice

that such a choice does not violate condition (3). We hypothesize that such an approach can lead to

performance improvement encouraged by the results in the previous subsection where a small change in

the coefficients of the RDOP problem did not affect the performance greatly. We expect an improvement

to occur even if the amount of SI is loosely approximated to 0.

In conclusion our experiments show that the proposed divide and conquer algorithm for the RDOP

problem is very fast in practice. Our tests also demonstrate that optimizing the partitioning by solving the

RDOP problem can greatly improve the performance for the FMUEP transmission scheme with a SPIHT

progressive coder. Moreover, according to the above discussion, we expect similar gains in performance

to be achieved when a JPEG2000 encoder is used in the SPM.

VII. CONCLUSION

This work addresses the rate-distortion optimal packetization (RDOP) of embedded streams into N

independent source packets. The packetization is performed by partitioning a set of K basic embedded

streams into N groups, and interleaving the streams within each group to form a source packet. The

previous RDOP problem formulated by Wu et al. aims at minimizing the distortion when all source

packets are decoded. We consider a general formulation which also covers the objective of minimizing

the expected distortion for transmission scenarios where erasure/error protection may be further applied.

Then we show that the existing dynamic programming algorithm can be adapted to solve the general

RDOP problem. Assuming convexity of the rate-distortion curves, the dynamic programming algorithm

runs in O(K2LN) time, where L is the size of each source packet.

The main contribution of this work is a fast divide and conquer globally optimal algorithm, under

the same convexity assumption, which reduces the total time consumption to O(NKL logK). Crucial

in obtaining the accelerated solution is our result which reveals a nice monotonicity property of the

optimization problem. Finally, simulation results with SPIHT coded images demonstrate that the speed

up is significant in practice.

10Notice that in FMUEP it is easy to estimate the positions where the SI is included since it makes sense to devise the quality

layers according to the layers in the FMUEP packetization, in other words, by letting the m-th quality layer to consist of the

source symbols protected by an (N,m) RS code. After optimizing the RA, the positions of these symbols in S′
n are known.
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APPENDIX

This appendix presents the proof of Proposition 1. First let us restate this proposition.

Proposition 1. For every 1 ≤ n ≤ N , the upper triangular matrix Mn is totally monotone.

Proof. It can be easily seen that in order to prove relation (9), it is sufficient to show that

Mn(j, k) +Mn(j
′, k′) ≥ Mn(j

′, k) +Mn(j, k
′), j < j′ < k < k′.

By applying (8) and reducing the like terms, the above relation becomes

wn(j + 1, k) + wn(j
′ + 1, k′) ≥ wn(j

′ + 1, k) + wn(j + 1, k′), j < j′ < k < k′. (12)

Let us fix now n and indices j, j′, k, k′ satisfying j < j′ < k < k′. In the remainder of this proof

we will use the notation L instead of Ln for simplicity. Further, denote by a1, a2, · · · , aL, the symbols

in the composite stream B(j′ + 1, k), labeled in the order they appear in the codestream. Likewise,

let µ1, µ2, · · · , µL, be the symbols in the composite stream B(j + 1, k), ν1, ν2, · · · , νL, the symbols in

B(j′ + 1, k′), and ρ1, ρ2, · · · , ρL, the symbols in B(j + 1, k′). For any symbol η let us also denote by

∆(η) the decrease in distortion achieved by decoding that symbol. For convenience we will refer to the

quantity ∆(η), as the ”utility” associated to symbol η. Thus, since in any composite stream the symbols

are ordered in non-increasing order of their utilities, the following relations hold

∆(ai) ≥ ∆(ai+1),∆(µi) ≥ ∆(µi+1),∆(νi) ≥ ∆(νi+1),∆(ρi) ≥ ∆(ρi+1), 1 ≤ i ≤ L− 1. (13)

Recall that B(j+1, k) is obtained by rate-distortion optimal interleaving of B(j+1, j′) and B(j′+1, k).

Therefore there must be some s, 0 ≤ s ≤ L, such that B(j + 1, k) contains the first s symbols of

B(j′+1, k), i.e., a1, · · · , as, and the first L− s symbols of B(j+1, j′). For each 1 ≤ ℓ ≤ s, let us now

denote by αℓ the position of symbol aℓ in B(j+1, k). This means that the symbol µαℓ
is identical to aℓ.

Clearly, we have αℓ < αℓ+1, for all 1 ≤ ℓ ≤ s− 1. Likewise, let t, 0 ≤ t ≤ L, be the number of symbols

from B(j′ + 1, k), included in B(j′ + 1, k′) and let u, 0 ≤ u ≤ L, denote the number of symbols from

B(j′ + 1, k), which appear in B(j + 1, k′). Furthermore, for each 1 ≤ ℓ ≤ t, let βℓ denote the position

of symbol aℓ in B(j′ + 1, k′), and for 1 ≤ ℓ ≤ u, let δℓ be the position of symbol aℓ in B(j + 1, k′). It

is easy to verify that βℓ < βℓ+1, for all 1 ≤ ℓ ≤ t− 1, and δℓ < δℓ+1, for all 1 ≤ ℓ ≤ u− 1.

To prove the claim we need first to rewrite conveniently each quantity ∆(η). Let us start with the

symbols in B(j′ + 1, k). For each ℓ, 1 ≤ ℓ ≤ L, one can write

∆(aℓ) = ∆(aL) +

L−1∑
m=ℓ

(∆(am)−∆(am+1)). (14)
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With the convention that α0 = 0 and αs+1 = L+1, we further write for each ℓ and i such that 0 ≤ ℓ ≤ s

and αℓ + 1 ≤ i ≤ min(L,αℓ+1),

∆(µi) = (∆(µi)−∆(aℓ+1)) + ∆(aL) +

L−1∑
m=ℓ+1

(∆(am)−∆(am+1)). (15)

The previous relation holds because ℓ+1 ≤ L. To see that the latter equality is valid, notice that, if there

exists i such that αℓ + 1 ≤ i ≤ min(L,αℓ+1), then necessarily αℓ ≤ L− 1, which implies ℓ ≤ L− 1.

Likewise, let β0 = δ0 = 0 and βt+1 = δu+1 = L+ 1 by convention. Then for each ℓ and i such that

0 ≤ ℓ ≤ t and βℓ + 1 ≤ i ≤ min(L, βℓ+1), rewrite

∆(νi) = (∆(νi)−∆(aℓ+1)) + ∆(aL) +

L−1∑
m=ℓ+1

(∆(am)−∆(am+1)). (16)

Finally, for each ℓ and i such that 0 ≤ ℓ ≤ u and δℓ + 1 ≤ i ≤ min(L, δℓ+1), write

∆(ρi) = (∆(ρi)−∆(aℓ+1)) + ∆(aL) +

L−1∑
m=ℓ+1

(∆(am)−∆(am+1)). (17)

An important observation, to be used in the proof, is that all the expressions enclosed in parentheses in

(14)-(17) are non-negative in virtue of relations (13).

Next we rewrite the terms in (12) using the definition (5) and (14)-(17). For simplicity we will use the

notation γi instead of γ(n, i), for all 1 ≤ i ≤ L, since n is fixed. For convenience we will also denote

γL+1 = 0. Then wn(j + 1, k) can be written as follows

wn(j + 1, k) =

L∑
i=1

γi∆(µi)
(a)
=

L+1∑
i=1

γi∆(µi) =

s∑
ℓ=0

αℓ+1∑
i=αℓ+1

γi ·∆(µi)

(b)
=

s∑
ℓ=0

αℓ+1∑
i=αℓ+1

γi ·
(
(∆(µi)−∆(aℓ+1)) + ∆(aL) +

L−1∑
m=ℓ+1

(∆(am)−∆(am+1))
)

=

s∑
ℓ=0

αℓ+1∑
i=αℓ+1

γi · (∆(µi)−∆(aℓ+1))

+

L−1∑
m=1

(∆(am)−∆(am+1))

min{m−1,s}∑
ℓ=0

αℓ+1∑
i=αℓ+1

γi +∆(aL)

L∑
i=1

γi

=

s∑
ℓ=0

αℓ+1∑
i=αℓ+1

γi · (∆(µi)−∆(aℓ+1))

+

L−1∑
m=1

(∆(am)−∆(am+1))

αmin{m−1,s}+1∑
i=1

γi︸ ︷︷ ︸
T1

+∆(aL)

L∑
i=1

γi,
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where equality (a) follows from γL+1 = 0, and (b) is based on (15). Similarly, using (16) and (17), the

quantities wn(j
′ + 1, k′) and wn(j + 1, k′) can be expressed as follows

wn(j
′ + 1, k′) =

t∑
ℓ=0

βℓ+1∑
i=βℓ+1

γi · (∆(νi)−∆(aℓ+1))

+

L−1∑
m=1

(∆(am)−∆(am+1))

βmin{m−1,t}+1∑
i=1

γi︸ ︷︷ ︸
T2

+∆(aL)

L∑
i=1

γi,

wn(j + 1, k′) =

u∑
ℓ=0

δℓ+1∑
i=δℓ+1

γi · (∆(ρi)−∆(aℓ+1))

+

L−1∑
m=1

(∆(am)−∆(am+1))

δmin{m−1,u}+1∑
i=1

γi︸ ︷︷ ︸
T3

+∆(aL)

L∑
i=1

γi.

Finally, based on (14), we obtain

wn(j
′ + 1, k) =

L∑
i=1

γi∆(ai) =

L−1∑
m=1

(∆(am)−∆(am+1))

m∑
i=1

γi︸ ︷︷ ︸
T4

+∆(aL)

L∑
i=1

γi.

In order to prove relation (12), we first show that

T1 + T2 ≥ T3 + T4. (18)

For this notice that

T1 + T2 =

L−1∑
m=1

(∆(am)−∆(am+1))[

αmin{m,s+1}∑
i=1

γi +

βmin{m,t+1}∑
i=1

γi],

T3 + T4 =

L−1∑
m=1

(∆(am)−∆(am+1))[

δmin{m,u+1}∑
i=1

γi +

m∑
i=1

γi].

Since ∆(am)−∆(am+1) ≥ 0 for all 1 ≤ m ≤ L− 1, in order to prove (18), it is sufficient to show that

αmin{m,s+1}∑
i=1

γi +

βmin{m,t+1}∑
i=1

γi ≥
δmin{m,u+1}∑

i=1

γi +

m∑
i=1

γi. (19)

A key observation used in the proof is the following. For any 0 ≤ ℓ ≤ u−1, the symbols in B(j+1, k′)

appearing between aℓ and aℓ+1, in other words the symbols ρδℓ+1, · · · , ρδℓ+1−1, are actually the symbols

from the set {µαℓ+1, · · · , µαℓ+1−1, νβℓ+1, · · · , νβℓ+1−1}, ordered in non-increasing order of their utilities.
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This implies that δℓ+1 − δℓ − 1 = αℓ+1 − αℓ − 1 + βℓ+1 − βℓ − 1. Summation over all ℓ such that

0 ≤ ℓ ≤ m− 1, for 1 ≤ m ≤ u, further yields

δm = αm + βm −m, 1 ≤ m ≤ u. (20)

The definitions of αm and βm imply that

m ≤ αm, m ≤ βm, 1 ≤ m ≤ u. (21)

The above inequalities combined with (20) further lead to

δm ≥ αm, δm ≥ βm. (22)

To prove (19) we will distinguish between the following two cases: 1) m ≤ u; 2) m > u.

Case 1: m ≤ u. Since u ≤ min{s, t}, it follows that m ≤ s and m ≤ t. Thus, (19) becomes

αm∑
i=1

γi +

βm∑
i=1

γi ≥
δm∑
i=1

γi +

m∑
i=1

γi. (23)

We may assume without restricting the generality that αm ≤ βm (the other case is symmetric). Then, by

using (21) and (22), (23) can be rewritten as relation
αm∑

i=m+1

γi ≥
δm∑

i=βm+1

γi. (24)

By (20), the number of terms on both sides of the above inequality is the same. Moreover, since γi ≥ γi+1,

1 ≤ i ≤ L− 1, (according to (3)) and αm ≤ βm, it follows that any term on the left hand side is larger

than or equal to any term on the right hand side. These facts establish the validity of relation (24).

Case 2: m ≥ u+1. In this case, one has δmin{m,u+1} = L+1. If m ≥ t+1 then βmin{m,t+1} = L+1,

and since αmin{m,s+1} ≥ m clearly holds, inequality (19) follows. The situation when m ≥ s+1 can be

treated similarly. Therefore, let us consider now the case m < s+ 1 and m < t+ 1. Now (19) becomes

αm∑
i=1

γi +

βm∑
i=1

γi ≥
L∑
i=1

γi +

m∑
i=1

γi, (25)

where we have used the fact that γL+1 = 0. Relations u + 1 ≤ m < s + 1 and u + 1 ≤ m < t + 1

imply that u < s and u < t, hence symbol au+1 appears in both B(j + 1, k) and B(j′ + 1, k′). On

the other hand, this symbol does not appear in B(j + 1, k′), fact which leads to the conclusion that

L− δu ≤ αu+1 − αu − 1 + βu+1 − βu − 1. Combining with δu = αu + βu − u, which holds according

to (20), one further obtains that L ≤ αu+1 − 1 + βu+1 − 1 − u. The previous inequality together with
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αu+1 ≤ αm + (u+ 1)−m11 and βu+1 ≤ βm + (u+ 1)−m, lead to

L ≤ αm + βm −m. (26)

By symmetry we may again assume that αm ≤ βm. Then (25) can be rewritten as
αm∑

i=m+1

γi ≥
L∑

i=βm+1

γi. (27)

By (26), the number of terms on the left hand side is larger than or equal to the number of terms on the

right hand side. Combining with the monotonicity relations γi ≥ γi+1 1 ≤ i ≤ L−1, and with αm ≤ βm,

inequality (27) follows. Now the proof of (18) is complete.

In order to finalize the proof of relation (12) it remains to show that

s∑
ℓ=0

αℓ+1∑
i=αℓ+1

γi · (∆(µi)−∆(aℓ+1)) +

t∑
ℓ=0

βℓ+1∑
i=βℓ+1

γi · (∆(νi)−∆(aℓ+1)) ≥
u∑

ℓ=0

δℓ+1∑
i=δℓ+1

γi · (∆(ρi)−∆(aℓ+1)).

(28)

Let us denote by Zi the general term in the summation on the right hand side, i.e., Zi = γi · (∆(ρi) −

∆(aℓ+1)), for any 0 ≤ ℓ ≤ u and δℓ + 1 ≤ i ≤ δℓ+1. Likewise, let Ui = γi · (∆(µi)−∆(aℓ+1)) for any

1 ≤ ℓ ≤ s, αℓ+1 ≤ i ≤ αℓ+1, and let Vi = γi · (∆(νi)−∆(aℓ+1)) for any 1 ≤ ℓ ≤ t, βℓ+1 ≤ i ≤ βℓ+1.

The idea of the proof is the following. We will show that each Zi is either 0 or it has a corresponding term

on the left hand side (LHS), which is larger or equal than Zi. Moreover, this correspondence assigns to

each LHS term at most one term on the right hand side. Since all unassigned LHS terms are non-negative,

relation (28) follows.

Let us fix some ℓ and i such that, 0 ≤ ℓ ≤ u and δℓ + 1 ≤ i ≤ δℓ+1. Clearly, if i = δℓ+1 then one

has γi = 0 (when ℓ = u) or ∆(ρi) −∆(aℓ+1) = 0 (when ℓ < u), hence Zi = 0. On the other hand, if

i ̸= δℓ+1, then symbol ρi must be either a symbol from the set {µαℓ+1, · · · , µαℓ+1−1}, or from the set

{νβℓ+1, · · · , νβℓ+1−1}. In the former case, ρi = µp(i) for some index p(i) such that αℓ+1 ≤ p(i) < αℓ+1,

therefore we let Up(i) be the LHS term corresponding to Zi. It is easy to see that p(i) ≤ i, thus γp(i) ≥ γi

by (3). Combining further with the fact that ∆(ρi)−∆(aℓ+1) ≥ 0, one obtains that Up(i) ≥ Zi. Finally, in

the latter case, let q(i) be the index such that ρi = νq(i) and βℓ+1 ≤ q(i) < βℓ+1. It can be easily verified

that q(i) ≤ i, therefore γq(i) ≥ γi. We let Vq(i) be the LHS term corresponding to Zi, and Vq(i) ≥ Zi

holds. With these observations the proof of (28) is complete.

11This relation follows by summing inequalities αi ≤ αi+1 − 1 for u+ 1 ≤ i ≤ m− 1. A similar argument is valid for the

next relation.
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