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Huihui Wu, Student Member, IEEE and Sorina Dumitrescu, Senior Member, IEEE

Abstract—This paper addresses the design of two-stage suc-
cessively refinable unrestricted polar quantizers for bivariate
circularly symmetric sources in the entropy-constrained and
fixed-rate cases. The proposed solutions are globally optimal
when the thresholds of the magnitude quantizers are confined
to finite discretizations of the interval [0,∞). The algorithm
developed for the entropy-constrained case involves a series of
stages including solving the minimum-weight path problem for
multiple node pairs in certain weighted directed acyclic graphs.
The asymptotical time complexity is O(K1K

2
2Pmax), where K1

and K2 are the sizes of the sets of possible magnitude thresholds
of the coarse and refined unrestricted polar quantizers (UPQs),
respectively, while Pmax is an upper bound on the number of
phase levels in any phase quantizer of the coarse UPQ. The
solution algorithm for the fixed-rate case is based on solving
a succession of dynamic programming problems for multiple
coarse quantizer bins. The time complexity in the fixed-rate case
amounts to O(K1K2N

2N1), where N1 is the number of cells
of the coarse UPQ and N is the ratio between the number of
bins of the fine and coarse UPQs. Extensive experimental results
on a bivariate circularly symmetric Gaussian source show the
effectiveness of the proposed schemes.

Index Terms—Unrestricted polar quantization, successively
refinable quantizer, globally optimal algorithm, minimum-weight
path problem, dynamic programming, Monge property.

I. INTRODUCTION

A polar quantizer quantizes the magnitude and the phase of
a two dimensional source vector represented in polar coordi-
nates. The phase quantizer is uniform while the magnitude
quantizer may be nonuniform. Therefore, polar quantizers
represent a natural choice for the quantization of bivariate
sources with circularly symmetric densities, which has been
extensively investigated either for the general case or for the
specific Gaussian case [1]– [17]. In practice, polar quantization
is useful in numerous applications, such as image processing
[6], [10], for the encoding of discrete Fourier transform
coefficients [1], [2], in holographic image processing [9], as
well as for the quantization of sinusoid signals with application
in audio coding [11]. More recently, polar quantization was
also used for wireless receiver design in [14].

Generally, polar quantizers can be divided into two cate-
gories: strictly polar quantizers (SPQs) and unrestricted polar
quantizers (UPQs). In SPQ the phase and the magnitude are
quantized independently, while in UPQ the phase quantizer

H. Wu was with the Department of Electrical and Computer Engineering,
McMaster University, Hamilton, ON L8S 4K1, Canada. He is now with the
Department of Electrical Engineering, Columbia University, New York, NY
10027, USA (e-mail: hw2712@columbia.edu).

S. Dumitrescu is with the Department of Electrical and Computer En-
gineering, McMaster University, Hamilton, ON L8S 4K1, Canada (e-mail:
sorina@mail.ece.mcmaster.ca).

This work was supported in part by an NSERC Discovery Grant.

depends on the magnitude level. The UPQ is superior to
SPQ as shown in [4]. Moreover, the experimental results on
bivariate circularly symmetric Gaussian source in [16] demon-
strate that the entropy-constrained UPQ strictly outperforms
the entropy-constraint scalar quantizer for rates between 0.5
and 2 bits/sample with a gap that can reach over 0.1 dB. The
empirical evidence given in [16] also supports the conclusion
that the performance of the entropy-constrained UPQ is only
0.135 to 0.175 dB away from the asymptotical performance of
the two-dimensional entropy-constrained vector quantizer for
rates ranging between 2 and 6 bits/sample. In the meanwhile,
the implementation complexity of polar quantizers is lower
than that of vector quantizers, as a polar quantizer consists of
two scalar quantizers applied in succession.

A successively refinable quantizer encodes the source into
a sequence of embedded bitstreams, which enables the de-
coder to reconstruct the source in a progressively refinable
manner. Specifically, a coarse reconstruction can be obtained
by decoding the base layer, while the quality of the recon-
struction improves as more refinement layers are decoded. As
a promising technique for broadcasting multimedia to hetero-
geneous devices with fluctuating bandwidth or over unreliable
networks, the study of successively refinable source coding
has drawn significant attention from the research community
[18]– [32]. Notably, the simplified bit plane coding variant
of the successively refinable quantization has been adopted
as the baseline quantization method of the JPEG 2000 image
compression standard [33], [34].

Consequently, it is a matter of interest to investigate the
design of successively refinable UPQ. Up to our knowledge,
paper [12] is the only work addressing the design of suc-
cessively refinable UPQ, where only the fixed-rate case is
considered. The algorithm of [12] takes the optimal two-level
UPQ as the reference UPQ Q(1), and then greedily designs a
sequence of successively refinable UPQs Q(k), k ≥ 2, each
Q(k) consisting of 2k levels (i.e., with rate of k/2 bits/sample).
Specifically, the UPQ Q(k) is constructed based on Q(k−1) by
choosing the optimal refinement for each magnitude level, i.e.,
by determining the method achieving the smallest distortion
between partitioning in two the magnitude cell or doubling the
number of phase levels of the corresponding phase quantizer.
Thus, the design approach of [12] has two shortcomings: 1) it
is greedy placing a higher priority on the optimization of the
coarser UPQs; 2) does not consider the entropy-constrained
case.

This paper proposes algorithms for the optimal design
of successively refinable UPQs with two refinement stages,
referred to as SRUPQs. The proposed solutions overcome the
shortcomings of [12] by considering both the fixed-rate and
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entropy-constrained cases and by aiming at the construction
of any SRUPQ which is optimal in the sense of being situated
on the lower convex hull of the set of rate-distortion tuples.

In order to apply the algorithms, we first choose two finite
sets A and B, A ⊆ B, which discretize the interval [0,∞). We
design globally optimal SRUPQs under the constraint that the
magnitude quantizer thresholds of the coarse and fine UPQs
are drawn from the sets A and B, respectively. Intutively, the
finer the discretizations provided by A and B, the closer the
performance of the proposed constructions is to the globally
optimal SRUPQs without any constraints on the choice of the
magnitude thresholds.

The optimization problem for the entropy-constrained
SRUPQ (EC-SRUPQ) is formulated as the minimization of
a weighted sum of the distortions and entropies of the coarse
and fine component UPQs. This formulation further enables
the approach of converting the cost function (after optimizing
the portion of the refined UPQ and the phase quantizers
corresponding to each possible coarse magnitude bin) to a
summation of the costs of individual magnitude bins of the
coarse UPQ. Therefore, this problem can be modeled as a
minimum-weight path (MWP) problem in a certain weighted
directed acyclic graph (WDAG), where each edge represents
a possible bin of the coarse magnitude quantizer. To achieve
this goal, the proposed solution proceeds in a series of steps
including solving the MWP problems for multiple node pairs
in another WDAG, which corresponds to the refined UPQ.
This process is aided by an efficient algorithm for evaluating
the optimal number of phase levels for all possible magni-
tude bins of the refined UPQ. The overall running time of
the solution to the optimal EC-SRUPQ design problem is
O(K1K

2
2Pmax), where K1 and K2 are the sizes of the sets

A and B, respectively, and Pmax is an upper bound on the
number of phase levels of the coarse UPQ.

Another contribution of this work lies in the optimal design
of fixed-rate SRUPQ (FR-SRUPQ). In the fixed-rate case, the
total number of quantization bins N1 and N2 of the coarse
and fine UPQs, respectively, are fixed. The proposed solution
algorithm allows for the design of the optimal FR-SRUPQ for
any values of N1 and N2. The algorithm involves solving a
series of dynamic programming problems, where each problem
is similar in spirit to the single-resolution fixed-rate UPQ
(FRUPQ) design problem [17]. The overall time complexity
amounts to O(K1K2N

2N1), where N = N2/N1, considering
that the cost function corresponding to the fine UPQ satisfies
the so-called Monge property [17].

We point out that recently we have proposed efficient
algorithms for the optimal design of single-resolution entropy-
constrained UPQ (ECUPQ) [16] and of FRUPQ [17]. The
aforementioned algorithms also ensure global optimality in
the case when the thresholds of the magnitude quantizers are
restricted to a finite discretization of the interval [0,∞). The
algorithm of [16] relies on solving a single MWP problem in a
certain WDAG in conjunction with a procedure to compute the
edge weights. The algorithm proposed in the current work for
optimal EC-SRUPQ design is much more involved and needs
to solve the MWP problem for multiple node pairs. As a result,
it also has a higher time complexity than the algorithm of [16],

the latter algorithm running in O(K2 +KP0) time, where K
is the size of the predefined set of possible thresholds and P0

is the maximum number of phase levels in a phase quantizer.
Similar observations can be made for the FR-SRUPQ case. The
algorithm of [17] for optimal FRUPQ design solves a dynamic
programming problem, which is only one component in the
proposed FR-SRUPQ design framework. As a consequence,
the asymptotic running time also raises from O(KN2

0 ) in [17],
where N0 is the number of quantizer levels for the single-
resolution FRUPQ, to O(K1K2N

2N1) for FR-SRUPQ.
It is also important to discuss the relation between this

work and the work on the design of successively refinable
scalar quantizers (SRSQ) [22]–[25], [27]. The SRSQ design
algorithms in the aforementioned work also include steps
resembling solving the MWP problem for multiple node pairs
in a WDAG. The connection/similarity with the SRSQ stems
from the existence of the embedded partitions of the magnitude
quantizers in the SRUPQ. On the other hand, as the SRUPQ is
essentially a two-dimensional quantizer, the need to optimize
the phase quantizer for each magnitude bin adds an additional
level of complexity to the design problem. More specifically,
it makes the computation of the edge weights more involved
than in the SRSQ case.

We point out that the proposed EC-SRUPQ design algorithm
was first presented in the conference paper [35]. In the current
work, the description of the proposed algorithm is more
refined. This paper additionally includes some key theoret-
ical results (i.e., Propositions 1, 4 and 5) which imply the
finiteness of the number of phase regions in the optimal EC-
SRUPQ. Besides that, an experimental comparison between
the proposed EC-SRUPQ design and the single-description
ECUPQ scheme of [16] is provided. Moreover, this work
also proposes a design algorithm for the FR-SRUPQ case,
which was not included in [35] and which differs significantly
from the entropy-constrained case. Accordingly, substantial
experimental comparisons for the proposed FR-SRUPQ design
are discussed as well.

The rest of the paper is organized as follows. The next
section introduces the necessary definitions and notations.
Section III formulates the problem of optimal EC-SRUPQ
design and presents the proposed solution algorithm. The
formulation of the optimal FR-SRUPQ design problem and its
solution are presented in Section IV. The experimental results
and their discussion follow in Section V and finally Section
VI concludes this paper.

II. DEFINITIONS AND NOTATIONS

Consider a bivariate random variable with the following
circularly symmetric density, as a function of the polar co-
ordinates r and θ,

p(r, θ) =
1

2π
g(r), 0 ≤ r <∞, 0 ≤ θ < 2π.

Note that g(r) is the marginal probability density function
(pdf) of the magnitude variable, while the phase variable is
uniformly distributed over the interval [0, 2π). Additionally,
notice that the magnitude and phase variables are independent.
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An example of such a variable is a two-dimensional memo-
ryless Gaussian vector (X1, X2), i.e., where X1 and X2 are
independent and have identical marginal pdfs. The quantiza-
tion of Gaussian variables is interesting since it has numerous
practical applications. For example, the joint distribution of
discrete Fourier transform coefficients of a stationary data
sequence is asymptotically Gaussian [2]. Also, the probability
density function of the prediction error signal in a differential
pulse code modulation coder for moving pictures can be
modeled as Gaussian [36].

For any integer n ≥ 2, an ascending n-sequence is an n-
tuple r = (r0, r1, r2, · · · , rn−1), with ri ∈ [0,∞), for 0 ≤
i ≤ n − 2, and rn−1 ∈ [0,∞], where r0 < r1 < r2 < · · · <
rn−2 < rn−1. For any n ≥ 2, a ∈ [0,∞) and b ∈ [0,∞], with
a < b, let Sn(a, b) denote the set of all ascending n-sequences
such that r0 = a and rn−1 = b.

An SRUPQ can be represented as an ordered pair of
embedded UPQs Q = (Q1, Q2), where Q1 is the coarse UPQ,
while Q2 is the refined UPQ.

Let M1 denote the number of magnitude levels of UPQ Q1

and let r = (r0, r1, · · · , rM1
) denote the ascending sequence

corresponding to the thresholds of the magnitude quantizer.
For 1 ≤ i ≤ M1, let Ci denote the i-th cell (or bin) of the
magnitude quantizer, i.e., Ci = {r|ri−1 ≤ r < ri}. Further,
denote P = (P1, P2, · · · , PM1), where Pi is the number of
phase regions of the phase quantizer corresponding to Ci, 1 ≤
i ≤M1. Each phase quantizer is uniform, consequently, each
quantization bin of the UPQ Q1 can be represented as

R(i, k) =

{
reθ|ri−1 ≤ r < ri, (k − 1)

2π

Pi
≤ θ < k

2π

Pi

}
,

for 1 ≤ i ≤ M1 and 1 ≤ k ≤ Pi, where  is the imaginary
unit (i.e., 2 = −1). Clearly, the total number of quantization
bins of Q1 is N(Q1) =

∑M1

i=1 Pi. In this work, we use the
squared error as a distortion measure. It is known that, for each
1 ≤ i ≤ M1 and 1 ≤ k ≤ Pi, the reconstructed magnitude-
phase pair which minimizes the distortion is Aieθi,k given by
[1], [4]

θi,k = (2k − 1)π/Pi,

Ai = sinc
(

1
Pi

)
x(Ci), (1)

where sinc( 1
Pi

) = sin(π/Pi)
π/Pi

and for C ⊆ [0,∞), x(C) =∫
C
rg(r)dr∫

C
g(r)dr

.
The magnitude partition of the refined UPQ Q2 is em-

bedded in the partition r. This means that each cell Ci,
for 1 ≤ i ≤ M1, is further partitioned into M2,i cells of
the magnitude quantizer for Q2. Let us denote by si =
(si,0, si,1, · · · , si,M2,i

) ∈ SM2,i+1(ri−1, ri), the ascending
sequence of thresholds for this refined partition. We will
use the notation Ci,j = [si,j−1, si,j) for 1 ≤ i ≤ M1,
and 1 ≤ j ≤ M2,i. Let us also denote by s̄ the M1-tuple
(s1, · · · , sM1

), and by M2 the M1-tuple (M2,1, · · · ,M2,M1
).

The fact that Q2 is a refinement of Q1 implies that the
number of phase regions of the phase quantizer corresponding
to magnitude level Ci,j , denoted by P̃i,j , is a multiple of
Pi, i.e., P̃i,j = PiPi,j , for some Pi,j ∈ Z+, where Z+

denotes the set of positive integers. Further, let us denote

Pi = (Pi,1, Pi,2, · · · , Pi,M2,i), 1 ≤ i ≤M1, and denote by P̄
the M1-tuple (P1, · · · ,PM1). Accordingly, each quantization
bin of the UPQ Q2 can be represented as

R(i, j, k′) ={
reθ|si,j−1 ≤ r < si,j , (k

′ − 1)
2π

P̃i,j
≤ θ < k′

2π

P̃i,j

}
,

for 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,i and 1 ≤ k′ ≤ P̃i,j . The
total number of quantization bins of Q2 is then N(Q2) =∑M1

i=1

∑M2,i

j=1 P̃i,j . The optimal reconstructed magnitude-phase
pair, for each 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,i and 1 ≤ k′ ≤ P̃i,j
is Ai,jeθi,j,k′ , where

θi,j,k′ = (2k′ − 1)π/(P̃i,j),

Ai,j = sinc
(

1
P̃i,j

)
x(Ci,j). (2)

Notice that the tuples r, P, s̄ and P̄ completely specify the
SRUPQ.

As pointed out earlier, we use the squared error as a
distortion measure. Therefore, the expected distortion (per
sample) of Q1 and Q2 can be expressed, respectively, as [1],
[4], [6]

D(Q1) =
1

2

(∫ ∞
0

r2g(r)dr −
M1∑
i=1

A2
i q(Ci)

)
, (3)

D(Q2) =
1

2

∫ ∞
0

r2g(r)dr −
M1∑
i=1

M2,i∑
j=1

A2
i,jq(Ci,j)

 , (4)

where for C ⊆ [0,∞), q(C) =
∫
C
g(r)dr.

Let R(Q1) and R(Q2) denote the rate (in bits/sample) of
Q1 and Q2, respectively. In the EC-SRUPQ case, the rates can
be expressed as [16]

R(Q1) =
1

2

M1∑
i=1

q(Ci)(− log2 q(Ci) + log2 Pi), (5)

R(Q2) =
1

2

M1∑
i=1

M2,i∑
j=1

q(Ci,j) (− log2 q(Ci,j) + log2(PiPi,j)) .

(6)

In the FR-SRUPQ case we have

R(Q1) =
1

2
log2N(Q1), R(Q2) =

1

2
log2N(Q2). (7)

As mentioned in the introduction, when designing the
SRUPQs we will impose the thresholds of the coarse and fine
magnitude quantizers to take values in some finite sets A and
B, respectively, where A ⊆ B. These sets can be obtained
by finely discretizing a large enough interval [0, B], chosen
such that the probability that the magnitude r is larger than
B to be sufficiently small. Let A = {a1, a2, · · · , aK1

} and
B = {b1, b2, · · · , bK2

}, where ai < ai+1, for 1 ≤ i ≤ K1−1,
and bj < bj+1, for 1 ≤ j ≤ K2−1. Additionally, let us denote
a0 = b0 = 0, aK1+1 = bK2+1 =∞, Ā = A∪{a0, aK1+1} and
B̄ = B∪{b0, bK2+1}. Since Ā ⊆ B̄ it follows that there is an
injective mapping ν : {0, 1, · · · ,K1+1} → {0, 1, · · · ,K2+1}
such that ai = bν(j).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2019.2894808

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4

III. OPTIMAL EC-SRUPQ DESIGN ALGORITHM

This section first presents the optimal EC-SRUPQ design
problem followed by the description of the major steps of
solution algorithm, after which the details of the solution at
each step are exposed.

A. Problem Formulation

Let us denote by Q(A,B) the set of all SRUPQs such that
the thresholds ri are from the set Ā and the thresholds si,j are
from the set B̄. Following prior work on entropy-constrained
quantization [11], [27], [37] we formulate the problem of
optimal EC-SRUPQ design as the minimization of a weighted
sum of distortions and entropies, i.e.,

min
Q∈Q(A,B)

LEC(Q), (8)

where

LEC(Q) , φD(Q1)+(1−φ)D(Q2)+λ1R(Q1)+λ2R(Q2),

for some fixed 0 < φ < 1 and λ1, λ2 > 0, and with R(Q1)
and R(Q2) given in (5) and (6). It is known [38], [39] that
any EC-SRUPQ Q ∈ Q(A,B) for which the quadruple
(R(Q1), R(Q2), D(Q1), D(Q2)) lies on the lower boundary
of the convex hull of the set of all such quadruples is a solution
to problem (8) for some choice of φ, λ1 and λ2.

B. Major Steps of The Solution Algorithm

In this subsection, by analyzing the cost function, we will
see how the problem can be split into a series of intermediate
optimization problems.

Notice that the first terms in (3) and in (4) are both constant,
therefore we can remove them from the cost function. Further,
by taking into account relations (1), (2), (5) and (6), problem
(8) becomes equivalent to minimizing FEC(r,P, s̄, P̄), which
is given in (9) at the bottom of this page.

By examining the cost function FEC(r,P, s̄, P̄) we notice
that, for each pair (i, j), the variable Pi,j appears only in the
term η(Ci,j , Pi, Pi,j). Thus, Pi,j can be optimized separately
for fixed Ci,j and Pi. We do not know beforehand what the
final Ci,j and Pi will be, but we can compute the optimal Pi,j
for each possible choice of Ci,j , i.e., for each interval [bm, bn),
0 ≤ m < n ≤ K2 + 1, and for each possible choice of Pi,
i.e., for each positive integer P . Let us denote by P ∗[bm,bn),P

this optimal Pi,j , i.e.,

P ∗[bm,bn),P = arg min
P ′∈Z+

η([bm, bn), P, P ′), (10)

where Z+ denotes the set of positive integers1. Note that, if
there are more minimizers in (10), the smallest one is taken.
Further, let

η∗([bm, bn), P ) = η([bm, bn), P, P ∗[bm,bn),P ). (11)

Now replace in FEC(r,P, s̄, P̄) Pi,j by P ∗Ci,j ,Pi
, for each 1 ≤

i ≤M1 and 1 ≤ j ≤M2,i, and denote by F1,EC(r,P, s̄) the
expression obtained. In other words,

F1,EC(r,P, s̄) ,
1

2

M1∑
i=1

ϕ(Ci, Pi) +

M2,i∑
j=1

η∗(Ci,j , Pi)

 .

Since FEC(r,P, s̄, P̄) ≥ F1,EC(r,P, s̄), problem (8) can
be reduced to minimizing F1,EC(r,P, s̄). The expression of
F1,EC(r,P, s̄) indicates that, if the values η∗(Ci,j , Pi) are
known for each possible pair (Ci,j , Pi), then the partition of
Ci into cells Ci,j can be optimized separately for each pair
(Ci, Pi). We will denote by s∗(Ci, Pi) this optimal partition.
We can compute this optimal partition for each possible choice
of Ci, i.e., for each interval [au, av), 0 ≤ u < v ≤ K1+1, and
for each possible choice of Pi, i.e., for each positive integer
P . In other words, we can find

s∗([au, av), P ) = arg min
M,s

M∑
j=1

η∗([sj−1, sj), P ), (12)

where s = (s0, · · · , sM ) ∈ SM+1(au, av) ∩ B̄M+1. Let also
γ∗([au, av), P ) denote the cost obtained at optimality in (12),
i.e.,

γ∗([au, av), P ) =

M∗∑
j=1

η∗([s∗j−1, s
∗
j ), P ), (13)

where s∗([au, av), P ) = (s∗0, · · · , s∗M∗). By replacing in
F1,EC(r,P, s̄) each si by the optimal partition s∗(Ci, Pi), the
cost becomes only a function of r and P and we denote it by
F2,EC(r,P), i.e.,

F2,EC(r,P) ,
1

2

M1∑
i=1

(ϕ(Ci, Pi) + γ∗(Ci, Pi)) .

Now it can be seen that, if the values γ∗(Ci, Pi) are known
for all possible pairs (Ci, Pi), then the optimal Pi can be
found independently for each Ci. Thus, we can evaluate the
optimal Pi for each possible choice of Ci, i.e., for each interval

1The fact that the minimum in (10) exists will be proved in the following
subsection as Proposition 1.

FEC(r,P, s̄, P̄) ,
1

2

M1∑
i=1

(
q(Ci)

(
−φ sinc2

(
1

Pi

)
x2(Ci)− λ1 log2 q(Ci) + (λ1 + λ2) log2 Pi

)
︸ ︷︷ ︸

ϕ(Ci,Pi)

+

M2,i∑
j=1

q(Ci,j)

(
−(1− φ) sinc2

(
1

PiPi,j

)
x2(Ci,j) + λ2 (− log2 q(Ci,j) + log2 Pi,j)

)
︸ ︷︷ ︸

η(Ci,j ,Pi,Pi,j)

)
.

(9)
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[au, av), 0 ≤ u < v ≤ K1+1. Let P ∗[au,av) denote this optimal
Pi, i.e.,

P ∗[au,av) = arg min
P∈Z+

(ϕ([au, av), P ) + γ∗([au, av), P )) ,

(14)
where the smallest one is taken if there are multiple minimiz-
ers2. By replacing Pi in F2,EC(r,P) with P ∗Ci

, we obtain a
new cost function which only depends on r,

F3,EC(r) ,
1

2

M1∑
i=1

(
ϕ(Ci, P

∗
Ci

) + γ∗(Ci, P
∗
Ci

)
)
.

Thus, the optimization problem reduces to

min
M1,r

F3,EC(r)

subject to ri ∈ A, 1 ≤ i ≤M1 − 1.
(15)

The above discussion suggests the following procedure to
solve problem (8). Note that Pmax is an integer guaranteed
to be higher than the number of phase levels in any phase
quantizer of the coarse UPQ and it will be discussed in the
next section.
Step 1) For each pair (bm, bn), 0 ≤ m < n ≤ K2 + 1,

and each positive integer P ≤ Pmax, compute P ∗[bm,bn),P

defined in (10).
Step 2) For each pair (au, av), 0 ≤ u < v ≤ K1+1, and each

positive integer P ≤ Pmax, compute the best partition
s∗([au, av), P ) defined in (12) and the corresponding cost
γ∗([au, av), P ) given in (13).

Step 3) For each pair (au, av), 0 ≤ u < v ≤ K1 +1, compute
P ∗[au,av) defined in (14).

Step 4) Solve problem (15).
Next we present the details for solving each step starting with
Step 1.

C. Solution for Step 1

For any y > 0, denote f(y) = −sinc2( 1
y ) and h(y) =

ln y. For fixed P ∈ Z+, consider the following minimization
problem

min
P ′∈Z+

(f(PP ′) + δh(PP ′)), (16)

where δ > 0. We point out that the optimal solution to (16)
will not be changed if we replace h(PP ′) by h(P ′), since
h(PP ′) = h(P )+h(P ′) and P is fixed. Then it can be easily
verified that P ∗[bm,bn),P is the optimal solution to problem (16)
for δ = λ2

(1−φ)x([bm,bn))2 ln 2 .
Proposition 1: For any δ > 0 there is an integer P ′∗δ

achieving the minimum in (16).
Proof: For any positive integer m, let S(m) denote the

point in the plane having coordinates (h(m), f(m)). Addition-
ally, for any integer P ≥ 1, let UP = {S(PP ′)|P ′ ∈ Z+}, let
ÛP denote the lower boundary of the convex hull of UP and
let P̂P denote the set of integers P ′ such that S(PP ′) is in
ÛP . It is known [38], [39] that some value P ′∗δ minimizes the
cost in (16) if and only if the point P ′∗δ ∈ P̂P and the line of

2The proof of the fact that the minimum in (14) exists follows the same
lines as the proof of Proposition 5.

slope −δ passing through S(PP ′∗δ ) is a support line for UP .
The latter condition is equivalent to

lslopeP (P ′∗δ ) ≤ −δ ≤ rslopeP (P ′∗δ ), (17)

where, for any P ′ ∈ P̂P , lslopeP (P ′) (respectively,
rslopeP (P ′)) denotes the slope of the convex hull edge of
ÛP situated to the left (respectively, right) of S(PP ′), if such
an edge exists, while lslopeP (1) = −∞. Further, the fact that
a value P ′∗δ satisfying relations (17) exists follows from the
fact that δ > 0 and that the slopes of the convex hull edges
of ÛP approach 0 as the abscissa approaches infinity, result
which is proved in the appendix (stated as Lemma 1).

The following proposition characterizes the set P̂P .

Proposition 2: P̂P =

{
Z+ \ {2}, if P = 1,

Z+, if P ≥ 2.
Proof: It was proved in [16, Proposition 1] that P̂1 =

Z+ \ {2}. Now consider the case P ≥ 2. If PP ′ ≥ 3, then
PP ′ ∈ P̂1, therefore P ′ ∈ P̂P . This implies that for P ≥ 3
we have P̂P = Z+, while for P = 2 we have Z+ \{1} ⊆ P̂P .
The fact that 1 ∈ P̂2 can be verified easily concluding the
proof.
The monotonicity property established by the following result
will be exploited when computing the value P ∗[bm,bn),P . Al-
though its proof is similar to the proof of [16, Proposition
2], we include it here for the purpose of clarity and self-
containment.

Proposition 3: For any integers m,m′, n, n′ such that 0 ≤
m < n ≤ K2 + 1, 0 ≤ m′ < n′ ≤ K2 + 1, m ≤ m′ and
n ≤ n′, and for any P ∈ Z+ the following inequality holds

P ∗[bm,bn),P ≤ P
∗
[bm′ ,bn′ ),P

. (18)

Proof: The discussion at the beginning of this subsection
implies that

lslopeP (P ∗[bm,bn),P ) ≤ − λ2

(1− φ)x([bm, bn))2 ln 2

≤ rslopeP (P ∗[bm,bn),P ).
(19)

Recall that x([bm, bn)) denotes the centroid of the interval
[bm, bn) with respect to the pdf g(r). It is known that
x([bm, bn)) is a non-decreasing function of both bm and bn3.
Then, under the conditions specified in the hypothesis, it
follows that

0 < x([bm, bn)) ≤ x([bm′ , bn′)),

which further leads to

− λ2

(1− φ)x([bm, bn))2 ln 2
≤ − λ2

(1− φ)x([bm′ , bn′))2 ln 2
,

since λ2, ln 2 and 1 − φ are positive. The above inequality,
together with relation (19) and with the fact that the slopes of
the lower convex hull edges are non-decreasing as we proceed
from left to right, imply inequality (18). This proves the claim.

As a consequence, Algorithm 1 in [16] can be utilized to
determine all values P ∗[bm,bn),P , for fixed P , in O(K2P

′
P,max+

K2
2 ) time, where P ′P,max = P ∗[bK2

,bK2+1),P is the maximum of

3A proof of this result can be found in [40].
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P ∗[bm,bn),P over all intervals [bm, bn), in virtue of Proposition
3. Performing this for all P, 1 ≤ P ≤ Pmax, amounts to
O(K2

∑Pmax

P=1 P ′P,max+K2
2Pmax) operations. In order to find

a closed form for the expression of the running time, the
following result will be useful. Its proof is deferred to the
appendix.

Proposition 4: For each integer P ≥ 2, the following holds

P ′P,max ≤
P ′1,max
P

+ 1.

The following proposition clarifies how to compute Pmax.
Its proof is deferred to the appendix.

Proposition 5: Consider Pmax = max{P ′1,max + 1, P ′′},
where P ′′ is the solution to problem (16) for P = 1 and
δ = λ1

φx([bK2
,bK2+1)2 ln 2 . Then there is an optimal EC-SRUPQ

such that the phase quantizer corresponding to any magnitude
level of the coarse UPQ has no more than Pmax levels.

Further, by using Pmax defined in Proposition 5 and aided
by Proposition 4 one obtains

Pmax∑
P=1

P ′P,max ≤ P ′1,max
Pmax∑
P=1

1

P
+ Pmax

≤ P ′1,max(lnPmax + 1) + Pmax

≤ Pmax(lnPmax + 2),

where the second inequality follows from the known up-
per bound on the partial sum of the Harmonic series, i.e.,∑Pmax

P=1
1
P ≤ 1 +

∫ Pmax

1
1
P dP = lnPmax + 1. Thus, the

running time of Step 1 becomes O(K2Pmax(lnPmax+K2)).
If lnPmax < K2, which is the case in our experiments, the
time complexity amounts to O(K2

2Pmax).

D. Solution for Steps 2-4

For convenience we will jump now to the discussion of
Step 4. We will show that problem (15) is equivalent to an
MWP problem in the WDAG G = (VA, EA, w) where VA =
{0, 1, · · · ,K1 + 1} is the vertex set and EA = {(u, v) ∈ V 2

A |
0 ≤ u < v ≤ K1 + 1} denotes the edge set. The weight of
each edge (u, v) ∈ EA is w(u, v) defined as

w(u, v) , ϕ([au, av), P
∗
[au,av)) + γ∗([au, av), P

∗
[au,av)).

The source node in this graph is 0 and the final node is K1+1.
A path in the graph is any sequence of connected edges. Its
length is the number of component edges. The weight of a path
equals the sum of the weights of its edges. The MWP problem
in this graph is the problem of finding the path of minimum
weight from the source to the final node. Each ascending
sequence r ∈ SM1+1(0,∞), with components in Ā, can be
associated the path (z0, z1, · · · , zM1) from the source to the
final node with azi = ri, for each 0 ≤ i ≤M1. In other words,
the i-th edge on this path, which is (zi−1, zi), corresponds to
the i-th magnitude level [ri−1, ri). It can be easily seen that
this correspondence is one-to-one and that the weight of the
path equals F3,EC(r), which is the optimization objective in
(15). This observation implies that problem (15) is equivalent
to the MWP problem in the WDAG G. If all edge weights are
available, which is the case since they were computed at Step

3, this MWP problem can be solved in O(|V |+|E|) = O(K2
1 )

operations.
Next we will consider the problem at Step 2. We will

show that for each P , the problem is equivalent to mul-
tiple MWP problems in another WDAG. For each positive
integer P , construct the WDAG GP = (V,E,wP ), where
V = {0, 1, · · · ,K2 + 1} is the vertex set and E = {(m,n) ∈
V 2|0 ≤ m < n ≤ K2 + 1} is the edge set. For each edge
(m,n) ∈ E define the weight wP (m,n) as

wP (m,n) , η∗([bm, bn), P ),

where η∗([bm, bn), P ) is defined in (11). Let us fix an ar-
bitrary pair (u, v), 0 ≤ u < v ≤ K1 + 1, and consider
finding the optimal partition s∗([au, av), P ) of the interval
[au, av), defined in (12). Recall that [au, av) = [bν(u), bν(v)).
Consider an arbitrary partition s of [au, av), consisting of
M cells with thresholds in B̄. Then s corresponds to the
path (t0, · · · , tM ) in GP from node ν(u) to ν(v) with
btj = sj , 0 ≤ j ≤ M . Clearly, the weight of the path equals∑M
j=1 η

∗([sj−1, sj), P ), which is the cost function in (12).
Therefore, finding s∗([au, av)P ) is equivalent to finding the
MWP path from ν(u) to ν(v). In order to find the MWP from
ν(u) to ν(v) for all v satisfying u < v ≤ K1 + 1, we will
solve the single source MWP problem corresponding to the
source ν(u). This is the problem of finding the MWP from
the source to any other graph node reachable from the source
and can be solved in O(|V | + |E|) = O(K2

2 ) time if each
graph edge is computable in constant time. Doing so for each
u and P amounts to O(K1K

2
2Pmax) operations.

The problem at Step 3 is straightforward and can be solved
in O(K2

1Pmax) operations. Additionally, the cumulative prob-
abilities, first and second order moments corresponding to
elements of the set B̄ are precomputed and stored in a
preprocessing step as in [16], as the set B̄ is finer than Ā, and
this requires only O(K2) operations. Then each x([bm, bn)),
x([au, av)), q([bm, bn)) and q([au, av)) can be evaluated in
constant time.

In conclusion, problem (8) can be solved in
O(K2Pmax(K1K2 + lnPmax + K2)) time. Note that if
lnPmax + K2 ≤ K1K2, which we found to be true in our
experiments, then the time complexity of the solution is
O(K1K

2
2Pmax).

The pseudocode of the solution algorithm to problem (8)
is presented in Algorithm 1. We point out that for each P ,
W (m,n, P ) denotes the minimum weight of the MWP from
node m to node n in GP , which is computed at Step 2,
while ε(m,n, P ) records the second last node on this path.
Moreover, for the problem at Step 4, we denote by Ŵ (v) the
weight of the MWP from the source node 0 to node v in
G, and by ε(v) the node preceding v on this optimal path.
At the end, the MWPs corresponding to the coarse and fine
UPQs can be traced back by utilizing the values of ε(v) and
ε(ν(u), ν(v), P ∗[au,av)), respectively.

IV. OPTIMAL FR-SRUPQ DESIGN ALGORITHM

This section first presents the optimal FR-SRUPQ design
problem followed by the solution algorithm based on dynamic
programming.
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Algorithm 1: Solution algorithm for problem (8).
Preprocessing Stage
begin

/∗ Step 1 ∗/
for P = 1 to Pmax do

for n = 1 to K2 + 1 do
P ∗[bn−1,bn),P :=

min arg minP ′∈P̂P
η([bn−1, bn), P, P ′)

W (n− 1, n, P ) := wP (n− 1, n)
ε(n− 1, n, P ) := n− 1
for m = n− 2 down to 0 do

P ∗[bm,bn),P :=
min arg min

P∗
[bm,bn−1),P

≤P ′≤P∗
[bm+1,bn),P

η([bm, bn), P, P ′)

W (m,n, P ) := wP (m,n)
ε(m,n, P ) := m

/∗ Step 2 ∗/
for P = 1 to Pmax do

for u = 0 to K1 do
for v = u+ 1 to K1 + 1 do

for k = ν(u) + 1 to ν(v)− 1 do
if W (ν(u), ν(v), P ) >
W (ν(u), k, P ) +W (k, ν(v), P ) then
W (ν(u), ν(v), P ) :=
W (ν(u), k, P ) +W (k, ν(v), P )
ε(ν(u), ν(v), P ) := k

/∗ Steps 3 and 4 ∗/
Ŵ (0) = 0
for u = 0 to K1 do

for v = u+ 1 to K1 + 1 do
for P = 1 to Pmax do

Evaluate γ∗([au, av), P ) using (13)
Evaluate P ∗[au,av) using (14)

if
(
Ŵ (u) + w(u, v) < Ŵ (v)

)
then

Ŵ (v) := Ŵ (u) + w(u, v)
ε(v) := u

Restore the vectors r and P corresponding to the coarse
UPQ Q1

Restore the vectors s̄ and P̄ corresponding to the fine UPQ
Q2

A. Problem Formulation

In the fixed-rate case, according to (7), the rates R(Q1)
and R(Q2) are determined by the number of quantization
cells N(Q1) and N(Q2), respectively. Therefore, the prob-
lem of optimal FR-SRUPQ design can be formulated as the
constrained problem of minimizing a weighted sum of the
distortions with constraints on the number of quantizer levels,
i.e.,

min
M1,r,P,s̄,P̄

φD(Q1) + (1− φ)D(Q2)

subject to
M1∑
i=1

Pi = N1,

M2,i∑
j=1

Pi,j = N,

ri ∈ A, si,j ∈ B, 1 ≤ i ≤M1 − 1, 1 ≤ j ≤M2 − 1,

(20)

for fixed 1 < φ < 1, where N1 and N2 = N1N are the
two target values for the numbers of quantization cells of
Q1 and Q2, respectively. Recall that R(Qi) = 1

2 log2Ni
represents the rate (bits/sample) of UPQ Qi, i = 1, 2. The
constraint

∑M2,i

j=1 Pi,j = N is motivated by the fact that the
value log2N = log2

N2

N1
is actually the amount of extra bits

appended to each binary index output by the coarse quantizer
Q1 to obtain an index of the fine quantizer Q2.

B. Dynamic Programming Solution

Since the first terms in (3) and (4) are both constant,
problem (20) is equivalent to minimizing FFR(r,P, s̄, P̄),
where

FFR(r,P, s̄, P̄) ,
1

2

M1∑
i=1

(
−q(Ci)φ sinc2

(
1

Pi

)
x2(Ci)︸ ︷︷ ︸

ϕ′(Ci,Pi)

+

(1− φ)

M2,i∑
j=1

(
− q(Ci,j) sinc2

(
1

PiPi,j

)
x2(Ci,j)

)
︸ ︷︷ ︸

ξ(Ci,Pi,si,Pi)

)
.

(21)
It can be noticed from the above cost function that
ξ(Ci, Pi, si,Pi) can be optimized separately for fixed Ci and
Pi. Let s∗(Ci, Pi) denote the optimal partition si and let
P∗(Ci, Pi) denote the optimal M -tuple Pi. We can compute
them for every possible choice of Ci, i.e., for every interval
[au, av), 0 ≤ u < v ≤ K1+1, and for every possible choice of
Pi, i.e., for every integer P, 1 ≤ P ≤ N1. In other words, we
can find s∗([au, av), P ) and P∗([au, av), P ), which represent
the solution of the following optimization problem

min
M,s,P′

ξ([au, av), P, s,P
′)

subject to
M∑
j=1

P ′j = N, P′ ∈ ZM+ ,

s ∈ SM+1(au, av) ∩ B̄M+1.

(22)

Further, let ξ∗([au, av), P ) denote the cost achieved at opti-
mality in problem (22). If we replace in (21) si and Pi by their
optimal counterparts, the new cost becomes only a function of
r and P, i.e.,

F1,FR(r,P) ,
1

2

M1∑
i=1

(ϕ′(Ci, Pi) + (1− φ)ξ∗(Ci, Pi)) ,

and problem (20) reduces to solving

min
M1,r,P

F1,FR(r,P)

subject to
M1∑
i=1

Pi = N1, P ∈ ZM1
+ ,

r ∈ SM1+1(0,∞) ∩ ĀM1+1.

(23)

We conclude that the solution to problem (20) can be broken
into the following two steps.
Step 1) For each pair (au, av), 0 ≤ u < v ≤ K1 + 1, and

each positive integer P ≤ N1, compute s∗([au, av), P ),
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P∗([au, av), P ) and ξ∗([au, av), P ) by solving problem
(22).

Step 2) Solve problem (23).
Next we discuss the problem at the first step. We will

show that problem (22) is similar to the problem of optimal
fixed-rate UPQ (FRUPQ) design treated in [17]. To see this,
first denote for each positive integers P and P ′ and for each
interval [bm, bn), 0 ≤ m < n ≤ K2 + 1,

ωP,P ′(bm, bn) , −sinc2

(
1

PP ′

)
(x[bm, bn))

2
q([bm, bn)).

Then the cost in (22), i.e., ξ([au, av), P, s,P
′), equals∑M

j=1 ωP,P ′j (sj−1, sj), which can be regarded as a function
of the partition s and the tuple of integers P′. Therefore, we
will denote it by OP (s,P′), i.e.,

OP (s,P′) ,
M∑
j=1

ωP,P ′j (sj−1, sj).

Thus, problem (22) can be rewritten as

min
M,s,P′

OP (s,P′)

subject to
M∑
j=1

P ′j = N, P′ ∈ ZM+ ,

s ∈ SM+1(au, av) ∩ B̄M+1.

(24)

Like in the optimal FRUPQ design problem of [17], we have
to optimize a magnitude partition s and a tuple of positive
numbers P′ with a fix sum, where each component of P′

can be regarded as the number of phase levels for the phase
quantizer corresponding to a magnitude cell. This can be
solved using dynamic programming. In order to do so we
have to define some subproblems. Namely, for each integers
u, P , n and k such that 1 ≤ P ≤ N1, 0 ≤ u ≤ K1 + 1,
ν(u) ≤ n ≤ K2 + 1 and 1 ≤ k ≤ N , denote by PP,u(n, k),
the problem obtained by replacing in (24) av by bn and N
by k. Let ÔP,u(n, k) denote the value of the cost function of
PP,u(n, k) at optimality. Thus, with the new notation, problem
(24) is PP,u(ν(v), N).

As in [17], the solution algorithm relies on the following
recurrence relation

ÔP,u(n, k) ,

min
0≤t<k

min
ν(u)≤m<n

(
ÔP,u(m, t) + ωP,k−t(bm, bn)

)
,

(25)

where ÔP,u(ν(u), 0) = 0 and ÔP,u(ν(u), t) = ÔP,u(m, 0) =
∞, for t > 0 and m ≥ 1.

We point out that for fixed P and u, the straightforward
dynamic programming solution computes all ÔP,u(n, k) for
n increasing from ν(u) to K2 + 1 and for k increasing from
1 to N , by solving (25) for each (n, k). This process takes
O(K2

2N
2) time, as there are O(K2N) pairs (k, n) in total and

solving (25) for one pair (n, k) requires O(K2N) time. On
the other hand, as in [17], one can exploit the Monge property
to reduce the time complexity to O(K2N

2). The proof of this
fact follows very closely the development in [17, Section IV],
therefore we omit it. Finally, the procedure is repeated for all

0 ≤ u ≤ K1 and 1 ≤ P ≤ N1, leading to a time complexity
of O(K1K2N1N

2) to solve Step 1.
Now let us consider the problem at Step 2. For any pair

(au, av), 0 ≤ u < v ≤ K1 + 1, and any positive integer P ,
denote

ω′P (au, av) ,
1

2

(
φf(P ) (x[au, av))

2
q[au, av) + (1− φ)ξ∗([au, av), P )

)
.

(26)
Then problem (23) is equivalent to

min
M1,r,P

O(r,P) ,
M1∑
i=1

ω′Pi
(ri−1, ri),

subject to
M1∑
i=1

Pi = N1, P ∈ ZM1
+ ,

r ∈ SM1+1(0,∞) ∩ ĀM1+1.

(27)

The above problem is also similar to the optimal FRUPQ
design problem [17] and can be solved using dynamic pro-
gramming. However, since the weight function defined in (26)
is more complex than the counterpart in [17, Equation (3)],
the Monge property might not necessarily hold. Thus, solving
Step 2 will need O(K2

1N
2
1 ) operations. Specifically, for each

pair of positive integers (v, k) with 1 ≤ v ≤ K1 + 1 and
1 ≤ k ≤ N1, consider problem P(v, k) obtained by replacing
in (27) SM1+1(0,∞) by SM1+1(0, av) and N1 by k. Thus,
problem (23) is equivalent to P(K1 + 1, N1). Additionally,
denote by Ô(v, k) the optimal value of the objective function
of P(v, k). The dynamic programming solution consists of
solving all sub-problems P(v, k), for 1 ≤ v ≤ K1 + 1 and
1 ≤ k ≤ N1, using the following recurrence relation

Ô(v, k) , min
0≤t<k

min
0≤m<v

(
Ô(m, t) + ω′n−t(am, av)

)
,

where Ô(0, 0) = 0 and Ô(0, t) = Ô(m, 0) = ∞, for t > 0
and m ≥ 1.

In conclusion, the time complexity for the proposed FR-
SRUPQ design is O(K1N1(K1N1 +K2N

2)). Assuming that
N1 = O(N2) the time complexity becomes O(K1K2N1N

2).

V. EXPERIMENTAL RESULTS

This section assesses the practical performance of the EC-
SRUPQ and FR-SRUPQ design algorithms presented in this
paper. The experiments are conducted for a two-dimensional
random vector (X1, X2), where X1 and X2 are independent
and identically distributed Gaussian variables with zero-mean
and unit-variance. After conversion to polar coordinates the
joint pdf becomes

p(r, θ) =
r

2π
exp

(
−r

2

2

)
, 0 ≤ r <∞, 0 ≤ θ < 2π,

where r =
√
x2

1 + x2
2, and θ = tan−1(x2/x1). It then follows

that g(r) = r exp(−r2/2).
The sets of possible thresholds A and B are obtained by

dividing the range [0, 6] into subintervals of size 0.025. In
other words, K1 = K2 = 240 and ai = bi = 0.025i, for
0 ≤ i ≤ K1. In this section, the notations Ri and Di are
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Fig. 1: Rate performance of the proposed EC-SRUPQ.

utilized instead of R(Qi) and D(Qi), respectively, for i = 1, 2.
Additionally, let R(Di) denote the rate-distortion function for
the Gaussian source, i.e., R(Di) = −0.5 log2(Di).

We first consider the case of EC-SRUPQ, and compare it
with the theoretical bounds. We have run the proposed algo-
rithm for optimal EC-SRUPQ design for the following values
of φ, φ = 0.03, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9.
Figures 1, 2 and 3 illustrate the performance of the proposed
EC-SRUPQ, in terms of the rate pair (R1, R2), distortion pair
(D1, D2), and the rate-gap pair (R1 −R(D1), R2 −R(D2)),
respectively.

Note that the Gaussian source is known to be successively
refinable, i.e., the pair of rates (R(D1), R(D2)) is achievable
by successively refinable code schemes as the block length
approaches infinity. Since our scheme uses finite dimension
quantization, the existence of a gap to the rate-distortion
bound is expected. In particular, the rate gap between the opti-
mum single-description entropy-constrained UPQ and the rate-
distortion limit was proved in [11] to be 1

2 log2
2πe
12 = 0.2546

bits/sample at high resolution. Unfortunately, an asymptotic
analysis as the rates approach ∞ is not available for the
EC-SRUPQ, up to our knowledge. However, it is expected
that at finite rates the optimal ECUPQ is not successively
refinable, i.e., if R2 > R1, the optimal ECUPQ for rate
R2 is not necessarily a refinement of the optimal ECUPQ
for R1

4. This implies that the coarse and fine ECUPQs
in an EC-SRUPQ cannot achieve the optimal performance
simultaneously. Therefore, it is expected that the rate gap
Ri −R(Di), for i = 1, 2, in the case of EC-SRUPQ is larger
than its counterpart in the single description case.

It can be noticed from Figure 3 that in most cases the gap
R2 −R(D2) is within 0.275 bits/sample, which is very close
to the value of 0.2546 bits/sample. Most of the points in this

4This statement is true for the ECUPQ design of [16], as it can be seen
from [16, Table II].
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Fig. 2: Distortion performance of the proposed EC-SRUPQ.
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Fig. 3: Gap in rate versus the theoretical lower bounds.

category also have the value of R1−R(D1) within this limit.
However, there are also cases in which there is some additional
loss either only in R1, or only in R2, and very rarely in both.
These cases are represented in the three figures with stars,
crosses, and squares, respectively. We can see that the cases
with extra loss occur mostly when both distortions are small
(see Figure 2). The existence of such extra loss in rate could be
attributed to the additional tension induced in the optimization
by the competing requirements at the two decoders, as opposed
to only one decoder.

It is instructive to compare the performance of the proposed
EC-SRUPQ with the single-description ECUPQ designed in
[16]. This comparison is presented in Table I for several rate
pairs. The notation (R1, R2) is for the rate pairs for our
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TABLE I: Performance comparison of the proposed EC-
SRUPQ with the ECUPQ of [16].

(R1, R2) (D1, D2) (∆1,∆2)
(0.656, 2.036) (−2.869,−10.706) (0.004, 0.059)
(1.053, 2.242) (−4.993,−11.945) (0.006, 0.042)
(1.600, 2.629) (−8.172,−14.183) (0.012, 0.118)
(1.852, 2.598) (−9.642,−13.872) (0.021, 0.248)
(2.049, 2.611) (−10.746,−13.878) (0.093, 0.312)

scheme, while (D1, D2) denotes the corresponding distortion
pairs in dB, when φ = 0.5. For i = 1, 2, we denote
∆i = Di − D

[16]
i , i.e., the gap in dB between the perfor-

mance of our scheme at decoder i and the optimal ECUPQ
designed using the algorithm of [16] for a rate R[16]

i satisfying
|Ri − R[16]

i | ≤ 0.0011. A very interesting observation is that
the values of ∆1 and ∆2 increase as the difference R2 − R1

decreases. This could be attributed to the fact that the condition
that the partitions of the coarse and fine UPQ are embedded
becomes more restrictive when R2 − R1 is small, making
it more difficult to find embedded partitions close to the
optimal ECUPQ partitions. We also see from Table I that the
coarse ECUPQ of the proposed scheme performs extremely
close to the single-description ECUPQ of [16], especially for
R1 ≤ 1.852 and R2−R1 ≥ 0.746. The gap ∆2 is larger than
∆1, but we still obtain ∆2 < 0.06 dB for R2 ≤ 2.242 and
R2 −R1 ≥ 1.189.

Next we assess the performance of the proposed FR-SRUPQ
design algorithm in comparison with the practical successively
refinable UPQ scheme developed in [12] based on the asymp-
totic quantization theory. We ran the proposed algorithm for
optimal FR-SRUPQ design for N1 = 2i, i = 1, 2, 3, 4, 5, and
N2 = 2j , j ∈ [i+1, 6]∩Z+. Three values of φ were examined,
namely, φ = 0.1, 0.5 and 0.9.

The algorithm of [12] starts from the optimal 2-cell UPQ
with r = (0,+∞) and P = (2), which is taken as the
reference quantizer Q(1). Subsequently, a sequence of suc-
cessively refinable UPQs Q(k) is constructed greedily, each
Q(k) consisting of 2k quantizer levels. More specifically, for
k ≥ 2, the UPQ Q(k) is the best one-bit refinement of Q(k−1).
This is achieved by refining either the magnitude (i.e., dividing
the magnitude cell into two) or the phase (i.e., doubling the
number of phase regions) of each magnitude region of Q(k−1).
Thus, for each magnitude level of Q(k−1), one has to choose
between the magnitude refinement and the phase refinement
the one which gives the smallest distortion. The authors of
[12] derived a solution for this choice based on the high-rate
approximation, namely, if the inequality

Pi
2π
≥
(

ri−1

ri − ri−1
+

1

2

)
holds for the magnitude cell [ri−1, ri), then the magnitude
refinement is selected, otherwise the phase refinement is cho-
sen. Furthermore, in the case when the magnitude is refined,
the new magnitude threshold ri−1 + γ is determined using an
iterative method in the spirit of Max-Lloyd’s algorithm [41].
In our implementation of the practical scheme of [12], the
optimal value of γ is obtained by applying a linear search
over the interval [0, 6] with step size 0.001. Further, we verify

that the new threshold ri−1 +γ satisfies the iterative equations
given in [12].

Note that in the sequel the distortion is represented in dB.
The distortion pairs of the proposed scheme and of the scheme
of [12] are denoted by (D1, D2)φ and (D1, D2)[12], respec-
tively. Additionally, the proposed FR-SRUPQ design is also
compared against the optimal single-resolution FRUPQ [17],
where the notations (D

[17]
1 , D

[17]
2 ) are used (D[17]

i represents
the distortion of the optimal FRUPQ [17] with Ni levels,
i = 1, 2).

We first discuss the results when N1 = 2. In this case, for
each N2 we obtain the same pair of distortions (D1, D2)φ

for all values of φ considered. Moreover, when N1 = 2
the coarse UPQ is the same in all three compared scenarios,
and consists of only one magnitude cell and two phases in
the phase quantizer. Thus, its distortion is D1 = −1.664
dB. The corresponding performance at the refinement stage is
illustrated in Figure 4, which plots D2 versus R2 = 1

2 log2N2.
It can be observed that when N2 ≥ 8, our scheme always
outperforms the method of [12] with a peak improvement of
0.831 dB, achieved when N2 = 32. On the other hand, when
N2 = 4 both schemes have the same fine UPQ, corresponding
to r = (0,+∞) and P = (4), which is also the optimal
FRUPQ. Additionally, an important observation is that the
refined UPQ of the proposed scheme has performance very
close to the optimal single description FRUPQ for all values of
N2, with a distortion gap Dφ

2 −D
[17]
2 in the range of [0, 0.165]

dB.
Let us consider now the case when N1 = 4. In this case, the

coarse UPQ is the same in all three scenarios, corresponding
to r = (0,+∞), P = (4) and D1 = −4.396 dB, except
for our design at N2 = 8 and φ = 0.1. Moreover, when
N1 = 4 and N2 ≥ 16, the pair of values (D1, D2)φ does not
change with φ. Figure 5 plots the value of D2 versus R2 =
1
2 log2N2 for N1 = 4. It can be seen that the proposed design
is always superior to the approach of [12] when N2 ≥ 16,
with an improvement reaching up to 0.723 dB at N2 = 32.
The distortion gap Dφ

2 −D
[17]
2 is in the range of [0.038, 0.87]

dB.
As indicated in Figure 5, when (N1, N2) = (4, 8) and φ =

0.1, the distortion pair (D1, D2)φ=0.1 is (−3.761,−6.837)
dB. It is then noted that when φ = 0.1, the coarse UPQ
performs worse, while the fine UPQ has better performance,
than for the cases of φ = 0.5, 0.9. This is expected, as a small
value of φ = 0.1 means that more emphasis is placed on
minimizing the distortion of the fine UPQ. Additionally, for the
same case, the proposed coarse UPQ performs 0.635 dB worse
than the scheme of [12], while the fine UPQ outperforms the
counterpart of [12] by up to 0.794 dB. Note that the weighted
distortion φD1 + (1 − φ)D2 of the proposed design (which
is −6.411 dB) is 0.564 dB smaller than that of [12] (which
equals −5.847 dB).

Table II illustrates the performance comparison with the
scheme of [12] and the FRUPQ of [17], for N1 ≥ 8. In this
table, the improvement over the scheme of [12] is provided,
i.e., ∆φ

i = D
[12]
i − Dφ

i for i = 1, 2. It can be noted
that the proposed design outperforms the scheme of [12] for
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TABLE II: Performance comparison of the proposed FR-SRUPQ with the design of [12] and with FRUPQ [17], for N1 ≥ 8.

(N1,N2) (D1, D2)[12] (∆1,∆2)φ=0.1 (∆1,∆2)φ=0.5 (∆1,∆2)φ=0.9 (D
[17]
1 , D

[17]
2 )

(8, 16) (−6.043,−8.882) (0.513, 0.554) (0.854, 0.404) (0.869, 0.341) (−6.913,−9.614)
(8, 32) (−6.043,−11.430) (0.759, 0.826) (0.866, 0.616) (0.869, 0.604) (−6.913,−12.340)
(8, 64) (−6.043,−14.783) (0.865, 0.228) (0.869, 0.218) (0.869, 0.218) (−6.913,−15.150)

(16, 32) (−8.882,−11.430) (0.349, 0.833) (0.627, 0.631) (0.732, 0.257) (−9.614,−12.340)
(16, 64) (−8.882,−14.783) (0.721, 0.267) (0.729, 0.259) (0.732, 0.247) (−9.614,−15.150)

(32, 64) (−11.430,−14.783) (0.428, 0.323) (0.801, 0.037) (0.906,−0.297) (−12.340,−15.150)
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Fig. 4: Distortion D2 versus 1
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the fixed-rate case.
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Fig. 5: Distortion D2 versus 1
2 log2N2 when N1 = 4, in

the fixed-rate case.

both coarse and fine UPQs in all cases, except for the pair
(N1, N2) = (32, 64) at φ = 0.9. In most cases, ∆φ

1 ≥ 0.5 dB
and ∆φ

2 ≥ 0.2 dB, while the peak improvements reach over 0.8
dB. As Table II shows, the impact of φ on the performance
of the proposed design is more noticeable for N1 ≥ 8. As
expected, as φ increases from 0.1 to 0.9, the value of Dφ

1

is non-increasing, while the value of Dφ
2 is non-decreasing.

Actually, for all pairs (N1, N2) the distortion Dφ=0.9
1 is very

close to the optimal performance of the N1-level FRUPQ [17].
Figures 6a and 6b illustrate the structures of the UPQ

partitions for the scheme of [12] and for the proposed design,
respectively, for (N1, N2) = (16, 32) and φ = 0.1. In this
case, our scheme outperforms the scheme of [12] with im-
provements of 0.349 dB and 0.833 dB for the coarse and fine
UPQ, respectively. Note that the partition of the coarse UPQ
is represented using solid lines, while dashed lines represent
the refinement. Recall that the design of [12] constructs a
sequence of successively refinement UPQs in a series of
stages, starting from the optimal 2-cell UPQ and applying
a one-bit refinement at each stage. Thus, the construction
of the 2k-level UPQ in this sequence is heavily constrained
by the previous UPQs, fact which contributes to limiting its
performance. On the other hand, our proposed algorithm does
not impose preexisting constraints on the coarse UPQ and
thus provides more freedom in the optimization. For instance,
we observe in Figure 6b that the cell in the center of the
coarse UPQ (solid lines) is a disc, while the course UPQ
of [12] does not have such a cell. Additionally, even if the
fine UPQ of [12] is obtained by applying the best one-bit
refinement (asymptotically) to the coarse UPQ, the preexisting
structural constraints severely limit the possible configurations,
thus explaining the degradation in performance in comparison
with our design.

Further, Figures 7a and 7b depict the partitions of the
FR-SRUPQ of [12] and the proposed design, respectively,
for the pair (N1, N2) = (32, 64) when φ = 0.9. This is
the only case in Table II where the performance of the
fine UPQ for our scheme is worse than that of [12]. In
order to understand why this happens it is instructive to
compare first the partitions of the optimal 32-level and 64-
level FRUPQs. The optimal FRUPQ [17] for N = 32
has r = (0, 0.363, 1.031, 1.846,∞) and P = (1, 7, 12, 12),
while for N = 64, r = (0, 0.536, 0.998, 1.534, 2.234,∞)
and P = (5, 10, 15, 18, 16). We notice that there is a large
difference between the tuples of thresholds of the magnitude
partitions of the two FRUPQs. We further observe that the
partition of the coarse UPQ shown in Figure 7b is very close to
the partition of the optimal 32-level FRUPQ. This is because
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(a) The scheme of [12].

(b) The proposed scheme.

Fig. 6: The partitions of the FR-SRUPQ of [12] (a) and
of the proposed scheme (b), for N1 = 16 and N2 =
32. The solid lines represent the partition of coarse UPQ,
while the dashed lines represent the refinement. The pa-
rameters of the SRUPQs are: (a) r = (0, 0.799, 1.375,∞),
P = (4, 4, 8), s̄ = (0, 0.484, 0.799, 1.375,∞), P̄ =
(4, 4, 8, 16); (b) r = (0, 0.450, 1.125,∞), P = (1, 4, 11),
s̄ = (0, 0.450, 1.125, 1.900,∞), P̄ = (2, 8, 11, 11).

φ is high, thus more emphasis is placed on minimizing the
distortion of the coarse UPQ. This implies that the fine UPQ
will have magnitude thresholds which are far from those of the
optimal 64-level FRUPQ, explaining its poorer performance.

VI. CONCLUSION

This paper presents algorithms for the globally optimal de-
sign of successively refinable unrestricted polar quantizers for
bivariate circularly symmetric sources, for both the entropy-
constrained and fixed-rate cases. The global optimality holds

(a) The scheme of [12].

(b) The proposed scheme.

Fig. 7: The partitions of the FR-SRUPQ of [12] (a)
and of the proposed scheme (b) with φ = 0.9, for
N1 = 32 and N2 = 64. The parameters of the
SRUPQs are: (a) r = (0, 0.484, 0.799, 1.375,∞), P =
(4, 4, 8, 16), s̄ = (0, 0.297, 0.484, 0.799, 1.375, 2.093,∞),
P̄ = (4, 4, 8, 16, 16, 16); (b) r = (0, 0.375, 1.025, 1.800,∞),
P = (1, 7, 11, 13), s̄ = (0, 0.375, 1.025, 1.800, 2.425,∞),
P̄ = (2, 14, 22, 13, 13).

when the magnitude quantizers thresholds are confined to
some finite sets. For the entropy-constrained case, the cost to
be minimized is a weighted sum of distortions and entropies,
and the proposed algorithm involves a series of stages includ-
ing solving the minimum-weight path problem for multiple
node pairs in certain weighted directed acyclic graphs. In the
fixed-rate case, the proposed solution is based on tackling with
a series of dynamic programming problems. The experimental
results performed on a bivariate circularly symmetric Gaussian
source demonstrate the excellent performance in practice of
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the proposed entropy-constrained scheme. For the fixed-rate
case, significant improvement can be achieved over the prior
practical scheme, which was based on asymptotic analysis.

REFERENCES

[1] N. C. Gallagher, Jr., “Quantizing schemes for the discrete Fourier
transform of a random time-series,” IEEE Trans. Inform. Theory, vol.
IT-24, no. 2, pp. 156-163, Mar. 1978.

[2] W. A. Pearlman and R. M. Gray, “Source coding of the discrete Fourier
transform”, IEEE Trans. Inform. Theory, vol. IT-24, no. 6, pp. 683-692,
Nov. 1978.

[3] W. A. Pearlman, “Polar quantization of a complex Gaussian random
variable”, IEEE Trans. Commun., vol. COM-27, no. 6, pp. 892-899,
Jun. 1979.

[4] S. G. Wilson, “Magnitude/phase quantization of independent Gaussian
variates”, IEEE Trans. Commun., vol. COM-28, no. 11, pp. 1924-1929,
Nov. 1980.

[5] P. F. Swaszek and T.W. Ku, “Asymptotic performance of unrestricted
polar quantizers,” IEEE Trans. Inform. Theory, vol. IT-32, no. 2, pp.
330-333, Mar. 1986.

[6] G. H. Senge, “Quantization of image transforms with minimum distor-
tion”, Technical Report No. ECE-77-8, Dept. of Elec. and Comp. Eng.,
University of Wisconsin, Madison, WI, Jun. 1997.

[7] D. L. Neuhoff, “Polar quantization revisited,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT 1997), pp. 60, Ulm, Germany, Jun. 1997.

[8] P. W. Moo and D. L. Neuhoff, “Uniform Polar Quantization Revisited”,
in Proc. IEEE Int. Symp. Inform. Theory (ISIT 1998), pp. 100, Cam-
bridge, MA, USA, Aug. 1998.

[9] A. M. Bruckstein, R. J. Holt and A. N. Netravali, “Holographic repre-
sentations of images”, IEEE Trans. Image Process., vol. 7, no. 11, pp.
1583-1597, Nov. 1998.

[10] N. Kingsbury and T. Reeves, “Redundant representation with complex
wavelets: How to achieve sparsity”, in Proc. Int. Conf. Image Pro-
cess.(ICIP 2003), Barcelona, Spain, Sep. 2003, pp. 45-48.

[11] R. Vafin and W. B. Kleijn, “Entropy-constrained polar quantization and
its application to audio coding”, IEEE Trans. Speech and Audio Process.,
vol. 13, no. 2, pp. 220-232, Mar. 2005.

[12] E. Ravelli and L. Daudet, “Embedded polar quantization”, IEEE Signal
Process. Lett., vol. 14, no. 10, pp. 657-660, Oct. 2007.

[13] Z. Peric and J. Nikolic, “Design of asymptotically optimal unrestricted
polar quantizer for Gaussian source”, IEEE Signal Process. Lett., vol.
20, no. 10, pp. 980-983, Oct. 2013.

[14] P. Nazari, B-K. Chun, F. Tzeng and P. Heydari, “Polar quantizer for
wireless receivers: theory, analysis, and CMOS implementation”, IEEE
Trans. Circuits and Systems-I: Regular Papers, vol. 61, no. 3, pp. 877-
887, Mar. 2014.

[15] A. Z. Jovanovic, Z. H. Peric, J. R. Nikolic and M. R. Dincic, “Asymptotic
analysis and design of restricted uniform polar quantizer for Gaussian
sources”, Digital Signal Process., vol. 49, pp. 24-32, Feb. 2016.

[16] H. Wu and S. Dumitrescu, “Design of optimal entropy-constrained
unrestricted polar quantizer for bivariate circularly symmetric sources”,
IEEE Trans. Commun., vol. 66, no. 5, pp. 2169-2180, May. 2018.

[17] H. Wu and S. Dumitrescu, “Design of optimal fixed-rate unrestricted
polar quantizer for bivariate circularly symmetric sources”, IEEE Signal
Process. Lett., vol. 25, no. 5, pp. 715-719, May. 2018.

[18] W. Equitz and T. Cover, “Successive refinement of information,” IEEE
Trans. Inform. Theory, vol. 37, no. 2, pp. 269275, Mar. 1991.

[19] B. Rimoldi, “Successive refinement of information: characterization of
achievable rates,” IEEE Trans. Inform. Theory, vol. 40, no. 1, pp. 253-
259, Jan. 1994.

[20] H. Brunk and N. Farvardin, “Fixed-rate successively refinable scalar
quantizers,” in Proc. Data Compression Conf. (DCC), Snowbird, Utah,
Mar. 1996, pp. 250-259.

[21] H. Jafarkhani and V. Tarokh, “Design of successively refinable trellis-
coded quantizers,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1490-
1497, Jul. 1999.

[22] D. Muresan and M. Effros, “Quantization as histogram segmentation:
globally optimal scalar quantizer design in network systems,” in Proc.
Data Compress. Conf. (DCC), Snowbird, UT, Apr. 2002, pp. 302-311.

[23] X. Wu and S. Dumitrescu, “On optimal multi-resolution scalar quan-
tization”, in Proc. Data Compress. Conf. (DCC), Snowbird, UT, Apr.
2002, pp. 322-331.

[24] S. Dumitrescu and X. Wu, “Optimal multiresolution quantization for
scalable multimedia coding,” in Proc. IEEE Infomation Theory Work-
shop (ITW 2002), Bangalore, India, Oct. 2002, pp. 139-142.

[25] S. Dumitrescu and X. Wu, “Algorithms for optimal multi-resolution
quantization,” J. Algorithms, vol. 50, no. 1, pp. 1-22, Jan. 2004.

[26] M. Effros and D. Dugatkin, “Multiresolution vector quantization,” IEEE
Trans. Inform. Theory, vol. 50, no. 12, pp. 3130-3145, Dec. 2004.

[27] D. Muresan and M. Effros, “Quantization as histogram segmentation:
optimal scalar quantizer design in network systems,” IEEE Trans.
Inform. Theory, vol. 54, no. 1, pp. 344-366, Jan. 2008.

[28] J. Chen, S. Dumitrescu, Y. Zhang and J. Wang, “Robust multiresolution
coding,” IEEE Trans. Commun, vol. 58, no. 11, pp. 3186-3195, Nov.
2010.

[29] C-Y. Wang and M. Gastpar, “On distributed successive refinement with
lossless recovery,” IEEE Int. Symp. Inform. Theory (ISIT), Honolulu, HI,
Jun. 2014, pp. 2669-2673.

[30] A. No, A. Ingber and T. Weissman, “Strong Successive Refinability and
Rate-Distortion-Complexity Tradeoff,” IEEE Trans. Inform. Theory, vol.
62, no. 6, pp. 3618-3635, Jun. 2016.

[31] L. Zhou, V. Y. Tan and M. Motani, “Second-order and moderate
deviations asymptotics for successive refinement,” IEEE Trans. Inform.
Theory, vol. 63, no. 5, pp. 2896-2921, May. 2017.

[32] V. Kostina and E. Tuncel, “The rate-distortion function for successive
refinement of abstract sources,” IEEE Int. Symp. Inform. Theory (ISIT),
Aachen, Germany, Jun. 2017, pp. 1923-1927.

[33] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still
image compression standard,” IEEE Signal Process. Magazine, vol. 18,
no. 5, pp. 36-58, Sep. 2001.

[34] D. Taubman and M. Marcellin, JPEG2000 image compression funda-
mentals, standards and practice, Springer, 2012.

[35] H. Wu and S. Dumitrescu, “Design of optimal entropy-constrained
successively refinable unrestricted polar quantizer for bivariate circularly
symmetric sources”, in Proc. 29th Biennial Symposium on Communica-
tions (BSC 2018), Toronto, Canada, Jun. 2018.

[36] P. Vogel, “Source coding by classification-91-715,” IEEE Trans. Com-
mun., vol. 43, no. 11, pp. 2821-2832, Nov. 1995.

[37] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-constrained vector
quantization,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no.
1, pp. 31-42, Jan. 1989.

[38] H. Everett III, “Generalized Lagrange multiplier method for solving
problems of optimum allocation of resources,” Operat. Res., vol. 11,
no. 3, pp. 399-417, Jun. 1963.

[39] D. G. Luenberger, Optimization by Vector Space Methods. New York:
Wiley, 1969.

[40] A. V. Trushkin, “Sufficient conditions for uniqueness of a locally optimal
quantizer for a class of convex error weighting functions”, IEEE Trans.
Inform. Theory, vol. 28, no. 2, pp. 187-198, Mar. 1982.

[41] J. Max, “Quantizing for minimum distortion”, IRE Trans. Inform.
Theory, vol. IT-6, no. 1, pp. 7-12, Mar. 1960.

APPENDIX A
PROOFS

In order to prove Proposition 4, we need the following
lemmas.

Lemma 1: limP ′→∞ rslopeP (P ′) = 0.
Proof: According to Proposition 2, if P ′ ≥ 3 then P ′ and

P ′+ 1 are both in P̂P . Thus, rslopeP (P ′) is the slope of the
line connecting S(PP ′) and S(P (P ′+1)). Further, we obtain

lim
P ′→∞

rslopeP (P ′) = lim
P ′→∞

f(PP ′ + P )− f(PP ′)

h(PP ′ + P )− h(PP ′)

= lim
P ′→∞

(sinc( 1
PP ′ ) + sinc( 1

PP ′+P ))(sinc( 1
PP ′ )− sinc( 1

PP ′+P ))

ln(P ′ + 1)− lnP ′

= −2 lim
P ′→∞

sinc( 1
PP ′+P )− sinc( 1

PP ′ )

ln(P ′ + 1)− lnP ′
,

where the last equality is based on the fact that
limP ′→∞(sinc( 1

PP ′ ) + sinc( 1
PP ′+P )) = 2. Further, in light

of Cauchy’s mean value theorem, since functions sinc(·) and
ln(·) are both continuous on [PP ′, PP ′+P ], and differentiable
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on the open interval (PP ′, PP ′ + P ), there exists some
Q ∈ (PP ′, PP ′ + P ) such that

sinc( 1
PP ′+P )− sinc( 1

PP ′ )

ln(P ′ + 1)− lnP ′
=

(sinc( 1
Q ))′

(lnQ)′
.

Therefore, it is sufficient to prove that limQ→∞
(sinc( 1

Q ))′

(lnQ)′ =
0. For this, note that we have the following sequence of
relations

lim
Q→∞

(sinc( 1
Q ))′

(lnQ)′
= lim
Q→∞

1
π sin( πQ )− 1

Q cos( πQ )
1
Q

= lim
Q→∞

(
sin( πQ )

π
Q

− cos(
π

Q
)

)
= 0.

Thus, the proof is completed.
Lemma 2: For any two points A and B in the plane

we use the notation slope(AB) for the slope of the line
connecting A and B. Let Pi ∈ P̂1 for 1 ≤ i ≤ 4, such that
P1 < P2, P3 < P4, P1 ≤ P3 and P2 ≤ P4. Then one has
slope(S(P1)S(P2)) ≤ slope(S(P3)S(P4)).

Proof: Consider the function t : [0,∞) → R such that
for each x ≥ 0 the pair (x, t(x)) is the unique point with
abscissa x situated on the lower convex hull of U1. Then,
clearly, function t is convex. For each 1 ≤ i ≤ 4, let xi =
h(Pi). Then f(Pi) = t(xi) and the claim follows in virtue of
the following lemma.

Lemma 3: Let t : R→ R be a convex function and x1 < x2,
x3 < x4, x1 ≤ x3 and x2 ≤ x4. Then the following holds

t(x2)− t(x1)

x2 − x1
≤ t(x4)− t(x3)

x4 − x3
. (28)

Proof: Let us assume that x2 6= x3. In order to prove
(28), we will prove the following two inequalities

t(x2)− t(x1)

x2 − x1
≤ t(x3)− t(x2)

x3 − x2
, (29)

t(x3)− t(x2)

x3 − x2
≤ t(x4)− t(x3)

x4 − x3
. (30)

To prove (29) we will consider separately the cases 1) x2 < x3

and 2) x3 < x2. First note that by performing some algebraic
manipulations, (29) becomes

t(x2)(x3 − x1)− t(x1)(x3 − x2)− t(x3)(x2 − x1)

(x2 − x1)(x3 − x2)
≤ 0.

(31)
In case 1) one has x1 < x2 < x3. Thus (x2−x1)(x3−x2) > 0
and (31) becomes equivalent to t(x2)(x3 − x1)− t(x1)(x3 −
x2)− t(x3)(x2 − x1) ≤ 0, which is further equivalent to

t(x2) ≤ t(x1)
x3 − x2

x3 − x1
+ t(x3)

x2 − x1

x3 − x1
. (32)

Denote ρ = x3−x2

x3−x1
. Then 0 < ρ < 1, x2−x1

x3−x1
= 1 − ρ and

x2 = ρx1 + (1 − ρ)x3. Thus, (32) is equivalent to t(ρx1 +
(1− ρ)x3) ≤ ρt(x1) + (1− ρ)t(x3), which is true in virtue of
the convexity of function t.

Let us consider now case 2). Then x1 ≤ x3 < x2. If x1 =
x3 then (29) holds trivially with equality. Assume now that

x1 < x3. Then (x2 − x1)(x3 − x2) < 0 and (31) becomes
equivalent to t(x2)(x3 − x1) + t(x1)(x2 − x3) − t(x3)(x2 −
x1) ≥ 0, which is equivalent to

t(x3) ≤ t(x1)
x2 − x3

x2 − x1
+ t(x2)

x3 − x1

x2 − x1
. (33)

If we let ρ = x2−x3

x2−x1
then 0 < ρ < 1 and inequality (33) is

equivalent to t(ρx1 + (1 − ρ)x2) ≤ ρt(x1) + (1 − ρ)t(x2),
which holds since t is convex. With this observation the proof
of (29) is complete. The proof of (30) follows along similar
lines. Clearly, (29) and (30) further imply (28). In the case
when x2 = x3 the proof of (28) is analogous to the proof of
(29) in case 1). These considerations complete the proof of
the lemma.

Lemma 4: slope(S(1)S(3)) ≤ slope(S(2)S(4)).
Proof: By using the definition of S(P ), after some

algebraic manipulations we obtain that the above inequality
is equivalent to −27

4π2 ln 3 ≤
−4

π2 ln 2 . This is further equivalent to
27 ln 2 ≥ 16 ln 3. By applying the exponential function this
becomes equivalent to 227 ≥ 316. The latter relation is true
since 227 = (25)5 × 22, 316 = (33)5 × 3, while 25 > 33 and
22 > 3.

Proof of Proposition 4: Let δ = λ2

(1−φ)x([bK2
,bK2+1))2 ln 2 .

Let P ∗ denote P ′1,max and P ∗P denote P ′P,max. Assume first
that P ∗ ≥ 3. Then, according to Proposition 2, P ∗ + 1 ∈ P̂1

and based on relation (17), the following holds

−δ ≤ slope(S(P ∗)S(P ∗ + 1)). (34)

Note that P ∗ ≤ P dP
∗

P e and P ∗+ 1 ≤ P dP
∗

P e+P and, based
on Proposition 2, P ∗, P dP

∗

P e,P
∗ + 1 and P dP

∗

P e + P are in
P̂1. Thus, we can apply Lemma 2 with P1 = P ∗, P2 = P ∗+1,
P3 = P dP

∗

P e and P4 = P dP
∗

P e+ P and obtain

slope(S(P ∗)S(P ∗ + 1)) ≤ slope(S(P
⌈
P∗

P

⌉
)S(P

⌈
P∗

P

⌉
+ P )).

The above equation together with (34) implies that

−δ ≤ slope(S(P

⌈
P ∗

P

⌉
)S(P

⌈
P ∗

P

⌉
+ P )). (35)

Recall that P ∗P is the smallest integer in P̂P such that

−δ ≤ rslopeP (P ∗P ) ≤ slope(S(PP ∗P )S(PP ∗P + P )). (36)

Corroborating the above observation with relation (35) and
with the fact that dP

∗

P e ∈ P̂P (since P̂P = Z+ by Proposition
2) and that the slopes of the convex hull of UP increase from
left to right, we conclude that P ∗P ≤ dP

∗

P e <
P∗

P + 1.
It remains to consider now the case when P ∗ = 1. Then

relation (34) has to be replaced by −δ ≤ slope(S(1)S(3)).
Assume now that P ≥ 3. We can apply Lemma 2 with
P1 = 1, P2 = 3, P3 = P and P4 = 2P and obtain
that slope(S(1)S(3)) ≤ slope(S(P )S(2P )). This implies that
−δ ≤ slope(S(P ·1)S(P ·2)). Using further (36) we conclude
that P ∗P ≤ 1 < P∗

P + 1. Consider now P = 2. Since P /∈ P̂1

we can no longer apply Lemma 2 as above. However, we still
obtain slope(S(1)S(3)) ≤ slope(S(P ·1)S(P ·2)) according to
Lemma 4. Then we conclude as above that P ∗P = 1 < P∗

P +1.
Thus, the proof is complete.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2019.2894808

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



15

In order to prove Proposition 5, we need the following
lemma.

Lemma 5: Consider P ∈ Z+ and let P ∗ denote the solution
to problem (16). Then for any P1, P2 ∈ P̂P such that P ∗ ≤
P1 < P2 one has

f(PP1) + δh(PP1) ≤ f(PP2) + δh(PP2).

Proof: Note that since h(PP1) < h(PP2), the above
inequality is equivalent (after some algebraic manipulations)
to

−δ ≤ slope(S(PP1)S(PP2)). (37)

Since P ∗, P1, P2 ∈ P̂P and P ∗ ≤ P1 < P2, an argument
similar to the proof of Lemma 2 implies that rslopeP (P ∗) ≤
slope(S(PP1)S(PP2)). The definition of P ∗ leads that −δ ≤
rslopeP (P ∗). Combining the last two inequalities proves
relation (37). This completes the proof.

Proof of Proposition 5: It is sufficient to prove that, if an
EC-SRUPQ has Pi > Pmax for some i, then by replacing Pi
by Pmax the cost defined in (9) does not increase. Note that the
portion of the cost affected by Pi is c(Ci, Pi) = α(Ci, Pi) +∑M2,i

j=1 β(Ci,j , Pi, Pi,j), where

α(Ci, Pi) = q(Ci)φx
2(Ci)

(
f(Pi) +

λ1

φx2(Ci) ln 2
h(Pi)

)
,

β(Ci,j , Pi, Pi,j) =q(Ci,j)(1− φ)x2(Ci,j)

(
f(PiPi,j)+

λ2

(1− φ)x2(Ci,j) ln 2
h(PiPi,j)

)
.

Let P ∗c denote the solution to problem (16) for P = 1 and δ =
λ1

φx2(Ci) ln 2 . According to [16, Proposition 2], one has P ∗c ≤
P ′′. Thus, P ∗c ≤ Pmax. By applying further Lemma 5 and
the fact that q(Ci)φx2(Ci) > 0, one obtains that α(Ci, Pi) ≥
α(Ci, Pmax).

Further, let P ∗f denote the solution to problem (16) for
P = Pi,j and δ = λ2

(1−φ)x2(Ci,j) ln 2 . According to Proposition
3, one has P ∗f ≤ P ′Pi,j ,max

. Using further Proposition 4 one

obtains P ′Pi,j ,max
≤ P ′1,max

Pi,j
+ 1 ≤ P ′1,max + 1. Since Pmax ≥

P ′1,max + 1, one concludes that P ∗f ≤ Pmax. By applying
Lemma 5 leads to β(Ci,j , Pi, Pi,j) ≥ β(Ci,j , Pmax, Pi,j),
which concludes the proof.
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