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Abstract—This work addresses the design of a sequential
scalar quantizer (SSQ) for finite-alphabet correlated sources in
the fixed-rate (FR) and entropy-constrained (EC) cases. The
optimization problem is formulated as the minimization of a
weighted sum of distortions and rates. The proposed solution
is globally optimal for the class of SSQs with convex cells
and is based on solving the minimum-weight path (MWP)
problem in the EC case, respectively, a length-constrained MWP
problem in the FR case, in a series of weighted directed acyclic
graphs. The asymptotic time complexity is O(K2

1K
2
2 ), where

K1 and K2 are the respective sizes of the alphabets of the
two sources. Additionally, it is proved that, by applying the
proposed algorithms to discretizations of correlated sources with
continuous joint probability density function, the performance
approaches that of the optimal EC-SSQ, respectively FR-SSQ,
with convex cells for the original sources as the accuracy of the
discretization increases. Extensive experiments performed with
correlated Gaussian sources validate the effectiveness in practice
of the proposed approach in approximating the optimal SSQ for
the case of continuous-alphabet sources.

Index Terms—Sequential coding, scalar quantization, globally
optimal algorithm, minimum-weight path problem.

I. INTRODUCTION

The problem of sequential coding of correlated sources
(SCCS) in the information theoretical sense was introduced
in [1]. The authors of [1] gave a complete characterization of
the achievable rate-distortion region.

Figure 1 illustrates the framework of SCCS, where (X,Y ) is
a pair of jointly distributed random variables (RVs). Encoder 1
observes only the source X and encodes it at rate R1. Decoder
1 receives the output of encoder 1 and reconstructs an estimate
X̂ of X . Encoder 2 observes both X and Y and generates a
description of Y at rate R2. Decoder 2 utilizes the outputs of
both encoders to reconstruct an estimate Ŷ of source Y . Note
that the problem of SCCS can be regarded as a generalization
of the successive refinement coding problem [3] since it
reduces to the latter when the two sources coincide. In practice,
the SCCS problem can be utilized to model a video sequence,
where a sequence of frames corresponds to a sequence of
correlated sources [1]. Moreover, it also provides a theoretical
model for video compression using frame-differencing, as the
encoding of a later frame refers to a previous frame [2].

In this work, we address the problem of designing a
practical coding scheme for the SCCS problem which uses
scalar quantization at each encoder. Specifically, encoder 1
consists of a unique scalar quantizer for the source X , while
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Fig. 1: Block diagram of a sequential code for correlated
sources.

encoder 2 consists of a set of scalar quantizers for the source
Y , each quantizer corresponding to a particular output of
encoder 1. We refer to such a scheme using the term sequential
scalar quantizer (SSQ). Past work on the design of SSQ
includes [4] and [5], where only the fixed-rate (FR) case
is considered and the quantizers are derived based on the
asymptotic quantization theory. Specifically, the authors of [4]
find closed form expressions for the distortion resulting from
SSQ as a function of the quantizer design parameters and find
the optimum parameter values that minimize the distortion.
The proposed SSQ technique is utilized for color palette design
of RGB images in [6], whereas an initial SSQ structure has to
be preset in order to obtain the optimal number of quantization
levels. It is worth pointing out that the optimization in [4] is
greedy. Further, the authors of [5] improve the performance
of the design procedure by considering the distribution of the
unquantized scalars as well.

The most popular design approach for scalar quantizer
systems is the iterative approach in the spirit of Lloyd’s
algorithm [7], also termed the generalized Lloyd approach.
It consists of iteratively optimizing the decoder (respectively,
the encoder) while the encoder (respectively, the decoder) is
kept fixed. However, this design technique can only guarantee
a locally optimal solution in general. Its global optimality
was established so far only for certain FR quantizer systems
with convex cells, for certain error functions and probability
distributions [8]–[11]. Note that a quantizer cell is said to
be convex if it equals the intersection of the source alphabet
with a convex set. The requirement of cell convexity does not
preclude optimality in the case of FR single description scalar
quantizers or in the case of entropy-constrained (EC) scalar
quantizers situated on the lower convex hull of the set of rate-
distortion pairs, but it may in other cases [12], [13].

On the other hand, for finite-alphabet sources, globally opti-
mal design is possible using dynamic programming, for many
scalar quantizer systems. Such an approach was taken in the
case of single description scalar quantizers [13]–[16], Wyner-
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Ziv scalar quantizers [13], successively refinable and multiple
description scalar quantizers [13], [17]–[20], [28], joint source-
channel scalar quantizers with random index assignment [11],
all under the constraint of cell convexity.

This paper addresses the problem of optimal SSQ design
for finite-alphabet sources in both the FR and EC cases. Note
that past work [4], [5] did not consider EC-SSQ, while any
optimality claims for the FR-SSQ design algorithms hold only
asymptotically as the rate approaches infinity.

In the EC case, we formulate the optimization problem as
the minimization of a weighted sum of the distortions at the
two decoders and the rates at the two encoders. We develop a
globally optimal solution algorithm with respect to the class
of EC-SSQs with convex cells. The proposed algorithm relies
on solving the minimum-weight path (MWP) problem in a
series of appropriately constructed weighted directed acyclic
graphs (WDAG). The time complexity of our solution amounts
to O(K2

1K
2
2 ), where K1 and K2 are the respective sizes of

the two source alphabets.
In the FR case, we fix the number of levels of the

quantizer for X and formulate the optimization problem as
the minimization of a weighted sum of the distortions at
the two decoders and of the rate at encoder 2. The main
difference between the optimization problems in the EC and
FR cases stems from the fact that in the EC case, the rate of
a quantizer can be written as a sum of rates corresponding
to individual quantizer cells, which is not possible in the
FR case. Because of this difference, the solution to the FR
problem is more involved. In particular, it needs to solve
length-constrained MWP problems in a series of WDAGs,
rather than unconstrained MWP problems as in the EC case.
Using the straightforward solution algorithm for the length-
constrained MWP problems leads to a total time complexity of
O(K2

1K
3
2 ). We further show that in some of these WDAGs, the

edge weights satisfy the Monge property, fact which enables
the speed up of the solution by a factor of K2. As in the EC
case, the proposed algorithm is globally optimal with respect
to the class of FR-SSQs with convex cells.

As mentioned earlier, in both the EC and FR cases, we
design the SSQ under the constraint of cell convexity. It is
important to highlight that this constraint does not preclude the
optimality of the quantizers for the source Y since the design
of each such quantizer reduces to the problem of optimal scalar
quantizer design for the conditional probability mass function
(pmf) of Y given the particular output of the quantizer for X .

We point out that, in the case of continuous-alphabet
sources, it is intuitive that approximate solutions to the EC-
SSQ, respectively FR-SSQ, design problem can be obtained
by applying the proposed algorithm to discretizations of the
original sources. Another notable contribution of this work is a
theoretical proof of the fact that the SSQ obtained in this way
approaches the performance of the optimal SSQ (with convex
cells) for the original sources as the discretization increases
in accuracy, if the sources have a continuous joint probability
density function (pdf).

It is also important to discuss the relation of our work with
the algorithms proposed for the design of successively refin-
able scalar quantizers [13], [17], [18]. In the latter problem,

the goal is also to design a quantizer for the first encoder
and conditional quantizers for the second encoder. The main
difference is that for the latter problem all quantizers are
designed for the same source. In our scenario, the quantizers
operating at the different decoders are for distinct sources. This
generalization significantly complicates the problem leading to
a solution algorithm of higher computational complexity.

We would like to mention that the proposed EC-SSQ design
algorithm was first presented in the conference paper [22]. In
the current work, we refine the description of the algorithm
and include more experimental results and discussions. Ad-
ditionally, this work proposes a design algorithm for the FR
case and presents an important theoretical result (Theorem 1)
which does not appear in [22].

This paper is organized as follows. The next section intro-
duces the necessary definitions and notations. Section III for-
mulates the problem of optimal EC-SSQ design and presents
the proposed solution algorithm. The problem of optimal FR-
SSQ design and its solution are presented in Section IV.
Section V investigates the application of the proposed designs
to continuous sources. Section VI shows simulation results
and, finally, Section VII concludes the paper.

II. NOTATIONS AND PROBLEM FORMULATION

This section presents the definitions and notations used
throughout this work. Let X and Y be two finite-alphabet
jointly distributed RVs. Let PXY denote their joint pmf.
The RVs X and Y take values in the alphabets X =
{x1, x2, . . . , xK1} ⊆ R, respectively Y = {y1, y2, . . . , yK2} ⊆
R, where K1 and K2 are positive integers, xi < xi+1, for
1 ≤ i ≤ K1 − 1 and yj < yj+1, for 1 ≤ j ≤ K2 − 1. Let PX
and PY denote the marginal pmfs of X and Y , respectively.

For any positive integer k denote Ik , {0, . . . , k} and Ek ,
{(u, v) ∈ I2

k |u < v}. For any (u, v) ∈ EK1
let CX(u, v] ,

(xu, xv]∩X = {xu+1, . . . , xv}. For any (m,n) ∈ EK2
denote

CY (m,n] , (ym, yn]∩Y = {ym+1, . . . , yn}. In this work, we
consider quantizers with convex cells. A subset of X is said to
be convex if it equals CX(u, v] for some (u, v) ∈ EK1 , while
any convex subset of Y equals CY (m,n] for some (m,n) ∈
EK2

.
For any positive integer M , an ascending M -sequence for

X is a sequence of integer thresholds r , (r0, r1, . . . , rM ),
such that r0 = 0 < r1 < . . . < rM−1 < rM = K1.
Let us denote by TX(M) the set of all such sequences.
Furthermore, let TX , ∪M>0TX(M). Clearly, the encoder
partition of any scalar quantizer with M convex cells for the
source X can be identified with the ascending M -sequence
r ∈ TX(M), where CX(ri−1, ri] is the ith cell, for 1 ≤
i ≤ M . Similarly, an ascending M -sequence for Y is any
sequence of integer thresholds s = (s0, s1, . . . , sM ) such that
s0 = 0 < s1 < . . . < sM−1 < sM = K2. We use the notation
TY (M) for the set of all ascending M -sequences for Y , and
TY , ∪M>0TY (M). The encoder partition of any quantizer
with M convex cells for the source Y can be identified with
the ascending M -sequence s ∈ TY (M), where CY (sj−1, sj ]
is the jth cell, for 1 ≤ j ≤ M . In the sequel, we use
interchangeably the terms ascending sequence and quantizer
(or encoder) partition.
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Fig. 2: Illustration of the graph GX(η) (top) for K1 = 4 and
the graph GY (ζ) (middle) for K2 = 3. The nodes are depicted
with circles and the edges with arcs. A path in GX(η) from
0 to K1 is illustrated at the bottom.

In this work, we also use the fact that any quantizer with
convex cells can be naturally associated with a path in a
certain WDAG. Any WDAG is defined by a set of vertexes
(or nodes), a set of directed edges and a weighting function
which assigns a real number to each edge, called the weight
of the edge. A path in the WDAG is a sequence of connected
edges. Alternatively, a path can be regarded as a sequence of
nodes, where any two consecutive nodes are connected by an
edge. The weight of the path is the sum of the weights of
its edges. The MWP problem in the WDAG is the problem
of finding the path of minimum weight from the source node
to the final node. Further, for any positive integer k, the k-
edge MWP problem is the problem of finding the path of
minimum weight among all paths from the source to the final
node which have exactly k edges. This is a length-constrained
MWP problem since the number of edges can be regarded as
the length of the path.

For any mapping η : EK1
→ R, let GX(η) denote the

WDAG where IK1
is set of vertexes, EK1

is the set of edges,
and η is the weighting function. The source node is the vertex
0 and the final node is the vertex K1. It can be easily seen
that any ascending M -sequence r ∈ TX(M) can be identified
with the M -edge path in GX(η) from the source to the final
node whose ith edge is (ri−1, ri). Clearly, this correspondence
between M -ascending sequences for X and M -edge paths
from 0 to K1 is one-to-one.

Likewise, for any mapping ζ : EK2
→ R, let GY (ζ) denote

the WDAG with IK2
as the set of vertexes, EK2

as the set of
edges, and ζ as the weighting function. Then there is a one-to-
one correspondence between the ascending M -sequences for
Y and the M -edge paths from 0 to K2.
Example 1. Figure 2 illustrates the WDAG GX(η) (top) for
the case when K1 = 4 and the WDAG GY (ζ) (middle) for the
case when K2 = 3. The vertexes are represented with circles
and the edges are represented with arcs. A path in GX(η)
from 0 to K1 is shown at the bottom in Figure 2. Its edges

are (0, 2) and (2, 4). The path corresponds to the quantizer
with cells CX(0, 2] = {x1, x2} and CX(2, 4] = {x3, x4}.

An SSQ for the pair of RVs (X,Y ) consists of two encoding
functions f1, f2, and two decoding functions g1, g2

f1 : X −→ I1, f2 : I1 × Y −→ I2,

g1 : I1 −→ X̂, g2 : I1 × I2 −→ Ŷ,
(1)

where I1 = {1, 2, . . . ,M1} and I2 = {1, 2, . . . ,M2} for some
positive integers M1,M2, X̂ ⊆ R and Ŷ ⊆ R. Notice that the
pair (f1, g1) represents a scalar quantizer with M1 cells for
the source X . We will use the notation Ci for the cell assigned
index i, i.e., Ci , f−1

1 (i), 1 ≤ i ≤ M1. For each i, 1 ≤ i ≤
M1, the encoder-decoder pair (f2(i, ·), g2(i, ·)) represents a
scalar quantizer for the source Y . Let M2,i denote its number
of quantizer cells. Note that M2,i ≤ M2. Additionally, we
use the notation Ci,j for the j-th cell of this quantizer, i.e.,
Ci,j , {y ∈ Y|f2(i, y) = j}.

We will assume that all aforementioned quantizers con-
tain convex cells. Thus, the encoder partition of each such
quantizer is specified by some ascending sequence. Let r ,
(r0, r1, . . . , rM1

) ∈ TX(M1) be the ascending sequence spec-
ifying the encoder partition generated by f1. In other words,
we have Ci = CX(ri−1, ri] for 1 ≤ i ≤M1. Further, for each
1 ≤ i ≤ M1, let si , (si,0, si,1, . . . , si,M2,i) ∈ TY (M2,i)
be the ascending sequence specifying the encoder partition
generated by f2(i, ·). Thus, we have Ci,j = CY (si,j−1, si,j ]
for 1 ≤ j ≤ M2,i. We will denote by s̄ the M1-tuple
(s1, . . . , sM1

).
We will use the squared error as a distortion measure. Thus,

the expected distortion at decoder 1, respectively 2, is

D1(f1, g1) = E[(X − X̂)2] =

M1∑
i=1

∑
x∈Ci

(x− g1(i))2PX(x),

D2(f1, f2, g2) = E[(Y − Ŷ )2] = (2)
M1∑
i=1

M2,i∑
j=1

∑
y∈Ci,j

(y − g2(i, j))2
∑
x∈Ci

PXY (x, y).

It is known that, for fixed encoders, the decoding functions
can be optimized to minimize the distortion by setting

g1(i) = x̂(Ci), g2(i, j) = ŷ(Ci,j |Ci), (3)

for 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,i, where, for each set A ⊂ X,
and each B ⊂ Y, we define

x̂(A) ,

∑
x∈A xPX(x)∑
x∈A PX(x)

,

ŷ(B|A) ,

∑
y∈B yP[Y = y|X ∈ A]∑
y∈B P[Y = y|X ∈ A]

=

∑
y∈B y

∑
x∈A PXY (x, y)∑

y∈B
∑
x∈A PXY (x, y)

.

In the sequel we assume optimized decoders. Thus, the distor-
tions at decoder 1, respectively 2, depend only on the encoders,
which are completely specified by their partitions. Therefore,
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we denote them from now on by D1(r), respectively D2(r, s̄).
By plugging (3) in (2) we obtain

D1(r) =

M1∑
i=1

∑
x∈Ci

(x− x̂(Ci))
2PX(x), (4)

D2(r, s̄) =

M1∑
i=1

M2,i∑
j=1

∑
y∈Ci,j

(y − ŷ(Ci,j |Ci))2
∑
x∈Ci

PXY (x, y).

Let R1(r) denote the rate of encoder 1 and let R2(r, s̄) be
the rate of encoder 2. The expression of the rates depends on
whether the quantizers are FR or EC. Therefore, from now
on we will discuss the two cases separately. In the following
section we formulate the problem of optimal EC-SSQ design
and propose a solution algorithm. The counterpart for the FR
case is addressed in Section IV.

III. OPTIMAL EC-SSQ DESIGN ALGORITHM

Let I and J be the random variables representing the
indexes output by f1, respectively f2. In the EC case, the
rate at encoder 1 equals the entropy of I , while the rate at
encoder 2 equals the conditional entropy of J conditioned on
I . Thus, we have

R1(r) = −
M1∑
i=1

P (Ci) log2 P (Ci),

R2(r, s̄) = −
M1∑
i=1

M2,i∑
j=1

P (Ci, Ci,j) log2 P (Ci, Ci,j)+

M1∑
i=1

P (Ci) log2 P (Ci),

(5)

where P (Ci) , P[X ∈ Ci] and P (Ci, Ci,j) , P[X ∈ Ci, Y ∈
Ci,j ], for 1 ≤ i ≤M1 and 1 ≤ j ≤M2,i.

Let RDEC denote the set of all quadruples
(R1(r), R2(r, s̄), D1(r), D2(r, s̄)) for all possible pairs (r, s̄).
Then any point on the lower boundary of the convex hull of
RDEC is optimal in some sense. Any such point is the solution
of the minimization of a weighted sum of the distortions and
rates ρ1D1(r)+ρ2D2(r, s̄)+λ1R1(r)+λ2R2(r, s̄), for some
choice of positive weights ρ1, ρ2, λ1 and λ2. Note that the
solution of the minimization problem remains the same if all
the weights are divided by ρ1 + ρ2. Therefore, we formulate
the optimization problem as

min
M1,r∈TX(M1),s̄∈TM1

Y

F(r, s̄), (6)

where

F(r, s̄) , ρD1(r) + (1− ρ)D2(r, s̄)λ1R1(r) + λ2R2(r, s̄),

for some fixed ρ, 0 < ρ < 1, λ1 > 0 and λ2 > 0. We
point out that the formulation of the optimization problem as
a minimization of a weighted sum of distortion(s) and rate(s)
was also adopted in [13], [23], [24].

Based on relations (4)-(6) we obtain that

F(r, s̄) =
M1∑
i=1

(
ρ
∑
x∈Ci

(x− x̂(Ci))
2PX(x)− (λ1 − λ2)P (Ci) log2 P (Ci)+

M2,i∑
j=1

(
(1− ρ)

∑
y∈Ci,j

(y − ŷ(Ci,j |Ci))2
∑
x∈Ci

PXY (x, y)−

λ2P (Ci, Ci,j) log2 P (Ci, Ci,j)
))

.

In order to simplify the expression of the cost we introduce a
few more notations. For each set C ⊆ X and C ′ ⊆ Y denote

dX(C) , ρ
∑
x∈C

(x− x̂(C))2PX(x),

hX(C) , −(λ1 − λ2)P (C) log2 P (C),

dY (C ′|C) , (1− ρ)
∑
y∈C′

(y − ŷ(C ′|C))2
∑
x∈C

PXY (x, y),

hY (C ′|C) , −λ2P (C,C ′) log2 P (C,C ′).

Using the above notations the cost function in (6) becomes

F(r, s̄) =

M1∑
i=1

(
dX(Ci) + hX(Ci) +

M2,i∑
j=1

(dY (Ci,j |Ci) + hY (Ci,j |Ci))︸ ︷︷ ︸
τ(Ci,si)

)
.

By examining the cost F(r, s̄) we notice that for each i the
contribution of the partition si to the cost function depends
on cell Ci, but does not depend on any other cell of the
quantizer for X . Therefore, we will denote it by τ(Ci, si). We
conclude that when the partition r is fixed the optimization of
the partition si can be performed separately for each i. In other
words, the following holds

min
M1,r∈TX(M1),s̄∈TM1

Y

F(r, s̄) =

min
M1,r∈TX(M1)

M1∑
i=1

(
dX(Ci) + hX(Ci) + min

M2,i,si∈TY (M2,i)
τ(Ci, si)

)
.

Further, for each (u, v) ∈ EK1
, denote by ω(CX(u, v]) the

minimum value of τ(Ci, si) over all partitions si when Ci =
CX(u, v], in other words

ω(CX(u, v]) , min
M2,s∈TY (M2)

τ(CX(u, v], s). (7)

With the above notation, problem (6) becomes equivalent to

min
M1,r∈T(M1)

F̂(r) ,
M1∑
i=1

(dX(Ci) + hX(Ci) + ω(Ci)) . (8)

We will show that the above problem is equivalent to an MWP
problem. Indeed, consider the WDAG GX(w), where, for each
(u, v) ∈ EK1 , w(u, v) is defined by

w(u, v) , dX(CX(u, v]) + hX(CX(u, v]) + ω(CX(u, v]). (9)

Then any partition r ∈ TX(M1) is in a one-to-one correspon-
dence with an M1-edge path in GX(w), from the source to
the final node. Additionally, the weight of the path equals the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2018.2869864

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

cost F̂(r). This implies that problem (8) is equivalent to the
MWP problem in GX(w).

In order to solve the MWP problem in GX(w), we need to
be able to evaluate each edge weight. Therefore, we need to
solve first problem (7) for each edge (u, v). It turns out that
problem (7) is also equivalent to an MWP problem in some
other WDAG. Indeed, consider the WDAG GY (wu,v), where
for each edge (m,n) ∈ EK2 , the weight wu,v(m,n) is defined
as

wu,v(m,n) , (10)
dY (CY (m,n]|CX(u, v]) + hY (CY (m,n]|CX(u, v]).

Then any partition s ∈ TY (M2) is in a one-to-one correspon-
dence with an M2-edge path from the source to the final node
in WDAG GY (wu,v). The weight of the path equals the cost
function in (7). Thus, problem (7) is equivalent to the MWP
path problem in GY (wu,v).

Notice that solving the MWP problem in some WDAG
requires O(|V | + |E|) operations, if the weight of each edge
can be evaluated in constant time, where V denotes the
vertex set and E denotes the edge set. In order to enable the
evaluation in constant time of each edge weight, we include
a preprocessing step which computes and stores the following
cumulative values

ϕk,X(u) ,
u∑
i=1

xkPX(xi),

ϕk,XY (u,m) ,
m∑
j=1

u∑
i=1

ykPXY (xi, yj),

for k = 0, 1, 2, 0 ≤ u ≤ K1 and 0 ≤ m ≤ K2. All the above
values can be computed in O(K1K2) time, while the amount
of memory needed store all of them is also O(K1K2). Then
P (CX(u, v], CY (m,n]) can be computed in constant time as
follows

P (CX(u, v], CY (m,n]) = ϕ0,XY (v, n)− ϕ0,XY (v,m)−
ϕ0,XY (u, n) + ϕ0,XY (u,m).

Similarly, the quantity
n∑

j=m+1

v∑
i=u+1

yjPXY (xi, yj) can be

evaluated in constant time using ϕ1,XY (·, ·), leading further
to the evaluation of ŷ(CY (m,n]|CX(u, v]) in O(1) time as
well. Next notice that

n∑
j=m+1

(yj − ŷ(CY (m,n]|CX(u, v]))2
v∑

i=u+1

PXY (xi, yj) =

n∑
j=m+1

v∑
i=u+1

y2
jPXY (xi, yj)−

ŷ(CY (m,n]|CX(u, v])2P (CX(u, v], CY (m,n]),

where
n∑

j=m+1

v∑
i=u+1

y2
jPXY (xi, yj) can also be computed in

O(1) time based on ϕ2,XY (·, ·).
Let us summarize now the solution algorithm to problem

(6). After performing the preprocessing step the algorithm
proceeds in two stages as follows.

0 1 2 3 4

0 1 2 3 4

0 1 2 3

0 1 2 3 0 1 2 3

Fig. 3: The paths of graphs GX(w) and GY (wu,v) in Example
2. Vertex es are depicted with circles and edges with arcs. The
path of GX(w) corresponds to the quantizer for X with cells
C1 = {x1, x2} and C2 = {x3, x4}. The path in GY (w0,2)
represents the quantizer for Y with cells C1,1 = {y1} and
C1,2 = {y2, y3}). The path in GY (w2,4) represents the
quantizer for Y with cells C2,1 = {y1, y2} and C2,2 = {y3}.

1) For each pair (u, v) ∈ EK1 , solve the MWP problem
in GY (wu,v), where wu,v is given in (10). This takes
O(K2

2 ) operations for each pair (u, v). Doing so for all
(u, v) ∈ EK1

amounts to O(K2
1K

2
2 ) operations.

2) Solve the MWP problem in GX(w), where w is given in
(9). This can be done in O(K2

1 ) time.
In conclusion, the overall time complexity of the proposed
algorithm is O(K2

1K
2
2 ).

Example 2. Figure 3 shows an example of a path in GX(w)
(top) and a path in GY (wu,v) (bottom) for each edge (u, v) of
the path in GX(w). Here K1 = 4 and K2 = 3 as in Example
1. The vertexes in each graph are represented with circles
and the edges are represented with arcs. The path in GX(w)
corresponds to the quantizer for X with cells C1 = {x1, x2}
and C2 = {x3, x4}. The path in GY (w0,2) contains edges
(0, 1) and (1, 3) and corresponds to the quantizer for Y with
cells C1,1 = {y1} and C1,2 = {y2, y3}. The path in GY (w2,4)
contains edges (0, 2) and (2, 3) and represents the quantizer for
Y with cells C2,1 = {y1, y2} and C2,2 = {y3}. On the other
hand, we point out that the number of edges in the optimal
path in GY (wu,v) may differ for different pairs (u, v) ∈ EK1 .

IV. OPTIMAL FR-SSQ DESIGN ALGORITHM

In this section, we formulate the optimal FR-SSQ design
problem and present its solution.

The rates in the FR case are

R1(r) = log2M1, R2(r, s̄) =

M1∑
i=1

P (Ci) log2M2,i. (11)

It is easy to impose a constraint R1(r) ≤ R1 on the rate of
encoder 1 by fixing the number of cells in Q1 to be

M1 = b2R1c. (12)

The problem of optimal FR-SSQ design is formulated as

min
r∈TX(M1),s̄∈TM1

Y

F′(r, s̄), (13)

where

F′(r, s̄) , ρD1(r) + (1− ρ)D2(r, s̄) + λ2R2(r, s̄),

for some fixed ρ, 0 < ρ < 1, and λ2 > 0.
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Let RDFR(R1) denote the set of quadruples
(R1(r), R2(r, s̄), D1(r), D2(r, s̄)) satisfying (12). Then
any point on the lower boundary of the convex hull of
RDFR(R1) can be obtained by solving problem (13) for
some choice of ρ and λ2 as above.

Using the notations introduced in the previous section, the
cost in (13) becomes

F′(r, s̄) =

M1∑
i=1

(
dX(Ci) + λ2P (Ci) log2M2,i +

M2,i∑
j=1

dY (Ci,j |Ci)︸ ︷︷ ︸
τ ′(Ci,si)

)
.

Similarly to the EC case, if cell Ci is fixed, the partition si
can be optimized by minimizing the cost τ ′(Ci, si). Therefore,
for each (u, v) ∈ EK1 , let us denote by ω′(CX(u, v]) the
minimum value of τ ′(Ci, si) over all si when Ci = CX(u, v],
i.e.,

ω′(CX(u, v]) , min
M2,s∈TY (M2)

τ ′(CX(u, v], s). (14)

Then problem (13) becomes equivalent to

min
r∈TX(M1)

F̂′(r) ,
M1∑
i=1

(dX(Ci) + ω′(Ci)) . (15)

Consider the WDAG GX(w′), where for each (u, v) ∈ EK1

the weight w′(u, v) is defined as

w′(u, v) = dX(CX(u, v]) + ω′(CX(u, v]). (16)

Then any ascending M1-sequence r can be identified with an
M1-edge path in GX(w′) from the source to the final node
and its weight equals the cost F̂′(r). Since the correspondence
is one-to-one, it follows that problem (15) is equivalent to the
M1-edge MWP problem in GX(w′).

In order to solve the aforementioned problem, we need
to determine first the value of ω′(CX(u, v]) by solving the
minimization in (14), for each (u, v) ∈ EK1 . Note that, unlike
its counterpart (7) in the EC case, problem (14) can no longer
be cast as an MWP problem. In order to solve it, notice that
the following holds

ω′(CX(u, v]) = min
M2

(
λ2P (CX(u, v]) log2M2+

min
s∈TY (M2)

M2∑
j=1

dY (C ′j |CX(u, v])︸ ︷︷ ︸
Ŵu,v(M2)

)
.

(17)

We conclude that the above problem can be solved in two
stages.
A) Solve first the inner minimization over ascending M2-

sequences s, for each integer M2 > 0.
B) Solve the outer minimization over integers M2 > 0.

For each integer M2 > 0, the inner minimization is equivalent
to the M2-edge MWP problem in the WDAG GY (w′u,v),
where for each (m,n) ∈ EK2 , the weight w′u,v(m,n) is
defined as

w′u,v(m,n) , dY (CY (m,n]|CX(u, v]).

Thus, the quantity Ŵu,v(M2) defined in (17) equals the weight
of the M2-edge MWP in GY (w′u,v). As pointed out above,
solving (17) can be done by determining Ŵu,v(M2) for each
M2 and then performing a linear search over M2.

The computation of Ŵu,v(M2) can be accomplished using
dynamic programming (DP). The DP algorithm finds the k-
edge MWP path from node 0 to node n, for each pair (k, n)
with 1 ≤ k ≤M2 and 1 ≤ n ≤ K2. Let Wu,v(k, n) denote the
weight of the k-edge MWP path from node 0 to node n. Then
the following recurrence relation holds for all 2 ≤ k ≤ M2
and 2 ≤ n ≤ K2,

Wu,v(k, n) = min
1≤m<n

(
Wu,v(k − 1,m) + w′u,v(m,n)

)
. (18)

Clearly, Wu,v(1,m) = w′u,v(0,m) for all m ∈ IK2 \ {0}.
The DP process solves (18) for all pairs (k, n), 1 ≤ k ≤M2,
1 ≤ n ≤ K2, in lexicographical order. The value Ŵu,v(M2)
sought of equals Wu,v(M2,K2). The total amount of opera-
tions reaches O(M2K

2
2 ).

Note that the above procedure to solve the M2-edge MWP
problem, also solves the k-edge MWP problem for all smaller
path lengths k, for 1 ≤ k < M2. Since the maximum possible
value of M2 is K2, it follows that solving the M2-edge MWP
problem for all 1 ≤ M2 ≤ K2 can be done in O(K3

2 ) time.
Since the additional linear search over M2 in (17) takes only
O(K2) time, it follows that problem (17) can be solved in
O(K3

2 ) time.
Next we will show that the edge weights in the WDAG

GY (w′u,v) satisfy the so-called Monge property, fact which
allows for a speed-up of the DP algorithm.
Lemma. The edge weights in the WDAG GY (w′u,v) satisfy
the Monge property, i.e., the following holds

w′u,v(m,n) + w′u,v(m
′, n′) ≤ w′u,v(m,n′) + w′u,v(m

′, n),

for all 0 ≤ m < m′ < n < n′ ≤ K2. (19)

Proof: Let C = CX(u, v], PC(y) ,
∑

x∈C PXY (x,y)

P (C) and
η(m,n) ,

∑n
j=m+1(yj − ŷ(CY (m,n]|C))2PC(yj). Then we

have

w′u,v(m,n) = (1− ρ)P (CX(u, v])η(m,n). (20)

Note that PC(y) is a pmf and ŷ(CY (m,n]|C) =∑n
j=m+1 yjPC(yj)∑n
j=m+1 PC(yj) . Then according to [15], [16], the function

η(m,n) satisfies the Monge property, i.e., the following holds

η(m,n) + η(m′, n′) ≤ η(m,n′) + η(m′, n),

for all 0 ≤ m < m′ < n < n′ ≤ K2. The above property in
conjunction with (20) implies (19), thus completing the proof.

Since the weights w′u,v(m,n) of the WDAG GY (w′u,v)
satisfy the Monge property, the DP algorithm used to solve the
problem at stage A can be sped up by a factor of K2 [15], [16].
Specifically, this is done by applying the so-called SMAWK
algorithm introduced in [25] to compute all values Wu,v(k, n)
for all n and fixed k, in O(K2) operations. This implies
that problem (17) can be solved in O(K2

2 ) time. It follows
that computing ω′(CX(u, v]) for all pairs (u, v) ∈ EK1 takes
O(K2

1K
2
2 ) operations.
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Let us summarize now the proposed solution to the optimal
FR-SSQ design problem (13). We start with a preprocessing
step as in the EC case. After that the algorithm proceeds as
follows.

1) For each pair (u, v) ∈ EK1
, solve problem (17) in the

following two stages.
A) Solve the M2-edge MWP problem in GY (w′u,v) for all

1 ≤M2 ≤ K2. To this end, for each 1 ≤ k ≤ K2, use
SMAWK to compute Wu,v(n) for all 1 ≤ n ≤ K2.

B) Compute

ω′(CX(u, v]) = min
M2

(λ2P (CX(u, v]) log2M2 + Ŵu,v(M2)).

2) Solve the M1-edge MWP problem in the WDAG
GX(w′).

Recall that the preprocessing step needs O(K1K2) time.
Further, Step 1 requires O(K2

1K
2
2 ) operations. Step 2 can

be accomplished in O(M1K
2
1 ) running time. In conclusion,

the overall running time to solve problem (13) is O(K2
1K

2
2 )

assuming that M1 = O(K2
2 ).

V. APPLICATION TO CONTINUOUS SOURCES

In this section we assume that the sources X and Y are
continuous and apply the proposed algorithms to discretized
versions of X and Y . We show that the EC-SSQ, respectively
FR-SSQ, obtained in this way approaches in performance the
optimal EC-SSQ, respectively FR-SSQ, with convex cells for
the original sources as the discretization increases in accuracy.

First we need to introduce some notations. For any pair
of real-valued RVs (X,Y ) with joint pdf fXY , for each
positive real value B and positive integer K, we define
the pair of continuous RVs (XB , YB) and the pair of dis-
crete RVs (X̃B,K , ỸB,K) as follows. (XB , YB) is the trun-
cation of (X,Y ) to the set [−B,B] × [−B,B], i.e., its
pdf is fXBYB

(x, y) , fXY (x,y)∫ B
−B

∫ B
−B

fXY (x,y) dxdy
when (x, y) ∈

[−B,B] × [−B,B] and 0 otherwise. The marginal pdfs of
XB and YB are denoted by fXB

and fYB
, respectively.

Further, (X̃B,K , ỸB,K) is the quantized version of (XB , YB)
using a product scalar quantizer. More specifically, each scalar
quantizer has K cells of equal size, and the centroid of each
cell as the reconstruction value1. Thus, the thresholds of each
scalar quantizer are t(B)

0 , . . . , t
(B)
K , where t(B)

k , −B + 2kB
K ,

0 ≤ k ≤ K. Let UB,K denote the set of these thresh-
olds. The alphabet of X̃B,K is X̃B,K = {x(B)

k |1 ≤ k ≤
K}, where x

(B)
k ,

∫ t(B)
k

t
(B)
k−1

xfXB
(x) dx/

∫ t(B)
k

t
(B)
k−1

fXB
(x) dx if∫ t(B)

k

t
(B)
k−1

fXB
(x) dx > 0 and x

(B)
k , (t

(B)
k−1 + t

(B)
k )/2 other-

wise. The alphabet of ỸB,K is ỸB,K = {y(B)
k |1 ≤ k ≤

K}, where y
(B)
k ,

∫ t(B)
k

t
(B)
k−1

yfYB
(y) dy/

∫ t(B)
k

t
(B)
k−1

fYB
(y) dy if∫ t(B)

k

t
(B)
k−1

fYB
(y) dy > 0 and y

(B)
k , (t

(B)
k−1 + t

(B)
k )/2 otherwise.

The joint pmf of (X̃B,K , ỸB,K) is PX̃B,K ỸB,K
(x

(B)
k , y

(B)
l ) ,∫ t(B)

k

t
(B)
k−1

∫ t(B)
l

t
(B)
l−1

fXBYB
(x, y) dydx, 1 ≤ k, l ≤ K.

1We make the convention that, if the probability of a cell is 0, then its
centroid is the middle of the corresponding interval.

An SSQ for a continuous source is specified by the en-
coding functions f1, f2 and the decoding functions g1, g2,
as in (1), where I1 = {1, 2, . . . ,M1} or I1 = Z and
I2 = {1, 2, . . . ,M2} or I2 = Z. Note that we also consider
the possibility that I1 = Z and I2 = Z in the EC case. The
following restrictions are imposed on the partitions generated
by f1 and f2(i, ·), i ∈ I1.
C1) Each partition has convex cells, thus the cells are inter-

vals, open at the left end and closed at the right end
(except when the right end equals infinity).

C2) Each partition has a finite number of cells in any bounded
interval2.

For simplicity, let us denote Q = (f1, f2, g1, g2). When
applying the SSQ Q to a pair of RVs (X ′, Y ′), we denote
by D1(Q, X ′) and D2(Q, X ′, Y ′) the distortions at the first
and second decoder, respectively, i.e.,

D1(Q, X ′) , E[(X ′ − X̂ ′)2],

D2(Q, X ′, Y ′) , E[(Y ′ − Ŷ ′)2],

where Ŷ ′ = g2(f1(X ′), f2(f1(X ′), Y ′)) and X̂ ′ =
g1(f1(X ′)). The rates of the two encoders in the EC case
will be denoted by REC,1(Q, X ′) and REC,2(Q, X ′, Y ′),
respectively. Thus,

REC,1(Q, X ′) , −E[log2 P (f1(X ′))],

REC,2(Q, X ′, Y ′) , −E[log2 P (f2(f1(X ′), Y ′)|f1(X ′))],

where, for a discrete RV Z̃, P (Z̃) denotes its pmf, i.e.,
P (Z̃) = PZ̃(Z̃). The rates in the FR case are RFR,1(Q, X ′) ,
log2M1 and RFR,2(Q, X ′, Y ′) , −E[log2M2,I ]. Note that
in the FR case, we necessarily have I1 and I2 finite. We denote
by QEC and by QFR(M1) the class of EC-SSQs and of FR-
SSQs defined as above (and, thus, satisfying conditions C1 and
C2), respectively. Finally, consider fixed 0 < ρ < 1, λ1 > 0
and λ2 > 0 and denote

FEC(Q, X ′, Y ′) ,ρD1(Q, X ′) + (1− ρ)D2(Q, X ′, Y ′)+

λ1REC,1(Q, X ′) + λ2REC,2(Q, X ′, Y ′),

FFR(Q, X ′, Y ′) ,ρD1(Q, X ′) + (1− ρ)D2(Q, X ′, Y ′)+

λ2RFR,2(Q, X ′, Y ′).

The proof of the following result is deferred to the appendix.
Theorem 1: Let (X,Y ) be a pair of jointly distributed

real-valued RVs with a continuous joint pdf fXY with finite
variance. For each positive real value B and positive integer
K, let Q̂B,K denote the optimal EC-SSQ with convex cells
for the pair of discrete RVs (X̃B,K , ỸB,K). Then the following
holds

lim
B→∞

lim
K→∞

FEC(Q̂B,K , X̃B,K , ỸB,K) =

inf
Q∈QEC

FEC(Q, X, Y ).
(21)

2Note that, in the EC case, considering only partitions where the number
of cells is finite in any bounded interval does not preclude the optimality of
the quantizer for Y , according to [28]. There exists the possibility that the
arguments of [28] could be extended to prove a similar claim for the quantizer
for X , too. The investigation of such a possibility is left for future work.
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Furthermore, for each positive real value B and positive
integers K and M1, let Q̂B,K(M1) denote the optimal FR-
SSQ with convex cells and with M1 cells in the encoder 1
partition, for the pair of discrete RVs (X̃B,K , ỸB,K). Then
the following holds

lim
B→∞

lim
K→∞

FFR(Q̂B,K(M1), X̃B,K , ỸB,K) =

inf
Q∈QFR(M1)

FFR(Q, X, Y ),
(22)

for each positive integer M1.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

This section assesses the practical performance of the pro-
posed EC-SSQ and FR-SSQ design algorithms for discretized
Gaussian sources. We start with a pair (X,Y ) of correlated
Gaussian sources, both with 0 mean and variance 1, with joint
pdf

fXY (x, y) =
1

2π
√

1− c2
exp

(
−x

2 + y2 − 2xyc

2(1− c2)

)
,

where c is the correlation coefficient. We consider c = 0.5 and
c = 0.9 in this section.

Next we consider the pair of discrete sources (X̃, Ỹ ) =
(X̃B1,K1

, ỸB2,K2
), where B1 = 3, B2 = 5, K1 = 100

and K2 = 160. The proposed EC-SSQ and FR-SSQ design
algorithms are applied to the pair of discrete RVs (X̃, Ỹ ) and
the obtained SSQs are extended to SSQs for the continuous
sources (X,Y ). Then the distortions at the two decoders,
denoted by D1, respectively D2, and the rates of the two
encoders, denoted by R1, respectively R2, are evaluated for
the extended SSQs applied to (X,Y ).

An SSQ for the discrete sources (X̃, Ỹ ) is extended to
an SSQ for (X,Y ) by extending each partition of the al-
phabet of X̃ and each partition of the alphabet of Ỹ to a
partition of R with the same number of cells as follows.
A partition for X̃ specified by the sequence of thresholds
0 = r0 < r1 < . . . < rM1 = K1 is extended to the partition
of R with thresholds (−∞, t(B1)

r1 , . . . , t
(B1)
rM1−1 ,∞). Likewise,

a partition for Ỹ specified by the sequence of thresholds
0 = s0 < s1 < . . . < sM2

= K2 is extended to the partition
of R with thresholds (−∞, t(B2)

s1 , . . . , t
(B2)
sM1−1 ,∞).

We first consider the case of EC-SSQ. We ran the proposed
algorithm for optimal EC-SSQ design for four values of ρ,
namely ρ = 0.1, 0.5, 0.9, 0.95, and for a large set of values of
λ1 and λ2 with λ1 ∈ [0.01, 1.50] and λ2 ∈ [0.01, 1.0].

Figures 4 and 5 illustrate the performance comparison
against the theoretical rate-distortion bounds. Figures 4a and
5a plot the distortion pairs (D1, D2) obtained in our exper-
iments for c = 0.9 and c = 0.5, respectively. Each figure
also shows the boundary of the theoretical region of nontrivial
distortion pairs, which is characterized by 0 ≤ D1 ≤ 1
and D2 ≤ 1 − c2(1 − D1). These figures show that, by
varying the parameters ρ, λ1 and λ2, the proposed design
is able to achieve a dense set of distortion pairs covering
fairly well the theoretical distortion region. For each distortion
pair (D1, D2) achieved by our scheme we compute the rate-
gap pair (∆R1,∆R2) relative to the theoretical lower bound,

namely ∆Ri = Ri − R∗i , i = 1, 2, where (R∗1, R
∗
2) denotes

the pair of information theoretical lower bounds on the rates at
the two encoders for the distortion pair (D1, D2). According
to [1], we have

R∗1 =
1

2
log2

1

D1
, R∗2 =

1

2
log2

1− c2(1−D1)

D2
.

The rate-gap pairs are plotted in Figures 4b and 5b for c = 0.9
and c = 0.5, respectively. Note that the existence of a gap is
expected since the theoretical bound is achieved using vector
quantization with dimension approaching ∞, while we use
scalar quantization. The rate gap between the optimum EC
scalar quantizer and the rate-distortion limit was proved in
[26] to be 1

2 log2
2πe
12 = 0.2546 bits/sample at high resolution.

As it can be seen from Figures 4b and 5b, in most of the
cases the rate-gap at encoder 2 is within 0.254 bits/sample,
while the gap at encoder 1 is within 0.274 bits/sample, which
is very close to the gap due to the low dimensionality of
the EC-SSQ. This fact demonstrates the effectiveness of the
proposed EC-SSQ design algorithm as an approximation of
the optimal EC-SSQ for continuous sources.

We also mention that the largest value of ∆R2 is only
slightly higher than the benchmark value of 0.2546, namely it
is 0.257 bits/sample for c = 0.9, respectively 0.262 bits/sample
for c = 0.5. On the other hand, there are several cases for
which the rate-gap ∆R1 ranges between 0.3 and 0.4. The
corresponding rate-gap pairs and distortion pairs are marked
using star-shaped markers in Figures 4 and 5. We observe
that these cases with excess rate loss are obtained when D1

is very small (thus, R1 is very high), while D2 . 0.1.
One possible reason for this additional rate loss could be the
coarseness of discretization for the source X . Another possible
reason could be the additional tension in the optimization of
encoder 1 generated by the competing requirements at the
two decoders. Namely, there is tension between ensuring a
good reconstruction of the source X as well as facilitating an
efficient encoder for the source Y .

It is also interesting to investigate the impact that the re-
finement of the discretization has on the EC-SSQ performance.
Table I compares the rate-distortion performance for four pairs
K1,K2 representing a gradual increase in the discretization
accuracy. The EC-SSQ design algorithm is applied in all four
cases to the same parameters, namely c = 0.9, λ1 = 0.22,
λ2 = 0.15 and ρ = 0.5. The pair K1 = 100,K2 = 160
represents the coarsest discretization. The discretization is
refined gradually by multiplying the initial values of K1 and
K2 by two, five and ten, respectively. It can be noted that the
rate gaps generally decrease, as expected, but the decrease is
very small. In particular, the relative decrease of ∆R1 from
the initial to the final value is of 0.5%, while for ∆R2 the
relative decrease is of 0.28%.

It is instructive to analyze the structure of the encoder
partitions generated by the proposed approach. Note that in the
sequel, the distortion is represented in dB, i.e., as 10 log10D.
Figure 6 illustrates the optimized encoder partitions of the
proposed EC-SSQ with R1 = 1.3173 and R2 = 1.0430,
when c = 0.9 and ρ = 0.5. In this example, the source X
is quantized to M1 = 3 cells with the sequence of thresholds
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Fig. 4: Comparison between the achievable rate-distortion
performance and the theoretical bound for c = 0.9.

TABLE I: Rate-distortion performance comparison of the
proposed EC-SSQ for various K1 and K2.

(K1,K2) (100, 160) (200, 320) (500, 800) (1000, 1600)
R1 1.3173 1.3030 1.3059 1.3030
D1 0.2307 0.2349 0.2340 0.2349
R2 1.0430 1.0461 1.0442 1.0452
D2 0.1196 0.1201 0.1201 0.1202

∆R1 0.2593 0.2580 0.2582 0.2580
∆R2 0.2150 0.2145 0.2144 0.2144

(−∞,−0.9, 0.9,∞). For each i = 1, 2, 3, all quantizers of
source Y have M2,i = 4 cells. The partitions corresponding
to the quantizers for Y , for i = 1, 2, 3, are defined by the
sequences of thresholds (−∞,−3.125,−1.75,−0.188,∞),
(−∞,−1.438, 0, 1.438,∞) and (−∞, 0.188, 1.75, 3.125,∞),
respectively. In addition, the contour of the joint pdf fXY is
also plotted in Figure 6, where the probability decreases as

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
D1

0

0.2

0.4

0.6

0.75

0.8

1

D
2

ρ = 0.1

ρ = 0.5

ρ = 0.9

ρ = 0.95

∆R1 > 0.3

c = 0.5

(a) Achievable distortion pairs against the theoretical bound.

0 0.05 0.1 0.15 0.2 0.274 0.3 0.35 0.4
∆R1

0

0.05

0.1

0.15

0.2

0.25

∆
R

2
ρ = 0.1

ρ = 0.5

ρ = 0.9

ρ = 0.95

∆R1 > 0.3

c = 0.5

(b) Gap to the theoretical minimum rate.

Fig. 5: Comparison between the achievable rate-distortion
performance and the theoretical bound for c = 0.5.

the color changes from green to blue. It is worth pointing out
that the output of the quantizer of Y is more densely spaced
where the joint probability takes on large values, as expected.

Figure 7 plots the distortion D2 of the proposed EC-SSQ,
versus the rate R2, when the pair (R1, D1) is fixed, for three
cases of (R1, D1) with c = 0.9 and ρ = 0.5. As expected,
for a fixed pair (R1, D1), the distortion at the second decoder
decreases steadily as the rate at encoder 2 increases. On the
other hand, when the rate R2 is kept fixed, the performance
at decoder 2 also improves consistently with the increase of
the rate at encoder 1. In particular, when R1 increases from
1.1983 to 1.6095, the performance at decoder 2 jumps up by
about 0.9 dB. The further increase of R1 to 1.9367 leads to
another gain of about 0.5 dB at decoder 2. This is expected
since, intuitively, increasing R1 corresponds to refining the
information about the source X . Since X and Y are correlated,
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Fig. 6: Example of optimized encoder partitions of the pro-
posed EC-SSQ, when c = 0.9 and ρ = 0.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
R2

-12
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-8

-7
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-5

D
2
(d
B
)

R1 = 1.1983, D1 = −5.7013 dB

R1 = 1.6095, D1 = −8.1258 dB

R1 = 1.9367, D1 = −10.0498 dB

Fig. 7: Performance of proposed EC-SSQ at decoder 2, for
three pairs (R1, D1) when c = 0.9 and ρ = 0.5.

the refinement of the information about X leads to more
information about Y . Thus, the rate at encoder 2 is used to
further refine the information which is already available about
Y through the reconstruction of X .

Next we assess the performance of the proposed FR-SSQ
design algorithm in comparison with the level-constrained
practical SSQ scheme developed in [4], based on the asymp-
totic quantization theory. The authors of [4] use the following
quantizer density functions for Q1, respectively Q2,i,

λ(x) =
fX(x)1/3∫
fX(x)1/3dx

, λ(y|Ci) =
f(y|Ci)1/3∫
f(y|Ci)1/3dy

,

to derive the asymptotical expressions of the distortions as

the rates approach infinity. Further, based on the asymptotical
analysis, they propose a practical scheme operating at finite
rates. Note that the design of [4] is performed under the
constraint that

∑M1

i=1M2,i = N , for some target value N .
The practical construction of [4] proceeds as follows. First,
the encoding function f1 partitions the real line into M1 cells
such that the area under the function λ(x) within each cell
equals 1/M1, using the marginal pdf fX(x). Subsequently,
the values of M2,i are computed using

M2,i =

⌊
N

[||f(y|Ci)||1/3P (Ci)]
1/3∑M1

i=1[||f(y|Ci)||1/3P (Ci)]1/3

⌉
,

where ||f(x)||m = [
∫
f(x)mdx]1/m, whileb·e denotes round-

ing to the nearest integer. Subsequently, for each cell i, 1 ≤
i ≤ M1, the encoding function f2(i, ·) partitions the real
line into M2,i cells such that the area under λ(y|Ci) within
each cell equals 1/M2,i, using the conditional pdf f(y|Ci).
Finally, the reconstruction values are taken as the centroid of
each quantization cell. The distortion and the average rate of
quantizer Q2 are evaluated using (4) and (11), respectively.
To implement the practical FR-SSQ based on the above
asymptotic analysis, the same discretization procedure as for
the proposed algorithm is utilized with K1 = 3000 and
K2 = 5000.

We ran the proposed algorithm for optimal FR-SSQ design
for two values of M1, namely 4 and 16, for ρ = 0.5, 0.9, and
a set of values of λ2 satisfying λ2 ∈ [0.00001, 0.05].

Figures 8a and 8b plot the distortion D2 versus the average
rate R2, for the proposed FR-SSQ in comparison with the
scheme of [4], for M1 = 4 and M1 = 16, respectively. The
plots for both correlation coefficients c = 0.5 and c = 0.9
and ρ = 0.5, 0.9 are included. It can be observed from both
figures that the performance when ρ = 0.5 and ρ = 0.9 is
almost identical. It can also be seen that our design always
outperforms the scheme of [4]. To make the comparison easier,
we show in Tables II and III the performance improvement
(in dB) over the scheme of [4] at decoder 2 for various values
of R2, when M1 = 4 and 16, respectively. Note that when
R2 ≈ 1.0, the quantizers of Y for all the schemes have
M2,i ≤ 2 cells. This explains why the improvement is small at
this rate. Then the gap gradually increases with the ascending
rates, in most cases. We note that the difference in performance
is more pronounced for the higher correlation coefficient and
the smaller M1. In particular, in the case of c = 0.5, the
improvement is around 0.45 dB for 2 ≤ R2 ≤ 3, for both
values of M1. For M1 = 4, the improvement increases as
R2 becomes higher than 3, reaching a peak of 0.75 dB at
R2 = 0.47, while for M1 = 16 the performance difference
peaks at 0.5 dB. In the case when c = 0.9, the improvement
over the scheme of [4] when M1 = 4 equals 0.8 dB for
2 ≤ R2 ≤ 3, then gradually increases for R2 > 3, achieving
the value of 1.4 dB when R2 = 4.4. For M1 = 16 the
performance gain slightly drops, reaching about 0.55 dB for
2 ≤ R2 ≤ 3 and a maximum of 1.1 dB at R2 = 4.5.

For a fair comparison, we also have to account for the
value of D1, which is shown in Table IV. We point out that,
for fixed M1, the value of D1 obtained with the scheme of
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(a) M1 = 4.
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(b) M1 = 16.

Fig. 8: Performance comparison of the proposed FR-SSQ
against the level-constrained SSQ of [4].

TABLE II: Performance improvement (in dB) at the second
decoder over the scheme of [4] for M1 = 4.

c
R2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.4 4.7

0.5 0.003 0.3 0.45 0.45 0.45 0.65 0.55 0.65 0.75
0.9 0.2 0.5 0.8 0.8 0.8 0.95 1.2 1.4 −

[4] is constant, while with our design it varies slightly as R2

increases up to 3.5, after which it stabilizes. We observe that
our scheme outperforms the scheme of [4] at the first decoder
when M1 = 4, but it is worse when M1 = 16. However, the
loss in the latter case (which is of only 0.1 dB for R2 ≥ 3.5) is
offset by the gain in performance at decoder 2. Therefore, we

TABLE III: Performance improvement (in dB) at the second
decoder over the scheme of [4] for M1 = 16.

c

R2
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.1

0.5 − − 0.45 0.45 0.5 0.5 0.5 0.4 0.4 0.4

0.9 0.15 0.4 0.55 0.45 0.55 0.8 1.0 1.1 0.9 0.9

TABLE IV: Comparison of D1 between the proposed FR-SSQ
and the scheme of [4] for M1 = 4 and 16. The distortion is
listed in dB.

D1

M1
4 16

[3] −9.05 −20.08

Proposed
c = 0.5

R2 < 3.5 R2 ≥ 3.5 R2 < 3.3 R2 ≥ 3.3

[−9.30,−9.21] −9.30 [−19.99,−19.89] −19.99

Proposed
c = 0.9

R2 < 2.3 R2 ≥ 2.3 R2 < 3.5 R2 ≥ 3.5

[−9.30,−9.18] −9.30 [−20.07,−19.74] −19.99

conclude that the overall performance of our scheme is higher
than that of [4] for both values of M1. On the other hand,
the performance difference tends to decrease as M1 increases.
This is expected since the asymptotic analysis performed in
[4] becomes accurate when the rate approaches infinity.

Figure 9 illustrates the encoder partitions for the proposed
FR-SSQ and for the scheme of [4] when M1 = 3 and R2 ≈
2.17. The figure additionally shows the contour of the joint pdf
fXY . It can be noticed that the quantizer of X for the proposed
FR-SSQ (Figure 9a) has more dense outputs in the region
where the marginal pdf fX takes on large values, compared
with the counterpart of [4] (Figure 9b). This could explain the
performance improvement of around 0.19 dB in terms of D1

for our scheme.
It is instructive to examine the probabilities of the cells

of the quantizer for X . For the proposed FR-SSQ, we have
P (C1) = 0.2743, P (C2) = 0.4711 and P (C3) = 0.2546,
while for the scheme of [4], we have P (C1) = 0.2278,
P (C2) = 0.5444 and P (C3) = 0.2278. Note that in both
cases, P (C2) is higher than P (C1) and than P (C3), but
cell C2 is narrower in our design, making its contribution
to distortion D1 smaller than for the scheme of [4]. It turns
out that this decrease in the distortion of cell C2 offsets the
resulting increase in the distortion of cells C1 and C3, thus
leading to a smaller value of D1 for our design.

It can also be observed from Figure 9 that in our scheme
M2,1 = M2,3 > M2,2, while the opposite holds for the
design of [4]. This can be attributed to the different constraints
imposed in the two designs. Namely, our work constraints the
average rate at encoder 2, which is

∑M1

i=1 P (Ci) log2M2,i,
to be fixed, while [4] constraints the total number of cells
for all encoder 2 quantizers, to be fixed. Since P (C1) and
P (C3) are lower than P (C2), our design allows for values
of M2,1 and M2,3 higher than M2,2, since an extra cell in
either M2,1 or M2,3 contributes much less to the average rate
than an extra cell in M2,2. On the other hand, for the design
of [4], an extra cell in any quantizer at encoder 2 has the
same effect with respect to meeting the constraint. Therefore,
more cells are allocated to M2,2 since its distortion has a
higher weight in the average distortion D2 than M2,1 or M2,3
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(a) Proposed FR-SSQ.

(b) Scheme of [4].

Fig. 9: Encoder partitions for the proposed FR-SSQ (a) and
for the scheme of [4] (b) at rate R1 = 1.5850 (i.e., M1 = 3).

(i.e., P (C2) > P (C1) and P (C2) > P (C3)). This difference
in constraints leads to more quantizer cells being allocated
overall at encoder 2 in our design (i.e., 14 cells) than in the
competitor scheme (13 cells), ultimately leading to an 0.68 dB
improvement in terms of D2 for the proposed scheme.

VII. CONCLUSION

This paper develops optimal design algorithms for sequen-
tial scalar quantizers (SSQ) with convex cells for finite-
alphabet correlated sources. Both the fixed-rate (FR) and
entropy-constrained (EC) cases are considered. The cost to
be minimized is a weighted sum of distortions and rates.
The proposed solutions rely on solving the minimum-weight
path (MWP) problem in the EC case, respectively, a length-
constrained MWP problem in the FR case, in a series of
weighted directed acyclic graphs. The time complexity of each
solution is O(K2

1K
2
2 ), where K1 and K2 denote the respective

cardinalities of the alphabets of the two sources. We also

prove that, if the proposed algorithms are applied to discretized
versions of sources with continuous joint probability density
function, the performance approaches that of the optimal EC-
SSQ, respectively FR-SSQ, with convex cells for the original
sources as the discretization becomes more accurate. Experi-
mental results for correlated Gaussian sources corroborate the
aforementioned theoretical result.

APPENDIX

Proof of Theorem 1: We will only prove relation (21)
since (22) follows similarly.

Let F∗EC , infQ∈QEC
FEC(Q, X, Y ). Then for every ε >

0, there is Q∗ε ∈ QEC such that

F∗EC ≤ FEC(Q∗ε , X, Y ) ≤ F∗EC + ε. (23)

Further, let α : R × R → R be a function such that
E[α(X,Y )] is finite. For any B > 0, denote PB ,∫ B
−B
∫ B
−B fXY (x, y) dxdy. Then the following sequence of

equalities holds.

E[α(X,Y )] =

∫
R

∫
R
α(x, y)fXY (x, y) dxdy

= lim
B→∞

∫ B

−B

∫ B

−B
α(x, y)fXY (x, y) dxdy

= lim
B→∞

PB

∫ B

−B

∫ B

−B
α(x, y)

fXY (x, y)

PB
dxdy

= lim
B→∞

PBE[α(XB , YB)],

where the last equality is based on the fact that fXBYB
(x, y) =

fXY (x,y)
PB

for (x, y) ∈ [−B,B]× [−B,B] and fXBYB
(x, y) =

0 for (x, y) /∈ [−B,B] × [−B,B]. The above sequence of
relations, together with the definition of FEC , imply that

FEC(Q∗ε , X, Y ) = PBFEC(Q∗ε , XB , YB) + ε1(B), (24)

for some function ε1(B) such that lim
B→∞

ε1(B) = 0.
Since Q∗ε has convex cells, the partitions of f1 and f2,i,

i ∈ I1, can be specified by the thresholds separating the cells.
Note that, according to condition C2, the number of thresholds
inside any bounded set is finite.

For each positive real value B and positive integer K, let
Q∗ε,B,K denote the EC-SSQ obtained from Q∗ε by restricting
the encoding mappings f1 and f2,i to the interval [−B,B] and
by rounding down each threshold in (−B,B) to the closest,
no larger, value in UB,K . In other words, if a ∈ (−B,B)

is a threshold of Q∗ε , then it is rounded down to t
(B)
k such

that t(B)
k ≤ a < t

(B)
k+1. Let us assume that K is large enough

so that this rounding operation generates different values for
different thresholds in Q∗ε and all these values are larger than
−B. Further, let v∗B denote the vector obtained by stacking all
thresholds of Q∗ε which are in (−B,B) and let v∗B,K denote
the vector obtained by stacking the corresponding thresholds
of Q∗ε,B,K in the same order. Both vectors have the same
dimension. Then FEC(Q∗ε , XB , YB) can be regarded as a
function of v∗B , while FEC(Q∗ε,B,K , XB , YB) is the same
function of v∗B,K . Let β denote this function. Thus,

FEC(Q∗ε , XB , YB) = β(v∗B) and
FEC(Q∗ε,B,K , XB , YB) = β(v∗B,K).
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It can be easily seen that lim
K→∞

‖v∗B,K − v∗B‖2 = 0, where
‖ · ‖ denotes the Euclidian norm. Additionally, a moment of
thought reveals that β is a continuous function3. Thus, we
obtain that

FEC(Q∗ε,B,K , XB , YB) = FEC(Q∗ε , XB , YB) + δ(B,K), (25)

for some δ(B,K) such that lim
K→∞

δ(B,K) = 0.

Consider now the EC-SSQ Q̃∗ε,B,K for the pair of dis-
crete RVs (X̃B,K , ỸB,K), constructed from Q∗ε,B,K as ex-
plained next. For each cell Ci = (t

(B)
u , t

(B)
v ] of the first

encoder of Q∗ε,B,K , the corresponding cell in Q̃∗ε,B,K is
C̃i = {x(B)

u+1, . . . , x
(B)
v }. For each cell Ci,j = (t

(B)
m , t

(B)
n ]

of the second encoder of Q∗ε,B,K , the corresponding cell in
Q̃∗ε,B,K is C̃i,j = {y(B)

m+1, . . . , y
(B)
n }. It follows that P[X̃B,K ∈

C̃i] = P[XB ∈ Ci] and P[X̃B,K ∈ C̃i, ỸB,K ∈ C̃i,j ] =
P[XB ∈ Ci, YB ∈ Ci,j ] for all i and j. This observation
implies that

REC,1(Q̃∗ε,B,K , X̃B,K) = REC,1(Q∗ε,B,K , XB),

REC,2(Q̃∗ε,B,K , X̃B,K , ỸB,K) = REC,2(Q∗ε,B,K , XB , YB).
(26)

Next we will show that the following hold

D1(Q̃∗ε,B,K , X̃B,K) = D1(Q∗ε,B,K , XB)−DX̃B,K
, (27)

D2(Q̃∗ε,B,K ,X̃B,K , ỸB,K) =

D2(Q∗ε,B,K , XB , YB)− γ(Q∗ε,B,K),
(28)

where

DX̃B,K
,

K∑
k=1

∫ t
(B)
k

t
(B)
k−1

(x− x(B)
k )2fXB

(x) dx,

γ(Q∗ε,B,K) ,
M1∑
i=1

K∑
l=1

∫ t
(B)
l

t
(B)
l−1

(y − y(B)
l )(y + y

(B)
l −

2g2(i, f2(i, y)))

∫
Ci

fXBYB
(x, y) dxdy.

Note that |y+ y
(B)
l − 2g2(i, f2(i, y))| ≤ 4B and |y− y(B)

l | ≤
2B
K when y ∈ [t

(B)
l−1, t

(B)
l ]. Thus, we obtain that |γ(Q∗ε,B,K)| ≤

8B2

K

∑M1

i=1

∑K
l=1

∫ t(B)
l

t
(B)
l−1

∫
Ci
fXBYB

(x, y) dxdy = 8B2

K , which

leads to

lim
K→∞

γ(Q∗ε,B,K) = 0. (29)

In order to prove (27) let Ci = (t
(B)
u , t

(B)
v ]. It follows that∫ t(B)

v

t
(B)
u

(x− g1(i))2fXB
(x) dx =

v∑
k=u+1

∫ t
(B)
k

t
(B)
k−1

(x− x(B)
k + x

(B)
k − g1(i))2fXB

(x) dx =

v∑
k=u+1

(∫ t
(B)
k

t
(B)
k−1

(x− x(B)
k )2fXB

(x) dx+

∫ t
(B)
k

t
(B)
k−1

(x
(B)
k − g1(i))2fXB

(x) dx+

2(x
(B)
k − g1(i))

∫ t
(B)
k

t
(B)
k−1

(x− x(B)
k )fXB

(x) dx

)
=

v∑
k=u+1

∫ t
(B)
k

t
(B)
k−1

(x− x(B)
k )2fXB

(x) dx+
v∑

k=u+1

(x
(B)
k − g1(i))2PX̃B,K

(x
(B)
k ),

3The proof that β is continuous can be found in [27].

where the last equality is due to the fact that
∫ t(B)

k

t
(B)
k−1

(x −

x
(B)
k )fXB

(x) dx = 0 (based on the definition of x(B)
k ) and

that PX̃B,K
(x

(B)
k ) =

∫ t(B)
k

t
(B)
k−1

fXB
(x) dx. The above observation

implies (27). Further, in order to prove (28), let Ci,j =

(t
(B)
m , t

(B)
n ]. It follows that

∫ t(B)
n

t
(B)
m

(y − g2(i, j))2

∫
Ci

fXBYB
(x, y) dxdy

=
n∑

l=m+1

∫ t
(B)
l

t
(B)
l−1

(
(y − y(B)

l )(y + y
(B)
l − 2g2(i, j))

+(y
(B)
l − g2(i, j))2

)∫
Ci

fXBYB
(x, y) dxdy

=

n∑
l=m+1

∫ t
(B)
l

t
(B)
l−1

(y − y(B)
l )(y + y

(B)
l − 2g2(i, j))

∫
Ci

fXBYB
(x, y) dxdy

+
n∑

l=m+1

(y
(B)
l − g2(i, j))2P[X̃B,K ∈ C̃i, ỸB,K = y

(B)
l ],

where the last equality uses the fact that P[X̃B,K ∈
C̃i, ỸB,K = y

(B)
l ] =

∫ t(B)
l

t
(B)
l−1

∫
Ci
fXBYB

(x, y) dxdy. The above

observation implies (28). Further, relations (26)-(28) lead to

FEC(Q∗ε,B,K , XB , YB) = FEC(Q̃∗ε,B,K , X̃B,K , ỸB,K)+

ρDX̃B,K
+ (1− ρ)γ(Q∗ε,B,K). (30)

Further, recall that Q̂B,K is the optimal EC-SSQ (with convex
cells) for the pair of RVs (X̃B,K , ỸB,K). Let QB,K be the cor-
responding EC-SSQ for (XB , YB) with thresholds in UB,K ,
according to the correspondence described in the paragraph
after equation (25). Then we have, similarly to (30),

FEC(QB,K , XB , YB) = FEC(Q̂B,K , X̃B,K , ỸB,K)+

ρDX̃B,K
+ (1− ρ)γ(QB,K).

(31)

Now consider extending the EC-SSQ QB,K to an EC-SSQ
Q̄B,K for X,Y , as follows. The encoding partition for X in
Q̄B,K has two more cells, namely (−∞,−B) and (B,∞),
both having the mean of X as reconstruction. Likewise,
when X ∈ [−B,B], the encoder for Y has two more cells,
namely (−∞,−B) and (B,∞), both having the mean of Y as
reconstruction. When X /∈ [−B,B], the encoder for Y sends
only one symbol and the reconstruction is the mean of Y . It
can be readily seen that

FEC(Q̄B,K , X, Y ) = PBFEC(QB,K , XB , YB) + ε2(B), (32)

for some function ε2(B) such that lim
B→∞

ε2(B) = 0.

The aforementioned discussion implies the following se-
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quence of relations

F∗EC
(a)

≤ FEC(Q̄B,K , X, Y )

(b)
= PBFEC(QB,K , XB , YB) + ε2(B)

(c)
= PB

(
FEC(Q̂B,K , X̃B,K , ỸB,K) + ρDX̃B,K

)
+

PB(1− ρ)γ(QB,K) + ε2(B)

(d)

≤ PB

(
FEC(Q̃∗ε,B,K , X̃B,K , ỸB,K) + ρDX̃B,K

)
+

PB(1− ρ)γ(QB,K) + ε2(B)

(e)
= PBFEC(Q∗ε,B,K , XB , YB) + PB(1− ρ)γ(QB,K)−

PB(1− ρ)γ(Q∗ε,B,K) + ε2(B)

(f)
= PB (FEC(Q∗ε , XB , YB) + δ(B,K)) + PB(1− ρ)γ(QB,K)−

PB(1− ρ)γ(Q∗ε,B,K) + ε2(B)

(g)
= FEC(Q∗ε , X, Y )− ε1(B) + PBδ(B,K)+

PB(1− ρ)(γ(QB,K)− γ(Q∗ε,B,K)) + ε2(B)

(h)

≤ F∗EC + ε− ε1(B) + PBδ(B,K)+

PB(1− ρ)(γ(QB,K)− γ(Q∗ε,B,K)) + ε2(B).

Notice that (a) follows from the definition of F∗EC , (b) is
based on (32), (c) follows from (31), (d) holds in virtue of
the optimality of Q̂B,K for (X̃B,K , ỸB,K), (e) follows from
(30), (f) from (25), (g) is based on (24) and (h) is based on
(23). Next we use the sequence of relations (a)−(h) and apply
the fact that A1 ≤ A2 ≤ A3 implies that A2−A1 ≤ A3−A1

and A3 −A2 ≤ A3 −A1, for A1 = F∗EC , A2 being the right
hand side of (c) and A3 being the right hand side of (h). Thus,
we obtain

PB

(
FEC(Q̂B,K , X̃B,K , ỸB,K) + ρDX̃B,K

)
+

PB(1− ρ)γ(QB,K) + ε2(B)− F∗EC ≤
ε− ε1(B) + PBδ(B,K) + PB(1− ρ)γ(QB,K)−

PB(1− ρ)γ(Q∗ε,B,K) + ε2(B).

(33)

F∗EC + ε− ε1(B) + PBδ(B,K) + PB(1− ρ)γ(QB,K)−
PB(1− ρ)γ(Q∗ε,B,K) + ε2(B)−
PBFEC(Q̂B,K , X̃B,K , ỸB,K)−

PB

(
ρDX̃B,K

+ (1− ρ)γ(QB,K)
)
− ε2(B) ≤

ε− ε1(B) + PBδ(B,K) + PB(1− ρ)γ(QB,K)−
PB(1− ρ)γ(Q∗ε,B,K) + ε2(B).

(34)
Relation (33) implies that

F∗EC − PBFEC(Q̂B,K , X̃B,K , ỸB,K) ≥

PB

(
ρDX̃B,K

− δ(B,K) + (1− ρ)γ(Q∗ε,B,K)
)

+ ε1(B)− ε.

Relation (34) leads to

F∗EC − PBFEC(Q̂B,K , X̃B,K , ỸB,K) ≤

PB

(
ρDX̃B,K

+ (1− ρ)γ(QB,K)
)

+ ε2(B).

The above two inequalities, together with (29) and
lim
K→∞

DX̃B,K
= lim

K→∞
γ(QB,K) = lim

K→∞
δ(B,K) = 0,

lim
B→∞

ε1(B) = lim
B→∞

ε2(B) = 0 and lim
B→∞

PB = 1, lead to

0 ≤ lim
B→∞

lim
K→∞

FEC(Q̂B,K , X̃B,K , ỸB,K)− F∗EC ≤ ε,

for every ε > 0, which implies that relation (21) holds. Thus,
the proof is completed.
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