
1

On the Design of Symmetric Entropy-constrained
Multiple Description Scalar Quantizer with Linear

Joint Decoders
Huihui Wu, Student Member, IEEE, Ting Zheng and Sorina Dumitrescu, Senior Member, IEEE

Abstract—This work addresses the design of symmetric
entropy-constrained multiple description scalar quantizers (EC-
MDSQ) with linear joint decoders (EC-LMDSQ), i.e., where some
of the decoders compute the reconstruction by averaging the
reconstructions of individual descriptions. Thus, the use of linear
decoders reduces the space complexity at the decoder since only
a subset of the codebooks need to be stored.

The proposed design algorithm locally minimizes the La-
grangian, which is a weighted sum of the expected distortion
and of the side quantizers’ rates. The algorithm is inspired by
the EC-MDSQ design algorithm proposed by Vaishampayan and
Domaszewicz, and it is adapted from two to K descriptions.
Differently from the aforementioned work, the optimization of
the reconstruction values can no longer be performed separately
at the decoder optimization step. Interestingly, we show that the
problem is a convex quadratic optimization problem, which can
be efficiently solved. Moreover, the generalization of the encoder
optimization step from two to K descriptions increases drastically
the amount of computations. We show how to exploit the special
form of the cost function conferred by the linear joint decoders
to significantly reduce the time complexity at this step.

We compare the performance of the proposed design with
multiple description lattice vector quantizers (MDLVQ) and with
the multiple description scheme based on successive refinement
and unequal erasure protection (UEP). Our experiments show
that the proposed approach outperforms MDLVQ with dimension
1 quantization, as expected. Additionally, when more codebooks
are added our scheme even beats MDLVQ with quantization di-
mension approaching ∞, for rates sufficiently high. Furthermore,
the proposed approach is also superior to UEP with dimension
1 quantization when the rates are low.

Index Terms—Multiple descriptions, scalar quantization,
entropy-constrained, linear decoder, convex quadratic problem.

I. INTRODUCTION

A multiple description code (MDC) generates separate de-
scriptions of a signal, which can be individually decoded. Ad-
ditionally, each subset of descriptions can be jointly decoded,
improving the reconstruction as more descriptions are added to
the subset. This way MDC enables a graceful degradation of
performance in the case when not all descriptions arrive at the
decoder. MDC has applications in the transmission of delay-
sensitive data (such as video or audio/speech) over packet
lossy networks, in heterogeneous multicast, in distributed data
storage and diversity communication systems. Additionally,
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very recently, a new application of MDC emerged, namely,
in the transmission over the multicast cognitive interference
channel [1]. Some tutorial papers on MDC and its practical
applications are [2]–[4]. A variety of practical MDC schemes
have been proposed in the literature based on scalar quantizers
[5]–[10], vector quantizers [11], correlated transforms [12],
[13], domain partitioning [14]–[16], successively refinable
codes with unequal erasure protection (UEP) [17]–[19], lattice-
based vector quantizers (MDLVQ’s) [20]–[26], low density
matrix codes [27], [28], polar codes [29], etc. A theoretical
comparison at high rates, of several representative practical
MDC schemes is performed in [30].

An MDC with K descriptions consists of K encoders
f1, · · · , fK (also referred to as side encoders), and 2K−1 de-
coders, each decoder corresponding to a non-empty subset of
descriptions [2]. We use the term central decoder to describe
the decoder corresponding to the whole set of descriptions
K, and use the term side decoders to describe the decoders
corresponding to the sets which have only one description.
The decoders other than the side decoders are referred to as
joint decoders1. Note that the central decoder is a special case
of a joint decoder. In this work we are interested in symmetric
MDC’s, where the attribute “symmetric” refers to the fact that
all descriptions have the same rate, while the quality of the
reconstruction at joint decoders depends on the number rather
than on the particular set of jointly decoded descriptions.

As pointed out earlier, an MDC scheme generating K
descriptions has 2K − 1 decoders. If each decoder needs to
store some information to enable decoding, then the storage
space requirement increases significantly with the number K
of descriptions. High storage space needs could be an issue,
especially in applications where the memory resources are
scarce (for example, transmission to mobile devices). Such
applications motivate the study of MDC with reduced storage
space decoder.

Among existing symmetric MDC schemes with reduced
storage space decoders, the most popular are UEP and
MDLVQ. The UEP scheme employs a successively refinable
source code (SRC) in conjunction with maximum distance
separable channel codes, such as Reed-Solomon (RS) codes,
of various strengths. The output of the SRC is partitioned
into consecutive segments of non-decreasing lengths. These
segments are protected against erasures using RS codes of
the same length K, but non-increasing strengths. Finally, the

1The terms “side encoder” and “joint decoder” are borrowed from [10].
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K descriptions are formed across the channel codewords.
When only k out of K descriptions are received, all RS
codewords protected against at most K − k erasures can be
decoded correctly, ensuring that a prefix of the SRC can be
successfully recovered and further decoded. The application
of the UEP scheme in image/video transmission over packet
lossy channels was extensively studied [17]–[19].

The MDLVQ scheme is based on vector quantization with
lattice codebooks. More specifically, it uses a fine lattice
(central lattice) as the codebook of the central decoder, and
a coarse lattice (side lattice) as the codebook for the side
decoders. The MDLVQ scheme was introduced in [20] for the
case of two symmetric descriptions and generalized to larger
K in [21]. In the latter case joint decoders corresponding to
at least two, but less than K descriptions, use the average
of the lattice points corresponding to received descriptions as
reconstruction. Further study of MDLVQ was performed in
[22]–[24], [26]. In [25] an MDLVQ of dimension 1 is proposed
with the side codebooks being shifts of the side lattice.

In this paper we propose a technique for the design
of symmetric entropy-constrained multiple description scalar
quantizer with reduced storage space decoder. A multiple de-
scription scalar quantizer (MDSQ) is an MDC where each side
encoder is a scalar quantizer. An entropy-constrained MDSQ
(EC-MDSQ) is an MDSQ where each side encoder is an
entropy-constrained quantizer. The MDSQ was introduced in
[5] for the case of two descriptions, where a design algorithm
was also proposed. The design of EC-MDSQ for the case of
two descriptions was addressed in [6]. Further work on MDSQ
or EC-MDSQ design for two descriptions was performed
in [7]–[9], while the design of MDSQ with K descriptions
was considered in [9], [10]. Additionally, the construction of
multiple description vector quantizers was addressed in [11].

The traditional MDSQ and EC-MDSQ store a codebook
for each decoder. The solution that we propose is to store a
codebook only for each side decoder and a few joint decoders,
and generate the reconstructions for the other joint decoders as
the average of the received descriptions. The latter decoders
will be referred to as linear decoders. We use the acronym
EC-LMDSQ (with “L” for linear) for the proposed EC-MDSQ
system. Our EC-LMDSQ scheme is inspired by the existing
MDLVQ framework for dimension 1, but it is different from
it in two ways: 1) we seek to optimize the central and side
codebooks instead of using lattice-based codebooks; 2) we
include the option that more joint decoders store optimized
codebooks.

The algorithm we propose for EC-LMDSQ design is related
to the EC-MDSQ design algorithm introduced by Vaisham-
payan and Domaszewicz for the case of two descriptions [6].
The algorithm locally minimizes the Lagrangian formed as
a weighted sum of the expected distortion and of the side
encoders’ rates. However, there are significant differences.
One difference resides in the decoder optimization step, which
becomes more complex since the codebooks can no longer
be optimized separately as in the traditional case. Fortu-
nately, it turns out that the decoder optimization problem
is a convex quadratic optimization problem, which can be
solved efficiently using well established techniques [31]. As

for the encoder optimization step, the direct extension from
two to K descriptions would lead to an escalation of the
time complexity. To address this problem we take advantage
of the particular form of the cost function due to the linear
joint decoders, and drastically reduce the amount of operations
performed at this step.

We compare experimentally the performance of the pro-
posed scheme with MDLVQ and UEP. Our results show
that EC-LMDSQ outperforms MDLVQ of dimension 1 for
the whole range of rates tested, as expected. On the other
hand, when more codebooks are added and the rate is suf-
ficiently high, the proposed scheme becomes superior even
than MDLVQ with quantization dimension approaching ∞.
Moreover, for low rates EC-LMDSQ is also better than UEP
with dimension 1 quantization.

The paper is structured as follows. The following section
formally defines the MDSQ and EC-MDSQ and discusses
the problem of optimal MDSQ/EC-MDSQ design. Section III
introduces the EC-LMDSQ. Section IV presents an overview
of the proposed EC-LMDSQ design algorithm. Further, the
details of the decoder, respectively encoder, optimization step
of the latter algorithm are addressed in section V, respectively
VI. Extensive experimental results and the comparison with
MDLVQ and UEP are reported in section VII. Finally, section
VIII concludes the paper.

II. DEFINITIONS AND NOTATIONS

The encoder of an MDSQ generating K descriptions con-
sists of a K-tuple of side encoders f = (f1, · · · , fK), where
fk : R → {1, · · · ,Mk}, for some positive integer Mk,
1 ≤ k ≤ K. Given a source sample x, the encoder maps x into
(i1, · · · , iK) ∈ IK, where ik = fk(x), 1 ≤ k ≤ K, and IK
denotes the set of all K-tuples generated by the encoder. For
each (i1, · · · , iK) ∈ IK, let Ai1,··· ,iK , {x|fk(x) = ik, 1 ≤
k ≤ K}. Then {Ai1,··· ,iK |(i1, · · · , iK) ∈ IK} is a partition
of R, referred to as the central partition. We will assume that
the central partition consists of convex cells, i.e., intervals,
and denote by N the number of these intervals2. Another
important notion related to the MDSQ is the index assignment
(IA), defined as the mapping h : {1, 2, · · · , N} → IK, where
h(`) = (i1, · · · , iK) if the `-th interval in the central partition
equals the set Ai1,··· ,iK . Then it is clear that the encoder f
is completely specified by the central partition and the IA.
Additionally, notice that the mapping fk can be regarded as
the encoder of a quantizer, which is referred to as the kth side
quantizer.

The index ik is transmitted over the kth channel, 1 ≤ k ≤
K. Each channel has some probability of breaking down.
Thus, at the receiver there are two kinds of situations with
respect to each description: either the channel works properly
and the received index is correct, or the channel breaks down
and nothing is received. Let L = {l1, · · · , ls} ⊆ K denote a
subset of descriptions, 1 ≤ s ≤ K, where K , {1, · · · ,K}.
Assume that only the descriptions in subset L are received at

2As argued in [5], [9] the constraint of cell convexity in the central partition
does not preclude optimality for MDSQ’s achieving points on the lower
convex hull of the set of achievable tuples of distortions and rates.
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the decoder. Then the decoder used to reconstruct the source
sample is denoted by gL and it maps each s-tuple (il1 , · · · , ils)

to some reconstruction value denoted by a(L)il1 ,··· ,ils
∈ R, where

1 ≤ ilk ≤Mk, for all 1 ≤ k ≤ s. Denote by g, the (2K − 1)-
tuple of decoders (gL)L⊆K.

Let us evaluate now the expected distortion of the source re-
construction when the subset L = {l1, · · · , ls} of descriptions
are received at the decoder. For this let us denote by fX(·)
the probability density function (pdf) of the source and let IL
denote the set of all possible s-tuples of indexes corresponding
to L. More specifically, IL , {(il1 , · · · , ils)| there is x ∈
R, such that flk(x) = ilk , for all 1 ≤ k ≤ s}. Additionally,
for each k, 1 ≤ k ≤ s, and ilk , 1 ≤ ilk ≤ Mk, let f−1lk (ilk)
denote the set of values which are mapped by flk to the
index ilk . Then for each s-tuple (il1 , · · · , ils) ∈ IL, the set
of all values x mapped by the encoders to this s-tuple is
A

(L)
il1 ,··· ,ils

,
⋂s
k=1 f

−1
lk

(ilk). It is clear that the collection of

sets A(L)
il1 ,··· ,ils

with (il1 , · · · , ils) ∈ IL, forms a partition of
R. Further, using the squared error as the distortion measure
we obtain the expected distortion at the decoder corresponding
to subset L as follows,

DL(f ,g) =
∑

(il1 ,··· ,ils )∈IL

∫
A

(L)
il1

,··· ,ils

(x−a(L)il1 ,··· ,ils
)2fX(x)dx.

(1)
Let Rk(f) denote the rate for side encoder k, 1 ≤ k ≤ K. We
do not include the decoder g in the notation since the rate does
not depend on it. In a fixed-rate MDSQ all indexes of a side
encoder are encoded using the same number of bits. Therefore,
one has Rk(f) = dlog2Mke for all k. In an EC-MDSQ the
indexes generated by a side encoder are first compressed using
an entropy coder and only after that the resulted codestream is
transmitted over the corresponding channel. Like in most past
work on the design of entropy-constrained quantizer systems,
we assume that the rate of each side encoder equals the entropy
of the corresponding side quantizer [6], [9], [11]. Therefore,
we have for all 1 ≤ k ≤ K,

Rk(f) = −
Mk∑
n=1

P (k)
n log2 P

(k)
n , (2)

where P (k)
n denotes the probability of the nth cell of the kth

side quantizer, i.e., the set f−1k (n). The problem of optimal
MDSQ design, be it fixed-rate or entropy-constrained, can be
formulated as the minimization of the distortion at the central
decoder with constraints imposed on the rates and on the
distortions at the other decoders, i.e.,

minimize f,g DK(f, g) (3)
subject to Rk(f) ≤ Rk, k = 1, 2, · · · ,K,

DL(f, g) ≤ DL, L ⊂ K.

This formulation was adopted in [5], [6]. Other authors consid-
ered the criterion of minimizing the overall expected distortion

D̄(f, g) with constraints on the rates [7], [8], [10], i.e.,

minimize f,g D̄(f, g) =
∑
L⊆K

pLDL(f, g) (4)

subject to Rk(f) ≤ Rk, k = 1, 2, · · · ,K,

where pL is the probability that only the descriptions in subset
L are received.

In the case of fixed-rate MDSQ the constraints on the rates
can be easily handled by imposing the necessary number of
side quantizer cells, i.e., by choosing the appropriate value
for each Mk. On the other hand, the distortion constraints in
problem (3), as well as the rate constraints in the case of EC-
MDSQ are handled in prior work by means of Lagrangian
relaxation, i.e., they are incorporated in the Lagrangian cost
function. Thus, the problem is converted to the unconstrained
problem of minimizing the Lagrangian. The latter problem
can find the solutions to problem (3), respectively (4), which
are situated on the lower convex hull of the set of achievable
tuples of distortions and rates. For the aforementioned reason,
the authors of [9], [11] directly formulate the optimization
problem as the minimization of the weighted sum of the
distortions and rates.

Thus, for both problems (3) and (4), when the encoder
is fixed and there are no constraints imposed on the recon-
struction values, the decoder can be optimized by separately
minimizing each term in the summation in (1), for each
L ⊂ K. This turns into a simpler problem of separately
minimizing each integral, leading to the solution:

a
(L)
il1 ,··· ,ils

= E
[
X|X ∈ A(L)

il1 ,··· ,ils

]
=

∫
A

(L)
il1

,··· ,ils

xfX(x)dx∫
A

(L)
il1

,··· ,ils

fX(x)dx
,

(5)
for all L ⊆ K and (il1 , · · · , ils) ∈ IL.

III. DEFINITION AND MOTIVATION OF EC-LMDSQ

Notice that an MDSQ or EC-MDSQ with K descriptions
has 2K − 1 decoders, each with its own codebook. Moreover,
the size of each codebook increases exponentially with the
number of corresponding descriptions. For example, if R is
the rate of each side encoder, then the size of the code-
book of decoder gL for some subset L of s descriptions,
1 ≤ s ≤ K, could reach the value 2sR. Thus, the total
number of reconstruction values for decoder g could amount
to
∑K
s=1

(
K
s

)
(2R)s = (1 + 2R)K − 1. As the number K

of descriptions increases, storing all these values becomes an
issue, especially in applications where the memory resources
are scarce (for example, mobile devices).

To address this problem we propose to store the codebook
only for each side decoder and a few joint decoders, and
generate the other codebooks as linear combinations of the
reconstruction values from the side codebooks. Since we
are interested in the case of symmetric descriptions we will
consider equal weights for all descriptions. More specifically,
if L = {l1, · · · , ls} is a subset of descriptions for which
the codebook is not stored, then its reconstruction values are
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computed according to

a
(L)
il1 ,··· ,ils

=
1

s

s∑
k=1

a
(lk)
ilk

, (6)

for any (il1 , · · · , ils) ∈ IL. In order to increase the per-
formance, the stored codebooks should correspond to the
subsets of descriptions with the highest probabilities of being
received. In the case of symmetric, independent channels
with probability of channel failure q < 0.5, the probability
of receiving a particular set of descriptions increases with
the set size. Therefore, we will store the codebooks of all
subsets of at least K0 + 1 descriptions, for some fixed value
K0, 1 ≤ K0 ≤ K, and will use the linear rule (6) to generate
the codebooks for subsets of 2 up to K0 descriptions. We will
use the acronym EC-LMDSQ for such an EC-MDSQ system.
Notice that the choice of the value K0 should be done such
that to strike a balance between the codebook storage needs
and the LMDSQ performance.

We are interested in the design of optimal symmetric EC-
LMDSQ, where the attribute “symmetric” refers to the fact
that the rates of all descriptions are the same, i.e., R1(f) =
· · · = RK(f), and pL depends only on the number of received
descriptions L, i.e., pL = p(|L|). For simplicity we will use
the term EC-LMDSQ instead of “symmetric EC-LMDSQ” in
the rest of the paper.

It is interesting to compare the complexity of the proposed
scheme with existing MDC schemes with reduced storage
space at the decoder, such as UEP and MDLVQ. The UEP
scheme has higher encoding and decoding time complexity
due to the use of erasure codes. In particular, the encoding
and decoding time complexity per sample is O(K2) versus
O(K) for EC-LMDSQ. On the other hand, MDLVQ uses
the same average decoding rule, but the side codebooks are
not optimized, while our proposed scheme has optimized
reconstruction values. Thus, EC-LMDSQ has a higher space
complexity than MDLVQ since the latter do not need to store
any codebook. On the other hand, we expect the performance
of EC-LMDSQ to be higher than MDLVQ of dimension 1
because of the optimization of the stored codebooks. Our
experimental results show that indeed this is the case.

IV. OVERVIEW OF EC-LMDSQ DESIGN ALGORITHM

As mentioned in the previous section, since we are con-
cerned with the symmetric case, for any 0 ≤ s ≤ K, and any
set L of s descriptions, the probability of receiving only the set
L will be denoted from now on by p(s). For example, when the
descriptions are transmitted over independent channels with
the same failure rate q, we have p(s) = (1− q)sqK−s. Thus,
the expected distortion of the EC-LMDSQ can be rewritten as

D̄(f, g) =
K∑
s=1

p(s)×
∑

L={l1,··· ,ls}⊆K

DL(f, g).

We consider the optimization problem

minimize f,g D̄(f, g) (7)
subject to Rk(f) ≤ R, k = 1, 2, · · · ,K,

for some target rate R. The Lagrangian for this problem is

L(f, g,µ) = D̄(f, g) +
K∑
k=1

µkRk(f),

where µ = (µ1, · · · , µK) is a K-tuple of positive Lagrangian
multipliers. Consider now the problem of minimizing the
Lagrangian for a given µ, i.e.,

minimize f,g L(f, g,µ). (8)

According to [32] any solution (f∗, g∗) to problem (8) is also
a solution to the problem

minimize f,g D̄(f, g)

subject to Rk(f) ≤ Rk(f∗), k = 1, 2, · · · ,K.

Conversely, any solution of problem (7) which lies on the
lower convex hull of the set of all possible (K + 1)-tuples
(D̄(f, g), R1(f), · · · , Rk(f)), can be found by solving problem
(8) for some K-tuple µ.

Using relation (2), we obtain that

L(f, g,µ) = D̄(f, g) +
K∑
k=1

µk

Mk∑
ik=1

P
(k)
ik

(f) log2

1

P
(k)
ik

(f)
,

where we use P (k)
ik

(f) instead of P (k)
ik

in order to emphasize
that P (k)

ik
(f) is a function of the encoder f. As in prior work

on entropy-constrained quantizer systems design [6], [41], in
order to solve problem (8) we minimize a more general cost
function which has the same minimum value as L(f, g,µ). To
this end consider the auxiliary variables Q(k)

ik
with positive

values, for 1 ≤ ik ≤Mk, 1 ≤ k ≤ K, and the cost

C(f, g,µ,Q) = D̄(f, g) +
K∑
k=1

µk

Mk∑
ik=1

P
(k)
ik

(f) log2

1

Q
(k)
ik

, (9)

where Q denotes the vector formed with the
∑K
k=1Mk vari-

ables Q(k)
ik

. Consider now the more general problem

minimize f,g,Q C(f, g,µ,Q) (10)

subject to Q
(k)
ik
≥ 0, 1 ≤ k ≤ K, 1 ≤ ik ≤Mk,∑Mk

ik=1Q
(k)
ik
≤ 1, 1 ≤ k ≤ K.

It is known that the optimal value of problem (10) is achieved
for Q(k)

ik
= P

(k)
ik

(f) for all k and ik [33]. Thus, we can find the
solution to problem (8) by solving the more general problem
(10).

The algorithm to solve problem (10) is a locally optimal
algorithm similar in spirit to the algorithm employed in [6] for
the design of EC-MDSQ with two descriptions. Namely, the
algorithm starts with an initial configuration and it proceeds in
iterations. At every iteration there are three steps: 1) keep f and
g fixed and optimize Q; 2) keep the encoder f and the vector
Q fixed and optimize the decoder g; 3) keep g and Q fixed
and optimize the encoder f. The first step is accomplished by
letting Q(k)

ik
= P

(k)
ik

(f) for all k and ik, as argued earlier. The
encoder optimization step can be carried out as in prior work
on various quantizer systems’ design, but we will show how to
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leverage the linear decoders to reduce the time complexity of
this step comparing to the general purpose technique. Finally,
the decoder optimization step poses a challenge which is
not encountered in other quantizer design problems since the
codebooks for some of the decoders cannot be optimized
separately. Fortunately, as we show in Section V, the problem
turns out to be a convex quadratic optimization problem, for
which efficient solutions are well known.

The proposed design algorithm is only guaranteed to con-
verge to a local optimum, thus the selection of the initial
encoder is very important. Recall that an encoder is fully
represented by the intervals in the central partition and the
IA. The problem of optimal IA design was addressed in [5],
[7], [10], [20]–[22], [25], [34], [35]. It is worth pointing out
that the optimality of the IA’s proposed in the literature holds
under restrictive assumptions. Specifically, Vaishampayan [5]
proposes good IAs for the case K = 2 based on arguments
that hold at high rates. The IA’s proposed for MDLVQ’s in
[20]–[22], [25] are optimal under the assumption of high rate
and high reuse index. Note that the reuse index represents how
many times each index of a description is assigned a central
lattice point. In [7], [10] it is shown that the staggered IA is
optimal for symmetric MDSQ with convex cells and the result
holds for any K and any pdf.

We would like to point out that locally optimal algorithms
are common practice in the design of various quantizer sys-
tems. Interestingly, there are also cases when they ensure the
global optimality of the solution. This happens when the local
minimum is unique. Sufficient conditions for the uniqueness
of the local minimum in the case of fixed-rate scalar quantizer,
were given by Trushkin in [36]. Similar conditions were shown
to be sufficient for the uniqueness of the local minimum in
the case of fixed-rate MDSQ’s with convex cells, with respect
to a fixed IA, by Dumitrescu and Wu in [10]. In particular,
these conditions are satisfied for log-concave density functions
and the squared error distortion measure. Moreover, the recent
work [37] establishes sufficient conditions for the uniqueness
of the local minimum in the case of fixed-rate noisy scalar
quantizers with random index assignment. On the other hand,
globally optimal algorithms for MDSQ design were proposed
for discrete distributions, under the assumption that all cells
are convex in [7]–[9].

V. DECODER OPTIMIZATION STEP

At this step the central partition and the IA are fixed,
and the codebook is optimized. In other words, the goal at
this step is to choose the reconstruction values for the side
codebooks and for the joint codebooks corresponding to at
least K0 + 1 descriptions, such that the expected distortion
to be minimized. As it can be seen from equation (9) the
decoder g only affects the expected distortion. Thus, the
decoder g should be chosen such that to minimize D̄(f, g).
To this end, it is useful to write the expected distortion as
D̄(f, g) = D̄1(f, g) + D̄2(f, g) + p(0)σ2, where σ2 is the vari-
ance of the source, D̄1(f, g) is the contribution to the expected
distortion when at least one and at most K0 descriptions
are received, while D̄2(f, g) is the contribution when at least

K0 +1 descriptions are available at the decoder. Using (6) we
obtain that

D̄1(f, g) =

K0∑
s=1

p(s)×
∑

L={l1,··· ,ls}⊆K

∑
(il1 ,··· ,ils )∈IL∫

A
(L)
il1

,··· ,ils

(
x− 1

s

s∑
k=1

a
(lk)
ilk

)2

fX(x)dx, (11)

D̄2(f, g) =
K∑

s=K0+1

p(s)×
∑

L={l1,··· ,ls}⊆K

∑
(il1 ,··· ,ils )∈IL∫

A
(L)
il1

,··· ,ils

(
x− a(L)il1 ,··· ,ils

)2
fX(x)dx.

It is clear that D̄1(f, g) and D̄2(f, g) can be optimized sepa-
rately. Moreover, D̄2(f, g) can be optimized by independently
minimizing each integral in the summation, by applying
equation (5) for all L ⊆ K with s = |L| ≥ K0 + 1, and
(il1 , · · · , ils) ∈ IL.

We are left now with the task of finding the side codebooks
which minimize D̄1(f, g). Although the integrals in (11) can
no longer be minimized independently, the minimization of
D̄1(f, g) can still be handled easily since the problem is
a convex optimization problem. The convexity of D̄1(f, g)
follows from the fact that the squaring function is convex,
while composition with an affine mapping, multiplication
with a nonnegative constant, addition and integration are all
operations that preserve convexity. Actually, the problem is a
convex quadratic optimization problem. In other words, if y
denotes the (

∑K
k=1Mk)-dimensional vector which consists of

all reconstruction values of the side codebooks:

y = (a
(1)
1 , a

(1)
2 , · · · , a(1)M1

, · · · , a(j)1 , · · · , a(j)ij , · · · , a
(j)
Mj
, · · · , a(K)

1 , · · · , a(K)
MK

)T ,

(12)
then D̄1(f, g) can be written as

D̄1(f, g) = yTBy + uT y + r, (13)

where r is a real value, u is a fixed (
∑K
k=1Mk)-dimensional

column vector and B is a fixed (
∑K
k=1Mk) × (

∑K
k=1Mk)

symmetric positive semidefinite matrix. Note that (·)T denotes
the transpose of a vector or matrix. Then minimizing (13)
reduces to solving for y the following set of linear equations

2By + u = 0, (14)

where 0 denotes the (
∑K
k=1Mk)-dimensional all zero column

vector. Once the matrix B is computed, solving (14) takes
O(K3M3) operations, for instance by using Gaussian elim-
ination, where M , max1≤k≤KMk. However, in order to
evaluate the complexity of the decoder optimization step we
also need to account for the construction of matrix B and
vector u. To this end it is useful to have the explicit form of
B and vector u, which are derived next.

First we need to introduce some more notations. We use the
notation i for a K-tuple (i1, · · · , iK) ∈ IK. Additionally, for
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each i ∈ IK denote

ci =

∫
Ai

xfX(x)dx, Pi =

∫
Ai

fX(x)dx.

Further, for every integer m, 1 ≤ m ≤
∑K
k=1Mk, define (m)

and w(m) as follows. (m) is the unique integer in the range 1

to K such that
∑(m)−1
k=1 Mk < m ≤

∑(m)
k=1 Mk, and w(m) ,

m−
∑(m)−1
k=1 Mk. It is easy to see that the m-th component

of vector y is a((m))
w(m) . Additionally, for every 1 ≤ j ≤ K and

1 ≤ n ≤ M , denote by C
(j)
n the sum of ci’s for all central

cells Ai such that the jth component of the K-tuple i equals
n, i.e.,

C(j)
n =

∑
i∈IK,ij=n

ci. (15)

Recall that for every 1 ≤ j ≤ K and 1 ≤ n ≤M , we denote
by P (j)

n the probability of cell n of side quantizer j. Further,
for every 1 ≤ j, j′ ≤ K and 1 ≤ n, n′ ≤M , denote by P (j,j′)

n,n′

(j 6= j′ or n 6= n′) the probability of the intersection of cell n
of side quantizer j and cell n′ of side quantizer j′. Formally,

P (j)
n =

∑
i∈IK,ij=n

Pi, P
(j,j′)
n,n′ =

∑
i∈IK

ij=n,ij′=n
′

Pi. (16)

Denote further by U the second moment of the pdf, i.e., U =∫
R x

2fX(x)dx.

Proposition 1. Let

r =

K0∑
s=1

p(s)×
(
K

s

)
U , (17)

and let u be the (
∑K
k=1Mk)-dimensional vector whose m-th

component, 1 ≤ m ≤
∑K
k=1Mk, is defined as follows

um = −2

(
K0∑
s=1

p(s)
1

K

(
K

s

))
C

((m))
w(m) . (18)

Finally, let B be the (
∑K
k=1Mk) × (

∑K
k=1Mk) symmetric

matrix with elements bm`, 1 ≤ m, ` ≤
∑K
k=1Mk, defined as

follows

bm` =


(∑K0

s=1 p(s)
(
K
s

)
1
Ks

)
P

((m))
w(m) , m = `

(∑K0

s=1 p(s)
(
K
s

) (s−1)
Ks(K−1)

)
P

((m),(`))
w(m),w(`) , m 6= `.

(19)

Then matrix B is positive definite and equality (13) holds for
y defined in (12).

Before proving this proposition let us first evaluate the time
complexity of constructing the vector u and the matrix B. No-
tice first that the factors

∑K0

s=1 p(s)
1
K

(
K
s

)
,
∑K0

s=1 p(s)
(
K
s

)
1
Ks

and
∑K0

s=1 p(s)
(
K
s

) (s−1)
Ks(K−1) can be precomputed and stored

at the beginning of the algorithm. Therefore, the number of
operations needed to construct u and B is proportional with
the number of operations for computing all quantities C(j)

n ,
P

(j)
n and P (j,j′)

n,n′ . The computation of the latter quantities can
be divided into two stages. The first stage computes all values
ci and Pi for all i ∈ IK. The computation of the integrals in the

expression of ci and Pi can be handled by dividing the interval
Ai into small subintervals, say of size δ, and applying the
trapezoidal rule on each small interval. Assuming that the pdf
has a finite support included in some interval B of size B, the
total running time amounts to O(B/δ). Alternatively, we can
use a preprocessing step, where the cumulative zero-th and first
order moments are computed and stored for the discretization
of the pdf obtained by dividing B into subintervals of size δ.
Then each Pi, respectively ci, can be computed in O(1) time
as the difference of two cumulative zero-th, respectively first,
order moments. This way the running time of the first stage
becomes O(N), while the preprocessing step requires O(B/δ)
operations.

The second stage computes all C
(j)
n , P (j)

n and P
(j,j′)
n,n′

based on equations (15) and (16). Note that for each j, the
computation of all values C(j)

n , P (j)
n , for 1 ≤ n ≤ M , takes

O(N) time. This is because every central cell Ai is included in
exactly one cell of side quantizer j. Over all j’s this amounts
to O(KN) operations. Likewise, computing all values P (j,j′)

n,n′

for a fixed pair (j, j′) and all pairs n, n′, takes O(N + M2)
operations. Note that the term M2 was included to account
for assigning the value 0 to those P (j,j′)

n,n′ for which the sum
in (16) does not have any term. Over all pairs (j, j′) this
amounts to O(K2(N + M2)) operations. Consequently, the
time complexity of the second stage equals O(K2(N+M2)).

Proof of Proposition 1: In order to prove this claim
we first expand each integral in (11) as the summation of
integrals over cells in the central partition. More specifically,
notice that for each L and each (il1 , · · · , ils) ∈ IL, the set
A

(L)
il1 ,··· ,ils

is the union of all central partition cells Aj, with
j = (j1, · · · jK) ∈ IK and jl1 = il1 , · · · , jls = ils . Then the
integral over A(L)

il1 ,··· ,ils
can be written as the sum of integrals

over each constituent Aj. Furthermore, notice that each cell Aj

of the central partition appears in exactly one set A(L)
il1 ,··· ,ils

.
Thus, one obtains that

D̄1(f, g) =

K0∑
s=1

p(s)×
∑

L={l1,··· ,ls}⊆K

∑
i∈IK

∫
Ai

(
x− 1

s

s∑
k=1

a
(lk)
ilk

)2

fX(x)dx.

(20)

Notice that each of the above integrals can be rewritten as
follows∫

Ai

(
x− 1

s

s∑
k=1

a
(lk)
ilk

)2

fX(x)dx

=

∫
Ai

x2fX(x)dx− 2
1

s

s∑
k=1

a
(lk)
ilk

ci +

(
1

s

s∑
k=1

a
(lk)
ilk

)2

Pi.

By substituting the above equation in (20) we obtain that

D̄1(f, g) =

K0∑
s=1

p(s)×
∑

L={l1,··· ,ls}⊆K

(∑
i∈IK

∫
Ai

x2fX(x)dx

−2
∑
i∈IK

1

s

s∑
k=1

a
(lk)
ilk

ci +
∑
i∈IK

(
1

s

s∑
k=1

a
(lk)
ilk

)2

Pi

 .
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Further, D̄1(f, g) can be rewritten as follows

D̄1(f, g) =

K0∑
s=1

p(s)×
(
K

s

)
U − 2

K0∑
s=1

p(s)
∑

L={l1,··· ,ls}⊆K

∑
i∈IK

1

s

s∑
k=1

a
(lk)
ilk

ci

+

K0∑
s=1

p(s)
∑

L={l1,··· ,ls}⊆K

∑
i∈IK

(
1

s

s∑
k=1

a
(lk)
ilk

)2

Pi

=

K0∑
s=1

p(s)×
(
K

s

)
U − 2

K0∑
s=1

p(s)
∑
i∈IK

ci
∑

L={l1,··· ,ls}⊆K

1

s

s∑
k=1

a
(lk)
ilk

+

K0∑
s=1

p(s)
∑
i∈IK

Pi

∑
L={l1,··· ,ls}⊆K

(
1

s

s∑
k=1

a
(lk)
ilk

)2

.

(21)
We have used the fact that the number of subsets of s
descriptions equals

(
K
s

)
. Now note that the values U , ci and

Pi depend only on the encoder, hence they are fixed for
the optimization problem. Therefore, from (21) it is already
clear that D̄1(f, g) is a quadratic function of y. It follows
that there exist some scalar r, some vector u and some
matrix B such that (13) to hold. More specifically, there exist
some (

∑K
k=1Mk)-dimensional column vector u and some

(
∑K
k=1Mk)× (

∑K
k=1Mk) symmetric matrix B satisfying the

following equalities

uTy = −2

K0∑
s=1

p(s)
∑
i∈IK

ci
∑

L={l1,··· ,ls}⊆K

1

s

s∑
k=1

a
(lk)
ilk︸ ︷︷ ︸

T1(s,i)

, (22)

yTBy =

K0∑
s=1

p(s)
∑
i∈IK

Pi

∑
L={l1,··· ,ls}⊆K

(
1

s

s∑
k=1

a
(lk)
ilk

)2

︸ ︷︷ ︸
T2(s,i)

.

(23)
Further, by choosing r as in (17), relation (13) follows. The
proof of the fact that equalities (22) and (23) are satisfied for
u and B defined in the statement of Proposition 1 is deferred
to the appendix. Next we will show that matrix B is positive
definite. Notice that matrix B is said to be positive definite
if and only if yTBy > 0 for any (

∑K
k=1Mk)-dimensional

non-zero vector y [38]. It is clear from (23) that condition

yTBy ≥ 0 is satisfied since p(s), Pi and
(

1
s

∑s
k=1 a

(lk)
ilk

)2
are all non-negative values. Assume now that yTBy = 0. We
assume that there is some s0, 1 ≤ s0 ≤ K0 − 1, such that
p(s0) 6= 0. Further, since p(s0) 6= 0 and Pi 6= 0, (23) implies
that ∑

L={l1,··· ,ls0}⊆K

(
1

s0

s0∑
k=1

a
(lk)
ilk

)2

= 0,

for all i ∈ IK. The above equality further implies that
s0∑
k=1

a
(lk)
ilk

= 0, (24)

for any i ∈ IK and L = {l1, · · · , ls0} ⊆ K.

Consider now an arbitrary i ∈ IK and two arbitrary distinct
descriptions v 6= t, 1 ≤ v, t ≤ K. Pick a description set
L1 such that it contains the v-th description but not the t-th
description. Also pick a description set L2 such that L2 =

(L1\{v}) ∪ {t}. Subtracting equation (24) corresponding to
L1 from equation (24) corresponding to L2, we obtain that
a
(v)
iv

= a
(t)
it

. Since the above relation holds for any v and t,
using further (24) it follows that a(1)i1 = a

(2)
i2

= · · · = a
(K)
iK

=
0. Further, since the above equalities are valid for all i ∈ IK,
it follows that y = 0.

VI. ENCODER OPTIMIZATION STEP

At this step the decoder g and the vector Q are fixed and
the encoder f is optimized. Here it is useful to rewrite the cost
function as follows

C(f, g,µ,Q) =
∑
i∈IK

∫
Ai

∑
L⊆K

p(|L|)
(
x− a(L)il1 ,··· ,ils

)2
+
∑K
k=1 log2

1

Q
(k)
ik

 fX(x)dx,

(25)
where L = {l1, · · · , ls}. The purpose of this step is to
determine the sets Ai for all i ∈ IK, such that they form
a partition of R and (25) is minimized. A sufficient condition
for minimizing (25) is Ai ⊆ Ai, where

Ai , {x ∈ R|
∑
L⊆K

p(|L|)
(
x− a(L)il1 ,··· ,ils

)2
+
∑K
k=1 log2

1

Q
(k)
ik

≤

∑
L⊆K

p(|L|)
(
x− a(L)i′l1

,··· ,i′ls

)2
+
∑K
k=1 log2

1

Q
(k)

i′
k

, for all i′ ∈ IK − {i}}.

(26)
Thus, the problem reduces to determining the sets Ai. Further,
by denoting

αi =
∑
L⊆K

p(|L|)a(L)il1 ,··· ,ils
(27)

βi =
∑
L⊆K

p(|L|)(a(L)il1 ,··· ,ils
)2+

∑K
k=1 log2

1

Q
(k)
ik

, (28)

we can write (26) equivalently as follows

Ai = {x ∈ R|2αix− βi ≥ 2αi′x− βi′ ,
for all i′ ∈ IK − {i}}.

(29)

It is clear now that each set Ai is either a non-empty interval
on the real line or the empty-set. This justifies the claim that
there is no loss in the performance of an MDSQ by letting all
cells in the central partition be intervals.

The straightforward algorithm to solve (29) takes O(N2)
time [5], given that the all values αi and βi are already
computed. On the other hand, a faster algorithm, running in
O(N) time, was proposed by Dumitrescu in [39]. Note that
the number of terms in the summation in (27) is 2K − 1,
while in (28) it is K + 2K − 1. Additionally, the computation
of each a

(L)
il1 ,··· ,ils

, for 2 ≤ s ≤ K0, using (6) takes s
operations. Therefore, in order to compute αi and βi for fixed
i, O(K02K) operations are needed. This leads to O(NK02K)
operations over all tuples i ∈ IK. We will show next that it
is possible to drastically reduce this amount by exploiting the
linear decoders. To this end we will derive simpler expressions
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for αi and βi. First rewrite αi as

αi =

K0∑
s=1

p(s)
∑

L={l1,··· ,ls}⊆K

a
(L)
il1 ,··· ,ils︸ ︷︷ ︸

T3(i)

+
K∑

s=K0+1

∑
L={l1,··· ,ls}⊆K

p(s)a
(L)
il1 ,··· ,ils

.

(30)

Further, T3(i) can be written as follows

T3(i) =

K0∑
s=1

p(s)T1(s, i) =

K0∑
s=1

p(s)
1

K

(
K

s

) K∑
j=1

a
(j)
ij
,

where T1(s, i) was defined in equation (22) and simplified in
the appendix in equation (36). Substituting further in (30) we
obtain

αi =

K0∑
s=1

p(s)
1

K

(
K

s

) K∑
j=1

a
(j)
ij

+
K∑

s=K0+1

∑
L={l1,··· ,ls}⊆K

p(s)a
(L)
il1 ,··· ,ils

.

(31)
Since the quantity

∑K0

s=1 p(s)
1
K

(
K
s

)
can be precomputed,

rather than evaluated for each i, the number of operations in
the first term equals K − 1 additions plus 1 multiplication.
Hence K operations are needed for the first term. The number
of operations in the second term is 2

∑K
s=K0+1

(
K
s

)
−1, since

there are
∑K
s=K0+1

(
K
s

)
terms in the summation. Therefore,

K + 2
∑K
s=K0+1

(
K
s

)
− 1 operations are needed to compute

each αi. When K0 = K, the number of operations is K. When
K0 = K − 1, the number of operations is K + 1.

Notice that the second summation in (28) can be computed
in O(K) time. Let us denote by β′i the first summation in (28).
To simplify the expression of β′i note first that

β′i =

K∑
s=1

p(s)
∑

L={l1,··· ,ls}⊆K

(a
(L)
il1 ,··· ,ils

)2

=

K0∑
s=1

p(s)
∑

L={l1,··· ,ls}⊆K

(a
(L)
il1 ,··· ,ils

)2

︸ ︷︷ ︸
T4(i)

+

K∑
s=K0+1

∑
L={l1,··· ,ls}⊆K

p(s)(a
(L)
il1 ,··· ,ils

)2.

(32)

Further, note that T4(i) can be written as

T4(i) =

K0∑
s=1

p(s)T2(s, i)

=

K0∑
s=1

p(s)
( 1

Ks

(
K

s

) K∑
j=1

(a
(j)
ij

)2

+
2(s− 1)

Ks(K − 1)

(
K

s

)K−1∑
j=1

K∑
j′=j+1

a
(j)
ij
a
(j′)
ij′

)

=

K0∑
s=1

p(s)
1

Ks

(
K

s

) K∑
j=1

(a
(j)
ij

)2

+

K0∑
s=1

p(s)
2(s− 1)

Ks(K − 1)

(
K

s

)K−1∑
j=1

K∑
j′=j+1

a
(j)
ij
a
(j′)
ij′

,

where T2(s, i) was defined in equation (23). Additionally,
equation (38) in the appendix was used to establish the second
equality in the above sequence. Substituting further in (32) we
obtain

β′i =

K0∑
s=1

p(s)
1

Ks

(
K

s

) K∑
j=1

(a
(j)
ij

)2

+

K0∑
s=1

p(s)
2(s− 1)

Ks(K − 1)

(
K

s

)K−1∑
j=1

K∑
j′=j+1

a
(j)
ij
a
(j′)
ij′

+
K∑

s=K0+1

∑
L={l1,··· ,ls}⊆K

p(s)(a
(L)
il1 ,··· ,ils

)2.

Since the quantities
∑K0

s=1 p(s)
1
Ks

(
K
s

)
and∑K0

s=1 p(s)
2(s−1)
Ks(K−1)

(
K
s

)
can be precomputed, rather than

evaluated for each i, the number of operations in the first
term equals K − 1 additions plus K + 1 multiplications,
hence 2K operations are needed. The number of operations
in the second term equals 1

2 (K2 − K) − 1 additions plus
1
2 (K2 −K) + 1 multiplications, hence (K2 −K) operations
are needed. The number of operations in the third term is 0
when K0 = K, and it is 3

∑K
s=K0+1

(
K
s

)
−1, when K0 < K,

since there are
∑K
s=K0+1

(
K
s

)
terms in the summation. Let

k0 , K −K0 and assume that k0 is a small positive constant
(thus k0 << K). Then

K∑
s=K0+1

(
K

s

)
=

k0−1∑
t=0

(
K

t

)
≤ k0

(
K

k0 − 1

)
= O(Kk0−1).

Therefore, the number of operations needed to compute each
βi is O(K2) when k0 ≤ 3 and it is O(Kk0−1) for k0 > 3.
Additionally, based on the discussion below equation (31), we
obtain that the number of operations to compute each αi is
O(Kmax(1,k0−1). In conclusion, the number of operations to
obtain the αi’s and βi’s, for all i ∈ IK is O(NKmax(2,k0−1)).
This represents a significant reduction from O(NK02K).

VII. EXPERIMENTAL RESULTS

The purpose of this section is to assess the practical perfor-
mance of the proposed EC-LMDSQ scheme in comparison
with MDLVQ and UEP. We consider a zero mean, unit
variance, memoryless Gaussian source truncated to the interval
[−6.0, 6.0]. We will compare the performance of the aforemen-
tioned schemes for K = 4. In all cases we assume transmis-
sion over independent channels with the same probability q
of failure. Consequently, the probability p(s) of receiving a
particular set of s descriptions is p(s) = (1 − q)sqK−s, for
s, 0 ≤ s ≤ K. We will consider three values for q, namely
q = 0.01, 0.05, 0.075. For each q we will plot the performance
of each MD technique, measured using the expected distortion
in dB, i.e., 10 log10 D̄, versus the average rate R of the side
descriptions.
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To assess the performance of MDLVQ we will use the
expressions of the distortions at the side and joint decoders
derived in [24] under the assumption of high rate and high
reuse index. Recall that the reuse index represents how many
times each index of a description is assigned a central lattice
point. The reuse index I controls the trade-off between the
central distortion and the distortions at the remaining decoders.
Therefore, it has to be optimized in order to achieve the
smallest expected distortion for given q and rate R. Based
on the asymptotical expression of the distortions derived in
[24] the authors of [30] have computed the optimal value
Iopt and the corresponding optimal expected distortion for an
MDLVQ of dimension n [30, Eq. (24)]3, denoted by D̄latt(n),
as follows

D̄latt(n) = qK + 2πe(1− qK)
(
G(Λc)2

−2KR

+ qy(q)
G(Sn)

K2
2−2R + qz(q)G(SKn−n)K−

K
K−1

)
,

if R < R0(K, q), (33)

D̄latt(n) = qK + 2πe(1− qK)q
K−1
K 2−2R

(
q

1
K y(q)

G(Sn)

K2
+

G(Λc)
1
K

(z(q)G(SKn−n)

K − 1

)K−1
K

)
if R ≥ R0(K, q),

(34)

where y(q) , 1
1−qK

∑K−1
k=1

(
K
k

)
(1 − q)kqK−1−k, z(q) ,

1
1−qK

∑K−1
k=1

(
K
k

)
(1− q)kqK−1−k K−kk , and

R0(K, q) ,
1

2K
log2

G(Λc)K
K

K−1 (K − 1)

qz(q)G(SKn−n)
. (35)

Moreover, G(Λc), respectively G(St), denotes the normalized
second moment of the central lattice Λc, respectively of a
sphere in Rt for t ≥ 1.

In our comparison we will use MDLVQ with n = 1 and
n → ∞. The performance when n → ∞ is measured using
D̄latt(∞) , limn→∞ D̄latt(n). It is known that there is a
sequence of lattices Λn ⊂ Rn such that limn→∞G(Λn) =
1

2πe [42]. Additionally, we also have limn→∞G(Sn) = 1
2πe .

Then D̄latt(∞) can be obtained by replacing G(Λc), G(Sn)
and G(SKn−n) by 1

2πe in (33), (34) and (35). In our analysis
we will use the acronym MDLVQ-A1, respectively MDLVQ-
Ainf to refer to the MDLVQ with n = 1, respectively n →
∞, with the asymptotical assessment of the performance as
explained above.

Since the expression of the expected distortion of an
MDLVQ given by (33) and (34) is based on the assumption
that both R and I approach ∞, it is not accurate at low rates
and low values of I . Therefore, for fairness of comparison we
will also compute the actual expected distortion of an MDLVQ
of dimension n = 1 for the Gaussian source truncated to the

3We point out that there is a typo in [30, Eq. (24)], in the expression
of D4(L,R, p) for R < R4(L,P ). Namely, the exponent −L−1

L
has to

be replaced by − L
L−1

. Additionally, note that the quantity D4(L,R, p)
mentioned above represents the expected distortion conditioned on the event
that at least one description is received.

interval [−6, 6]. We will use the scheme proposed in [25]
for MDLVQ of dimension 1, where the side codebooks are
shifts of the side lattice. The authors of [25] argue that using
different shifts of the side lattice as side codebooks, as opposed
to having all side codebooks coinciding with the side lattice,
improves the performance of the MDLVQ and demonstrate
their claim empirically. The authors of [25] also propose IA’s
which are optimal when R and I approach infinity. We point
out that the IA’s designed in [25] only allow values of I which
are multiples of 4. We will consider four values for I , namely
4, 8, 12 and 16. For each I we consider all values of N which
are multiples of I/4 up to N = 48×I/4. For each N , the size
of the interval in the central partition will be 12/N . The index
assignment for each pair (N, I) will determine the number
of cells in each side quantizer. After computing the expected
distortion and the average rate for each MDLVQ generated
in this way, the points on the lower boundary of the set of
pairs consisting of the expected distortion and the average
rate, will be selected and used to illustrate the performance.
Additionally, we emphasize that the average rate is computed
as the average of the entropies of the side descriptions. We
will use the acronym MDLVQ-1 to refer to the MDLVQ
of dimension 1 with the performance measured as described
above.

To assess the performance of the proposed EC-LMDSQ
scheme we will run the algorithm for minimizing the cost
function C(f, g,µ,Q) with µ1 = µ2 = µ3 = µ4, for various
values of µ1 in the range [0, 0.1]. The number of central
cells N and the index assignment used at initialization are
obtained as described above, but for a smaller set of values
of N . In particular, we consider N = k × I/4, where
k = 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 59, 67, 75, 83
when K0 = 3, and k = 3, 11, 19, 27, 35, 43, 51, 59, 67, 75, 83
when K0 = 2. The index assignment for each pair (N, I)
will determine the number of cells in each side quantizer. The
algorithm is run for each initial configuration and is stopped
when the relative difference in the cost function C(f, g,µ,Q)
becomes smaller than 5×10−5. For each obtained EC-LMDSQ
the expected distortion and the average rate are computed.
Then the lower boundary of the set of obtained rate-distortion
points is used to illustrate the performance.

Finally, to asses the performance of the UEP scheme we
consider optimized erasure protection such that the expected
distortion to be minimized given the constraint on the rate. The
expected distortion is expressed in terms of the operational
rate-distortion (RD) function of the SRC coder, denoted by
Do(R). To be more specific, Do(R) represents the distortion
achieved if only a prefix of rate R is decoded. The SRC
can be regarded as a sequence of embedded vector quantizers
of dimension n. We will consider the cases of n = 1 and
n → ∞, referred to as UEP-1, respectively UEP-inf. In
the latter case, since the Gaussian source is known to be
successively refinable, the value of the operational RD function
equals exactly the information theoretical RD function, i.e.,
we have Do,n→∞(R) = 2−2R. For UEP-1 we assume that the
SRC is formed of a sequence of entropy-constrained embedded
uniform quantizers, and use the high rate approximation of
the distortion, leading to Do,n=1(R) = 2πe

12 2−2R. Finally, the
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Fig. 1: Performance comparison with MDLVQ for q = 0.01 (top left), q = 0.05 (top right) and q = 0.075 (bottom).

associated optimization problem and its solution are discussed
in [30]. We use the results in [30] to plot the performance for
UEP-1 and UEP-inf.

Figure 1 illustrates the performance of EC-LMDSQ in
comparison with MDLVQ-1, MDLVQ-A1 and MDLVQ-Ainf,
for q = 0.01, 0.05, 0.075. The interval of rates covered is
approximately from 0.2 to 3.4. We note that EC-LMDSQ
with K0 = 3 outperforms MDLVQ-1 for the whole range
of rates and the gap tends to increase as the rate decreases.
Additionally, we observe that given a fixed rate value, the gap
is generally higher for larger q. In particular, for rates up to
1, the gap is at least 0.8 dB, 1.5 dB, respectively 2 dB, for
q = 0.01, 0.05, 0.075, respectively. On the other hand, as the
rate increases, the gap decreases and for the smaller values of
q (i.e., 0.01 and 0.05) it eventually becomes negligible.

Notice that MDLVQ-A1 is better than MDLVQ-1, but
their performance becomes close as the rate approaches 2.
We believe that this is an indication of the fact that the
approximations made under the high rate assumption when

computing the distortions for MDLVQ-A1 are not accurate
enough for rates smaller than 2, but become accurate for rates
higher than 2.

We see that EC-LMDSQ with K0 = 3 has performance
very close or better than MDLVQ-A1 for rates higher than
some value, which depends on q. The two schemes also have
similar performance when the rates are very small (smaller
than about 0.4). MDLVQ-Ainf is better than MDLVQ-A1, as
expected, the gain being caused by the space-filling advantage
as the dimension of the quantizer increases. Thus, MDLVQ-
Ainf also beats EC-LMDSQ with K0 = 3.

The performance of EC-LMDSQ with K0 = 2 and with
K0 = 3 are very close for rates up to some value, after which
the scheme with K0 = 2 becomes superior. Furthermore, as
the rate increases further, EC-LMDSQ with K0 = 2 beats
MDLVQ-A1 and eventually matches and even outperforms
MDLVQ-Ainf. The latter result indicates that the gain achieved
by adding optimal codebooks when three descriptions are
received is higher than the gain obtained only by increasing
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Fig. 2: Performance comparison with UEP for q = 0.01 (top left), q = 0.05 (top right) and q = 0.075 (bottom).

the quantization dimension without the additional codebooks.

Figure 2 illustrates the performance of EC-LMDSQ in com-
parison with UEP-1 and UEP-inf, for q = 0.01, 0.05, 0.075.
We notice that EC-LMDSQ outperforms UEP-1 for rates
smaller than some value r1, which depends on q and K0.
This improvement over UEP-1 for small rates is larger for the
larger values of q. Notably, for q = 0.05 and q = 0.075, and
rates smaller than about 0.5, EC-LMDSQ has performance
extremely close to UEP-inf. Furthermore, it is worth noting
that for rates higher than r1 the gap between EC-LMDSQ
and UEP-1 increases as q decreases and this variation is quite
dramatic. In particular, for q = 0.01 the gap between EC-
LMDSQ with K0 = 2 and UEP-1 increases consistently up
to about 9 dB, while for q = 0.075 the largest gap is not
higher than 0.5 dB and it actually vanishes for rates larger
than 2.8. We point out that, although the theoretical optimum
for MDC scheme in the symmetric case is not known (even
for a Gaussian source), it was proved that UEP-inf is only a
constant bit-rate away from the optimum [40]. An upper bound

on this gap for K = 4 is 0.865 [40].

While the expected distortion of EC-LMDSQ is always
smaller than that of MDLVQ-1, it is also interesting to
compare the distortions when only k descriptions are received,
denoted by Dk, for each k, 1 ≤ k ≤ 4. It is known that there
are trade-offs between the performance of level k decoders
(i.e. k-description decoders) for different values of k. In other
words, if the performance of some levels improves, it may
become worse at some other levels. Figure 3 plots the values
of Dk for EC-LMDSQ in comparison with MDLVQ-1 for
q = 0.05. We notice that the performance of EC-LMDSQ
with K0 = 3 is always better than that of MDLVQ-1 for
level 1, 2 and 3 decoders, and the difference increases as
the rate decreases reaching values of about 9.4, 7.7 and 5.3
dB for levels 1, 2, 3 respectively. On the other hand, the
central distortion D4 of MDLVQ-1 is slightly smaller than
that of the proposed schemes when the rate is sufficiently
high. Furthermore, it can be seen that the value of D3 for EC-
LMDSQ with K0 = 2, decreases significantly in comparison
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Fig. 3: Average distortions when k descriptions are received, 1 ≤ k ≤ K, and q = 0.05.

with K0 = 3, for rates higher than 1. This is the effect of
using optimal reconstruction values for level 3 decoders in
the former case. On the other hand, as a result of the trade-
off between the performance at different levels, the values of
D1 and D2 for K0 = 2 becomes larger than for K0 = 3 for
rates higher than 1, and, as the rate increases further, even
higher than for MDLVQ-1. However, the overall performance
in terms of expected distortion is better for the former scheme
than for the latter two, as seen in Figure 1.

VIII. CONCLUSION

In a traditional multiple description scalar quantizer
(MDSQ) with optimized codebooks all codebooks have to be
stored at the decoder. Thus, the memory requirement at the
decoder increases exponentially with the number of descrip-
tions. This poses a problem in applications where the memory
resources are scarce, such as transmission to mobile devices.
To alleviate this problem we propose the use of entropy-
constrained MDSQ with linear joint decoders (EC-LMDSQ).
The decoder of an EC-LMDSQ stores all side codebooks
and a few joint codebooks, while generating the other joint
codebooks using averages of the side reconstruction values.
This way, the storage space may be significantly reduced.

We further propose an algorithm for symmetric EC-LMDSQ
design, which locally minimizes the Lagrangian formed as
a weighted sum of the expected distortion and of the side
encoders’ rates. The algorithm is similar in spirit to the EC-
MDSQ design algorithm of Vaishampayan and Domaszewicz
for two descriptions, however, because of the linear joint

decoders, the decoder optimization step is more complex since
the reconstruction values can no longer be optimized sepa-
rately. However, we overcome this challenge by proving that
the problem is convex quadratic and, therefore, easily solvable.
Additionally, we show how the complexity of the encoder
optimization step can be drastically reduced by exploiting the
particular form of the cost function.

We assess empirically the performance of the proposed EC-
LMDSQ design algorithm in comparison with state of the art
MDC schemes with reduced storage space at decoder, such as
multiple description lattice vector quantizers (MDLVQ) and
the technique based on unequal erasure protection (UEP).
Our experimental results reveal that EC-LMDSQ performs
better than MDLVQ with dimension 1 quantization for all
rates tested, as expected, and it also outperforms MDLVQ
with infinite dimension quantization when more codebooks
are added and the rate is sufficiently high. Furthermore, the
proposed scheme is also superior to UEP with dimension 1
quantization at low rates.
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APPENDIX

In this appendix we complete the proof of Proposition 1 by
showing that relations (22) and (23) are satisfied for u and B
defined in the statement of the proposition. For this we need
first to write T1(s, i) and T2(s, i) in a simpler form. Notice
that by expanding T1(s, i), each a

(j)
ij

, 1 ≤ j ≤ K, appears(
K−1
s−1
)

= s
K

(
K
s

)
times in the summation. Hence,

T1(s, i) =
∑

L={l1,··· ,ls}⊆K

1

s

s∑
k=1

a
(lk)
ilk

=
1

K

(
K

s

) K∑
j=1

a
(j)
ij
.

(36)
By substituting (36) in (22), relation (22) becomes equivalent
to

uTy = −2

K0∑
s=1

p(s)
∑
i∈IK

ci
1

K

(
K

s

) K∑
j=1

a
(j)
ij
.

It is easy to see that the above relation is satisfied for u defined
in (18). In order to simplify T2(s, i) we have to treat separately
the cases s > 1 and s = 1. When s = 1, we have clearly

T2(1, i) =
K∑
j=1

(a
(j)
ij

)2. (37)

When s > 1, notice that after expanding the summations,
T2(s, i) contains terms of the form (a

(j)
ij

)2 and 2a
(j)
ij
a
(j′)
ij′

, 1 ≤
j < j′ ≤ K. Each (a

(j)
ij

)2 appears
(
K−1
s−1
)

= s
K

(
K
s

)
times, and
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each 2a
(j)
ij
a
(j′)
ij′

occurs
(
K−2
s−2
)

=
(
s
2

)(
K
s

)
/
(
K
2

)
times. Then

T2(s, i) =
∑

L={l1,··· ,ls}⊆K

(
1

s

s∑
k=1

a
(lk)
ilk

)2

=
1

Ks

(
K

s

) K∑
j=1

(a
(j)
ij

)2 +
2(s2)

(K2 )s2

(
K

s

)K−1∑
j=1

K∑
j′=j+1

a
(j)
ij
a
(j′)
ij′

=
1

Ks

(
K

s

) K∑
j=1

(a
(j)
ij

)2 +
2(s− 1)

Ks(K − 1)

(
K

s

)K−1∑
j=1

K∑
j′=j+1

a
(j)
ij
a
(j′)
ij′

.

(38)

Relation (37) implies that the above simplified expression of
T2(s) also holds for s = 1. Substituting (38) into (23), it
follows that (23) is equivalent to

yTBy =

K0∑
s=1

p(s)
∑
i∈IK

Pi×

( 1

Ks

(
K

s

) K∑
j=1

(a
(j)
ij

)2 +
2(s− 1)

Ks(K − 1)

(
K

s

)K−1∑
j=1

K∑
j′=j+1

a
(j)
ij
a
(j′)
ij′

)
.

It can be easily checked that the above equality holds for B
defined in (19).
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