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Abstract

In many scientific, medical and defense applications of image/video compression, an `∞ error bound

is required. However, pure `∞-optimized image coding, colloquially known as near-lossless image coding,

is prone to structured errors such as contours and speckles if the bit rate is not sufficiently high; moreover,

most of the previous `∞-based image coding methods suffer from poor rate control. In contrast, the `2

error metric aims for average fidelity and hence preserves the subtlety of smooth waveforms better than

the `∞ error metric and it offers fine granularity in rate control; but pure `2-based image coding methods

(e.g., JPEG 2000) cannot bound individual errors as the `∞-based methods can. This paper presents a

new compression approach to retain the benefits and circumvent the pitfalls of the two error metrics.

A common approach of near-lossless image coding is to embed into a DPCM prediction loop a

uniform scalar quantizer of residual errors. The said uniform scalar quantizer is replaced, in the proposed

new approach, by a set of context-based `2-optimized quantizers. The optimization criterion is to minimize

a weighted sum of the `2 distortion and the entropy while maintaining a strict `∞ error bound. The

resulting method obtains good rate-distortion performance in both `2 and `∞ metrics and also increases

the rate granularity. Compared with JPEG 2000, the new method not only guarantees lower `∞ error for

all bit rates, it even achieves higher PSNR for relatively high bit rates.
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I. INTRODUCTION

For many important applications of image compression in science, medicine, space exploration, pre-

cision engineering, etc., high fidelity of image reconstruction is required. The ideal solution would be

mathematically lossless compression, but this can be done only with a high bit budget (currently achievable

lossless rate is above 4 bpp for most natural images). A practical alternative is to accept some small,

tightly controlled loss and trade for significantly reduced bit rates, which is referred to as near-lossless

compression in the literature. A common criterion of near-lossless image compression is that a predefined

upper bound of the reconstruction error is imposed on every single pixel; in this sense, near-lossless image

compression is synonymous with `∞-constrained image compression.

A straightforward method of `∞-constrained image compression is a cascade of uniform scalar quan-

tization of all pixel values followed by lossless coding of the pre-quantized image [1], [2]. To achieve an

`∞ bound τ , a step size of 2τ + 1 is used in the scalar quantizer. But a far more efficient near-lossless

coding approach is a closed loop of a causal DPCM predictor and uniform scalar quantizer of prediction

residuals [3]–[7]. The algorithm in [3] is a DPCM coding technique that employs context-based source

modeling and arithmetic coding for lossless compression of quantized prediction errors. In order to achieve

an `∞ bound of τ = 1, two different scalar midtread quantizers were used. One of them is uniform with

all step sizes equal to 3. The other one is nearly uniform with a quantizer bin of size 3 around 0 and

all the other bins of size 2. The system in [4] is also based on the DPCM method, but it incorporates

an additional mechanism to minimize the entropy of the sequence of quantized prediction residues using

a so-called DPCM-trellis. The trellis state transitions restrict the possible pixel reconstructions to those

within a τ -error bound. An iterative algorithm determines the trellis path corresponding to the minimum

entropy sequence of quantized residuals for each image row. The `∞-constrained (or near-lossless) CALIC

[5] is a variant of lossless CALIC [8], which incorporates a uniform scalar quantizer for the residual

errors in the context-based prediction loop. In particular, a quantizer bin size of (2τ+1) is used to ensure

no errors greater than τ .

Among the aforementioned `∞-constrained image coders, near-lossless CALIC achieves the highest

compression performance when τ ≤ 3 [5]. Further enhancements of near-lossless CALIC were proposed

in [6], [7] which led to superior performance in terms of bit rate and/or `2 distortion. However, these

techniques have high computational complexity either at the encoder, in [6], where adaptive context

modeling is used, or at the decoder, in [7], where the hard decision decoding is followed by an `2 image

restoration step.
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The design goal of the aforementioned `∞-constrained image coders is to achieve the lowest bit rate

for each given error bound τ , neglecting other operational issues. One side effect is that the number

of achievable bit rates is small, only equal to the number of possible values of τ . Such a coarse rate

granularity makes it very difficult to finely adjust the bit rate versus the distortion bound. The problem

is illustrated by Table I that lists the bit rates of the image in Fig. 7e achievable by near-lossless CALIC

for τ = 0, 1, 2, . . . , 8 (τ = 0 corresponds to lossless CALIC). Notice the big gaps between consecutive

bit rates, especially as τ decreases, which is the case of interest. For instance, in order to improve the

reconstruction quality at τ = 2, the only option is to choose τ = 1, but this incurs a big rate increment

of 0.56 bpp (or 35.67%). The resulting next higher rate will be wasteful if the reconstruction quality at

τ = 2 is just slightly lower than required.

Moreover, the suitability of pure `∞ distortion metric in preserving image quality may also be put into

question. In particular, `∞-constrained image coders may introduce structured artifacts in smooth regions

even when the value of τ is as low as 3. Fig. 1 compares images coded by an `∞-based compression

method (near-lossless CALIC) and an `2-based compression method (JPEG 2000) when the bit rates

are the same. As shown in Fig. 1c, the `∞-constrained CALIC produces contours in the smooth shade

region. Although the `2-based JPEG 2000 does not produce contour artifacts, the small feature on the

smooth surface is barely noticeable, as identified in Fig. 1b. In fact, the tendency of `2-based image

coders to distort or even remove small features, which are statistical outliers, motivated the research on

`∞-based image coders. In some important applications, tiny objects (e.g., lesions in medical images

or small boats in satellite images) carry great semantic significance even though they are tiny minority

statistically speaking.

To summarize the above observations, the `2 distortion metric, being an average fidelity measure,

preserves the subtle smooth image waveforms better; on the other hand, the `∞ distortion metric, aiming

for best minmax approximation, preserves isolated small image features better. The other major difference

between the `2 and `∞ code design criteria is that the former offers much finer rate granularity than the

latter. Now a natural inquiry, which is the main theme of this paper, is in order: can one get the advantages

of the two metrics but not their shortcomings? Towards this objective, we develop a new technique of

incorporating a mechanism of `2 optimization in the existing framework of `∞-constrained image coding.

Specifically, we modify the near-lossless CALIC system by replacing the previous in-loop uniform scalar

quantizer with a set of context-based `2-optimized scalar quantizers. The main innovations of this work

are the formulation of and an algorithm for the optimal code design problem of minimizing a weighted

sum of the `2 distortion and the total rate over all possible quantizers, while obeying a specified `∞ error
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(a) Original image (b) JPEG 2000 at 0.45 bpp (c) Near-lossless CALIC at 0.45 bpp

(d) Proposed at 0.51 bpp (e) JPEG 2000 at 0.51 bpp

Fig. 1. Comparison using a computer-generated test image between (a) Original image / Lossless image coding (Lossless

CALIC at rate 1.27 bpp); (b) `2-based image coding (JPEG 2000 at rate 0.45 bpp, PSNR 43.62 dB, `∞ error bound 21) with

the small feature in the smooth region blurred; (c) `∞-based image coding (Near-lossless CALIC at rate 0.45 bpp, PSNR 41.58

dB, `∞ error bound 3) with speckles and contours as artifacts; (d) Proposed method (at rate 0.51 bpp, PSNR 41.74 dB, `∞

error bound 3) preserving the small feature with minimal artifacts; (e) `2-based image coding (JPEG 2000 at rate 0.51 bpp,

PSNR 44.81 dB, `∞ error bound 17) with the small feature in the smooth region blurred.

bound.

Our work is closely connected in scope to [9]. The authors of [9] also aim at exploiting the advantages

of both `2 and `∞ metrics. Their solution is a wavelet-based `∞-oriented scalable image coder. Their

approach is to ensure that an upper bound on the maximum error in the image domain, which is expressed

in terms of the transform-domain subband quantization bin sizes, satisfies the `∞ constraint. However, as

the results reported in [9] show, the `∞ performance of this encoder is far inferior to that of near-lossless

CALIC. In fact, it is well known that transform coding is inferior to predictive coding when the bit rate

is sufficiently high. This is because for high rates, bits will be allocated to code small high frequency
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TABLE I

ACHIEVABLE BIT RATES AND PSNR FOR IMAGE IN FIG. 7E USING NEAR-LOSSLESS CALIC

τ Bit Rate (bpp) PSNR (dB)

0 3.53 ∞

1 2.13 49.95

2 1.57 45.38

3 1.27 42.53

4 1.07 40.47

5 0.94 38.84

6 0.82 37.43

7 0.73 36.30

8 0.67 35.25

coefficients in the transform domain. The energy packing advantage of transform coding will be lost. At

lossless rate (the highest for a given source), all codecs have to reconstruct noises; coding in transform

domain is clearly a poor choice in this case.

This paper is structured as follows. In the following section we briefly review the prior work on optimal

(predictive loop) quantizer design and emphasize the contribution of our work versus previous designs. In

Section III we briefly describe how near-lossless CALIC operates. Then in Section IV, we formulate the

problem of minimizing the weighted sum of the `2 distortion and of the average entropy over all different

context-based quantizers, under a common `∞ constraint. Further, we describe the solution algorithm

based on the graph approach. We subsequently integrate the optimized quantizers obtained in Section IV

into near-lossless CALIC to obtain the proposed image coder and present extensive experimental results

in Section V. The results include performance comparisons with JPEG 2000 and near-lossless CALIC.

Finally, conclusions are given in Section VI.

II. RELATION TO PRIOR WORK ON OPTIMAL (PREDICTIVE LOOP) QUANTIZER DESIGN

Optimization of the quantizer used in the prediction loop has been proposed in the past in [10]–[12]

for the scalar case and in [13]–[15] for the vector case. One difficulty encountered when addressing this

problem resides in obtaining a distribution that accurately represents the distribution of the prediction

errors. This is because the statistics of the residuals depends on the quantizer. Most authors have generated

the training set of prediction errors by using the unquantized pixel values in the prediction. This method

is known as the open-loop (OL) approach. To address the statistical mismatch of OL, the closed-loop
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(CL) and the asymptotic closed-loop (ACL) approaches were proposed in [13] and [14], respectively.

They performed the design process iteratively, the quantizer optimized at each iteration being used to

obtain the training set of residuals for the next iteration.

In this work we adopt the OL approach. The reasoning behind this choice is that, in near-lossless

compression small values of τ are of interest, and in this case, the OL approach provides a good enough

approximation of the true statistics of prediction errors. We point out that in this work, after collecting

the statistics of residuals for each context from a training set of images, each conditional distribution is

approximated by a Laplacian distribution which is further used in the optimization.

What distinguishes our work from previous work on optimal quantizer design is mainly the criterion

used in the optimization. Most quantizer design algorithms aim at minimizing the `2 distortion for fixed

number of quantizer levels, or minimizing a weighted sum of the `2 distortion and the entropy. We are not

aware of any work which incorporates the `∞ constraint alongside. Scalar quantizer design algorithms

mainly fall into one of the following categories: 1) Lloyd-Max method [10], [16], which iteratively

optimizes the encoder and the decoder, respectively, while keeping the other component fixed, and 2)

combinatorial algorithms [17]–[24]. While the first approach ensures only a locally optimal solution, the

latter algorithms guarantee global optimality when the source alphabet is finite. Our optimization problem

requires simultaneous optimization of all quantizers corresponding to different contexts under a common

constraint on the `∞ error bound. Interestingly, the separability of the cost function allows for separate

optimization of each quantizer. We further show that the latter problem can be modeled as a minimum

weight path problem. This model is similar in spirit to that used in [24]. However, we emphasize that

while in [24] only the minimization of the weighted sum of the `2 distortion and entropy was considered,

our problem is different due to the additional `∞ constraint.

The proposed image coder is able to achieve a much denser set of bit rates than near-lossless CALIC.

As our experiments performed on images outside the training set show, the `∞ constraint enforced in

our algorithm allows us to achieve `∞ error bounds that are always lower than those of JPEG 2000.

Meanwhile, the minimization of the `2 distortion incorporated in the design leads to better `2 performance

than JPEG 2000 above a certain threshold bit rate for each image, threshold which can be as low as 1.1

bpp. Additionally, the fine granularity allows for the reconstruction quality to be improved by adding

only small amounts to the used bit rate. In particular, as it can be seen in Fig. 1d the proposed coder

eliminates the artifacts observed in Figs. 1b and 1c respectively, at the expense of only a very small
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Fig. 2. Schematic description of near-lossless CALIC.

increase in the bit rate1. On the other hand, the same rate increase with the JPEG 2000 encoder does not

achieve the same visual qulity as the proposed method, as illustrated by Fig. 1e.

III. NEAR-LOSSLESS CALIC

As shown in the flow diagram in Fig. 2, l∞-constrained CALIC in [5] consists of five main components:

gradient-adjusted prediction (GAP), uniform quantization, context formation and quantization, context

modeling, and entropy coding.

We will only briefly describe the encoder since the decoder is just the encoder process reversed. Let

I be the current pixel value to be encoded. The GAP module makes a prediction Ī of I based on the

knowledge of the reconstructed pixels in a precisely defined neighbourhood. For this, an estimate of

the gradient of the intensity function at the current pixel is made to guide the construction of Ī . The

prediction Ī is further improved to Î by adding the conditional sample mean of the quantized prediction

errors µ(ê|ć) conditioned on the error modeling context ć. The number of error modeling contexts ć

considered in CALIC is 576 or higher and they are formed based on both the energy level and image

1Notice that the next achievable rate with near-lossless CALIC, corresponding to τ = 2, is 0.56 bpp, hence higher than the

rate 0.51 used in the proposed method.
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Fig. 3. Schematic description of the proposed image coder.

texture. The resulting prediction error (or residue) e = I − Î is then quantized with a uniform scalar

quantizer generating ê. The reconstructed pixel value Ĩ = Î + ê and the quantized prediction residue ê

are fed back into the system to be used in the encoding of future pixels in the image.

Finally, the sequence of quantized prediction residues is losslessly entropy coded by means of a

context-based arithmetic coder. Only eight coding contexts c are used for this purpose, which are formed

by quantizing an error energy estimator ∆ into eight bins. More specifically, ∆ is the weighted sum of

gradients of the reconstructed pixel values in the neighbourhood.

IV. OPTIMAL CONTEXT-BASED QUANTIZATION OF PREDICTION ERRORS

The proposed image coder shown in Fig. 3 replaces the uniform quantizer of prediction errors in

near-lossless CALIC by scalar quantizers optimized for each individual coding context. The optimization

problem aims at minimizing a weighted sum of the average `2 distortion and of the average entropy

over all eight coding contexts, while preserving a maximum error bound for each prediction error. The

optimization is performed assuming known distributions of prediction errors and coding contexts.

In this section we will address this optimization problem. Subsection IV-A presents the definitions

and notations pertinent to `∞-constrained scalar quantizers. Subsection IV-B introduces the mathematical

statement of the problem, which turns out to be solvable by separately optimizing the quantizer for each

coding context. The following subsection presents the solution to the latter problem by modeling it as a

minimum weight path problem in a weighted directed acyclic graph. Finally, the last subsection analyzes

the computational effort.
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A. `∞-constrained Scalar Quantizer

A quantizer maps the source alphabet into a smaller set of reproduction values. In our case, the source

alphabet is a finite set of prediction residues E = {en}Nn=1, where {e1 < e2 < · · · < eN}. For raw input

images using B bits per pixel, one has N = 2B+1 − 1 and ei = −2B + i, for all 1 ≤ i ≤ N .

The encoder of a scalar quantizer is described by the partition that segments the source alphabet into

a set of non-overlapping contiguous codecells. In other words, the encoder partition P can be defined as

P = {C1, C2, . . . , CK} for some 1 ≤ K ≤ N , where

Ci = (ai−1, ai] = {en | ai−1 < n ≤ ai} (1)

with a0 = 0, aK = N and 0 ≤ ai−1 < ai ≤ N for all 1 ≤ i ≤ K.

The decoder of the quantizer, on the other hand, is described by the set of reproduction codewords

{yi | 1 ≤ i ≤ K}. Every alphabet symbol in codecell Ci is mapped to the reproduction codeword yi. In

an `∞-constrained quantizer with a maximum error bound of τ per symbol, the reproduction codeword

must satisfy the condition |en−yi| ≤ τ , for all en ∈ Ci. Additionally, recall that our optimization criterion

aims at minimizing a weighted sum of the `2 distortion and of the entropy. Since the choice of yi does

not affect the entropy of the quantized output, minimizing the aforementioned weighted sum reduces to

minimizing the `2 distortion. Therefore, we determine yi as follows

yi = arg min
y∈E,|en−y|≤τ,en∈Ci

∑
en∈Ci

p(en)(en − y)2, (2)

where p(en) is the probability of symbol en.

It is known that without the constraints y ∈ E and |en−y| ≤ τ for all en ∈ Ci, the value yi minimizing

the cost function in (2) is equal to the centroid of the codecell [10], [16], i.e., to

µ(Ci) =
∑
en∈Ci

p(en)
en
p(Ci)

, (3)

where p(Ci) =
∑
en∈Ci p(en).

Now notice that due to the `∞-constraint, for the solution to (2) to exist, the size of all codecells must be

limited to at most (2τ+1). This means that for each Ci = (ai−1, ai], the condition (ai−ai−1) ≤ (2τ+1)

has to be satisfied. Additionally, to achieve the `∞-constraint requirement, we must also ensure that the

reproduction codeword yi is at distance at most τ from the values at the boundaries of the codecell Ci.

Notice that the objective function in (2) is a quadratic function of y that is symmetrical around its point

of minimum, i.e., around µ(Ci). Therefore, the optimal solution to (2) is the point in E within distance
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τ from the boundaries of the codecell that is closest to µ(Ci), i.e.,

yi =


(eai−1

+ 1) + τ, if (µ(Ci)− (eai−1
+ 1)) > τ

eai
− τ, if (eai

− µ(Ci)) > τ

[µ(Ci)], otherwise.

(4)

where [µ(Ci)] denotes the closest integer to µ(Ci).

B. Optimization Problem Formulation

By optimizing the reproduction codewords for each encoder partition via (4), the `2 distortion and

the output entropy corresponding to a quantizer become only functions of the encoding partition. Let us

denote the `2 distortion and the output entropy for each codecell Ci as

d(Ci) =
∑
en∈Ci

p(en)(en − yi)2, r(Ci) = −p(Ci) log2 p(Ci) (5)

respectively. Then the `2 distortion and the output entropy corresponding to a quantizer with encoder

partition P are

D(P) =
∑
C∈P

d(C), R(P) =
∑
C∈P

r(C), (6)

respectively. Now let us denote by Pm the encoder partition corresponding to the scalar quantizer for

coding context cm, where 1 ≤ m ≤ M and M = 8 for near-lossless CALIC. Subsequently, let DT and

RT , respectively, denote the expected `2 distortion and entropy over the quantizers for all M contexts as

follows

DT =
M∑
m=1

q(cm)D(Pm), RT =
M∑
m=1

q(cm)R(Pm), (7)

where q(cm) is the probability of context cm It is important to note that in the computation of D(Pm)

and R(Pm) using (6) and (5) the probability p(en) has to be replaced by the conditional probability of

residual en conditioned on context cm.

After having established the above notations we can now formulate the optimization problem as follows

min
{P1,P2,...,PM}

DT + γRT , (8)

for some γ > 0, where the optimization is performed over all possible M -tuples of partitions P1,P2, . . . ,PM
with codecells of maximum size 2τ + 1.

We emphasize that using the weighted sum of the `2 distortion and of the entropy as the cost function

is very common in the optimal entropy-constrained quantizer design [14], [24], [25]. The solution to
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problem (8) corresponds to a point (RT
∗, DT

∗) on the lower convex hull of the set RD of all possible

planar points of coordinates (RT , DT ), such that the slope of a tangent to the set RD drawn through

(RT
∗, DT

∗) is equal to −γ [26]. Therefore, as γ decreases towards 0, the value RT ∗ is non-decreasing,

while DT
∗ is non-increasing.

Substituting (7) back into (8) and rearranging, it follows that (8) is equivalent to
M∑
m=1

{
q(cm) min

Pm

J(Pm, γ)

}
(9)

where J(Pm, γ) = D(Pm) + γR(Pm). This shows that we can minimize the cost function (8) by

individually minimizing J(Pm, γ) for each context cm. Note also that since the `2 distortion D(Pm) and

rate R(Pm) are additive over codecells, the cost J(Pm, γ) is also additive over codecells, in other words,

the following holds

J(Pm, γ) =
∑
C∈Pm

j(C, γ) (10)

where j(C, γ) = d(C) + γr(C).

C. Solution Using the Minimum Weight Path Model

Due to the additive nature of the cost shown in (10), the task of minimizing (10) can simply be

viewed as a single-source minimum weight path problem in a weighted directed acyclic graph (WDAG).

More precisely, the set of vertices of the WDAG is V = {0, 1, . . . , N} and the set of edges is E =

{(x, y)|x, y ∈ V, 0 < y − x ≤ 2τ + 1} An edge (x, y) symbolizes a possible codecell C = (x, y] and its

weight is defined as w(x, y) = j(C, γ).

A path in the graph is a sequence of connected edges and the weight of a path is the sum of the weights

of all edges which make up that path. It is clear that any path in the graph from 0 to N is in unique

correspondence with a partition Pm. Furthermore, from (10), we see that the Lagrangian cost J(Pm, γ)

of the partition equals the weight of the path. Hence, a path signifies a partition, the weight of a path

equals the cost of the partition the path signifies, and minimizing the weight of a path is equivalent to

minimizing the cost of the partition in (10) that corresponds to that path2.

2Notice that this graph model is very close to the graph model used in [24] for the `2 optimization of an entropy constrained

scalar quantizer. The difference between the two models stems from the fact that in [24] the `∞ constrained is not imposed.

Therefore the graph in [24] contains every pair (x, y) with 0 ≤ x < y ≤ N , as an edge. Additionally, the codeword yi used in

the computation of the weight of the edge, is not constrained to be within distance τ from the codecell boundaries.
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(a) 1800× 1800 pixels (b) 1701× 1701 pixels (c) 1700× 1700 pixels (d) 1601× 1601 pixels

Fig. 4. Training set images.

Let W (x, y] be the weight of the minimum weight path from x to y for 0 ≤ x < y ≤ N . Then

the problem solution is the path achieving W (0, N ]. To determine W (0, N ] we compute all minimum

weights W (0, z] in increasing order of z, from 1 to N , by using the following recurrence

W (0, z] = min
y≥0,z−(2τ+1)≤y<z

{W (0, y] + w(y, z]}, (11)

where W (0, 0] = 0.

D. Computational Cost

In order to solve the minimum weight path problem in the WDAG a preprocessing step which computes

the edge weights is required. Since the number of edges is O(τN) and computing the weight of an edge

takes O(τ) time, the total number of operations needed in the preprocessing step is O(τ2N). Further,

solving (11) for all z takes O(τN) operations. Summarizing, the running time to minimize (10) is

O(τ2N). Accounting for all M contexts, the running time to solve problem (8) becomes O(τ2MN).

Note that in practice M is a small constant (M = 8) and the values of interest for τ are small as well,

thus we may assume that τ is upper bounded by a constant. It follows that the time complexity to solve

(8) is O(N).

V. EXPERIMENTAL RESULTS

A training set of four 8-bit high resolution images, shown in Fig. 4, were used to obtain the probability

distributions of prediction errors for every context cm and every value of τ ∈ {1, 2, · · · , 8}. We point out

that the distributions corresponding to different values of τ are generally different since the contexts are

different. Further, each of those distributions was approximated by a Laplacian distribution centered at

zero. The approximations were done by choosing the Laplacian probability mass functions (pmfs) with
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Fig. 5. Laplacian distributions approximating the distributions of prediction errors from the training set for τ = 5.

the smallest average difference from the actual pmfs of the training set, i.e., by solving

min
b>0

1

N

N∑
n=1

(plap(en, b)− pt(en)) ,

where

plap(en, b) =


1
T

(
1− e−

1

2b

)
if en = 0

1
T

(
e−
|en|−0.5

2b − e−
|en|+0.5

2b

)
, otherwise,

and T = 1− e−
N

2b , while pt(en) denotes the probability collected from the training set. An example of

the approximations for τ = 5 are shown in Fig. 5, and it can be seen that the Laplacian distributions very

closely approximate the distributions of prediction errors. The approximations are necessary to obtain

more generalized distributions which take into account random or outlying residue values not found in

the training set.

For each τ ∈ {1, 2, · · · , 8}, we have solved (8) for a decreasing sequence of values of γ, starting with

some high value γ0,τ . For each τ the partitions P∗1 ,P∗2 , . . . ,P∗M , corresponding to the optimal solution

for γ0,τ , are very close or even identical to the uniform quantizers in near-lossless CALIC, which have

the largest possible step size of (2τ +1). We will denote by R0(τ) the value of RT corresponding to this
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solution. Then all the values RT achieved for the same τ are larger than R0(τ). Furthermore, one has

R0(τ + 1) < R0(τ). Further, in order to proceed to testing the proposed coder on real images we have

selected for each τ only those M -tuples for which RT satisfies the condition R0(τ) ≤ RT < R0(τ − 1).

The pairs (RT , PSNRT ) corresponding to these solutions are plotted in Fig. 6, where PSNRT =

10 log10
2552

DT
. The test images used in our simulations are shown in Fig. 7. They were chosen such that

to cover a wide range of textures. We point out that the last three images were cropped out of images

from the training set.

Since the authors of [6] had already experimented on incorporating the DPCM trellis implemented

in [4] into near-lossless CALIC, and concluded that it did not offer appreciable compression gains despite

the high computational complexity incurred, we will not further attempt to compare our work, which

improves upon near-lossless CALIC, to the work in [4]. We will, however, make comparisons of our

proposed solution with JPEG 2000, in terms of both `2 and `∞ performance. The parameters settings

for the JPEG 2000 encoder are the following. The CDF 9/7 wavelet transform is used. The number of

decomposition levels is 4. The codeblock dimension is 64-by-64. The tile size equals the image size and

the number of quality layers is 1.

Fig. 8 plots the `∞ error bound versus bit rate. It is clear from the figure that the proposed coder

is significantly superior to JPEG2000 in terms of `∞ norm for all achievable bit rates. Fig. 9 plots the

PSNR versus bitrate. As it can be seen the proposed coder outperforms JPEG2000 for rates higher than

some image specific threshold, which can be as low as 1.1 bpp. Furthermore, Fig. 8 and 9 show that the

proposed coder can achieve all 8 bit rates achievable by near-lossless CALIC with equal performance in

terms of `∞ and `2 distortions. Additionally, the proposed coder achieves many intermediate bit rates,

consistently improving the PSNR as the rate increases, while maintaining the same error bound as near

lossless CALIC.

The proposed approach implies optimization of the quantizers, but performing it online increases the

complexity of the encoder. Therefore, in order to keep the encoding complexity low, one option is to

perform the optimization offline on a training set and store a number of such optimized M -tuples of

quantizers at the encoder. In this case, the encoder needs to transmit to the decoder a label indicating

which M -tuple is used, as side information; the resulting rate overhead is however negligible. The number

of values of τ and rates covered can be chosen by taking into consideration particular requirements of

the application. For each M -tuple of quantizers, the average entropy RT achieved on the training set or

the average bit rate obtained on coded images can be additionally stored in order to help estimate the

achievable rate for a particular image. For a given M -tuple of quantizers, if there are some Km number
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Fig. 6. PSNR versus average entropy RT for the optimal M -tuples of quantizers used in our tests. The PSNR and the average

entropy are computed using the distributions employed in the optimization.

of codecells for each context cm, we only need to store the eight values of {Km}8m=1,
∑8
m=1Km

codewords and
∑8
m=1Km codecells. Thus, for an 8-bit per pixel input image, the memory needed

amounts to (16 + 2
∑8
m=1Km) bytes in total, since the positive and negative values can be stored in

separate tables. Further, since Km ≤ N for every m, the total memory needed for storing an M -tuple

of quantizers does not exceed 8kB. The storage requirement can be halved by forcing the quantizers

to be symmetric. Note that in our tests we have imposed such a restriction and modified the algorithm

for minimum weight path described in subsection IV-C accordingly. This restriction is motivated by the

assumption that for the Laplacian distribution the optimal quantizer is symmetric or nearly so [27].

Out of the stored M -tuples of codebooks the user chooses one according to the specifications of the

applications. This raises the question of how to accurately and effectively estimate the bit rate achieved

for a particular image from the value RT . Unfortunately, we do not have yet a low complexity solution

to this problem, which is left for future work. On the other hand, if the specification on the target bit rate

is rather a looser qualitative requirement, such as ”low”, ”medium” or ”high” bit rate, then selecting an

appropriate M -tuple of quantizers could be easily done. For instance, if the specified `∞ constraint is τ

and the used bit rate has to be low the the obvious choice is the M -tuple operating at the smallest rate,
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(a) Hair (256× 256 pixels) (b) Plant (400× 600 pixels)

(c) Flowers (256×256 pixels) (d) Plants (256× 256 pixels) (e) Fruits (600× 400 pixels)

Fig. 7. Test images.

i.e., with RT = R0(τ) or close to this rate. On the opposite, if high bit rate can be afforded, the M -tuple

operating at rate R0(τ − 1) can be chosen, while for moderate rate a value RT ≈ (R0(τ) +R0(τ − 1))/2

can be selected.

In some applications however, such as image archiving, the encoder can afford high complexity while

decoding complexity still has to be low. In such cases the proposed technique can be used with an accurate

rate control by trying several M -tuples of quantizers among the stored ones in a bisection search fashion

until a rate close enough to the target rate is achieved. The online optimization with training set collected

from the image at hand can also be incorporated at the encoder. The technique of [6] can be further

applied with the potential of additional gain.

We emphasize that in the case when the optimization is performed online based on the image at

hand, it is sufficient to transmit to the decoder only the coefficients defining the Laplacian distributions

used in the optimization and the value of γ. Based on these coefficients the decoder performs the same
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optimization as the encoder to determine the M -tuple of quantizers. This way the side information needed

to be transmitted to the decoder is negligible.

VI. CONCLUSION

This research aims to improve the `2 performance and rate granularity of `∞-constrained image coding

techniques. The traditional `∞-constrained coding method of uniformly quantizing prediction residuals is

replaced by a set of context-based `2-optimized quantizers. The quantizer design criterion is to minimize

a weighted sum of the `2 distortion and the entropy while imposing an upper bound on the quantizer

cell size. The proposed technique obtains a good balance between `∞ and `2 performances. It ensures

tighter `∞ error bound than JPEG 2000 for all bit rates, and at the same time it is competitive in `2

performance as well.

REFERENCES

[1] A. Zandi, J.D. Allen, E.L. Schwartz and M. Boliek, “CREW: Compression with Reversible Embedded Wavelets,” Proc.

Data Compression Conf. (DCC), 1995, vol., no., pp.212-221, 28-30 Mar. 1995.

[2] A. Said and W.A. Pearlman,“An image multiresolution representation for lossless and lossy compression,” IEEE Trans. on

Image Process., vol.5, no.9, pp.1303-1310, Sep. 1996.

[3] K. Chen and T.V. Ramabadran, “Near-lossless compression of medical images through entropy-coded DPCM,” IEEE Trans.

on Medical Imaging, vol.13, no.3, pp.538-548, Sep. 1994.

[4] L. Ke and M.W. Marcellin, “Near-lossless image compression: minimum-entropy, constrained-error DPCM,” IEEE Trans.

on Image Process., vol.7, no.2, pp.225-228, Feb. 1998.

[5] A Context-Based, Adaptive, Lossless/Nearly-Lossless Coding Scheme for Continuous-Tone Images, ISO/IEC Standard JTC

1.29.12, 1995.

[6] X. Wu and P. Bao, “L∞ constrained high-fidelity image compression via adaptive context modeling,” IEEE Trans. on Image

Process., vol.9, no.4, pp.536-542, Apr. 2000.

[7] X. Wu, J. Zhou and H. Wang, “High-Fidelity Image Compression for High-Throughput and Energy-Efficient Cameras,”

Data Compression Conf. (DCC), 2011, vol., no., pp.433-442, 29-31 Mar. 2011.

[8] X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE Trans. on Commun., vol.45, no.4, pp.437-444,

Apr. 1997.

[9] A. Alecu, A. Munteanu, J. P. H. Cornelis, and P. Schelkens, ”Wavelet-based scalable L-infinity-oriented compression”, IEEE

Trans. Image Proc., vol. 15, no. 9, pp. 2499–2512, Sept. 2006.

[10] J. Max, “Quantizing for minimum distortion,” IRE Trans. on Inform. Theory, vol.6, no.1, pp.7-12, Mar. 1960.

[11] A. N. Netravali, “On Quantizers for DPCM Coding of Picture Signals,” IEEE Trans. on Inform. Theory, vol. IT-23, no. 3,

pp. 360-370, May 1977.

[12] D. K. Sharma and A. N. Netravali, “Design of Quantizers for DPCM Coding of Picture Signals,” IEEE Trans. on Commun.,

vol. COM-25, no. 11, pp. 1267-1274, Nov. 1977.

October 1, 2013 DRAFT



18

[13] V. Cuperman and A. Gersho, “Vector Predictive Coding of Speech at 16 kbits/s,” IEEE Trans. on Commun., vol. COM-33,

no. 7, pp. 685-696, Jul. 1985.

[14] H. Khalil, K. Rose and S. L. Regunathan, “The Asymptotic Closed-Loop Approach to Predictive Vector Quantizer Design

with Application in Video Coding,” IEEE Trans. on Image Process., vol. 10, no. 1, pp. 15-23, Jan. 2001.

[15] H. Khalil and K. Rose, “Predictive Vector Quantizer Design Using Deterministic Annealing,” IEEE Trans. on Signal

Process., vol. 51, no. 1, pp. 244-254, Jan. 2003.

[16] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. on Inform. Theory, vol.28, no.2, pp. 129- 137, Mar. 1982.

[17] J. D. Bruce, “Optimum quantization,” Sc. D. thesis, M. I. T., May 14, 1964.

[18] D. K. Sharma, “Design of absolutely optimal quantizers for a wide class of distortion measures,” IEEE Trans. on Inform.

Theory, vol. IT-24, pp. 693-702, Nov. 1978.

[19] X. Wu, “Optimal Quantization by Matrix Searching,” J. of Algorithms, 12(1991), vol.12, no. 4, pp. 663-673, Dec. 1991.

[20] X. Wu and K. Zhang, “Quantizer monotonicities and globally optimal scalar quantizer design,” IEEE Trans. on Inform.

Theory, vol. 39, pp. 1049-1053, May 1993.

[21] S. Dumitrescu and X. Wu, “Algorithms for optimal multi-resolution quantization,” J. Algorithms, 50(2004), vol. 50, no. 1,

pp. 1-22, Jan. 2004.

[22] S. Dumitrescu and X. Wu, “Optimal two-description scalar quantizer design,” Algorithmica, vol. 41, no. 4, pp. 300. 269-287,

Feb. 2005.

[23] S. Dumitrescu and X. Wu, “Lagrangian Optimization of Two-description Scalar Quantizers,” IEEE Trans. on Inform.

Theory, vol. 53, no. 11, pp. 3990-4012, Nov. 2007.

[24] D. Muresan and M. Effros, “Quantization as Histogram Segmentation: Optimal Scalar Quantizer Design in Network

Systems,” IEEE Trans. on Inform. Theory, vol.54, no.1, pp.344-366, Jan. 2008.

[25] P.A. Chou, T. Lookabaugh and R.M. Gray, “Entropy-constrained vector quantization,” IEEE Trans. on Acoustics, Speech

and Signal Processing, vol.37, no.1, pp.31-42, Jan. 1989.

[26] D. G. Luenberg, Optimization by Vector Space Methods, John Wiley & Sons, New York, 1969.

[27] G.J. Sullivan, “Efficient scalar quantization of exponential and Laplacian random variables,” IEEE Trans. on Inform. Theory,

vol.42, no.5, pp.1365-1374, Sep. 1996.

PLACE

PHOTO

HERE

Sceuchin Chuah received her B.Eng. degree in electrical engineering and M.A.Sc. degree in electrical and

computer engineering from McMaster University, Canada, in 2010 and 2013, respectively. She is currently

working at VerifEye Technologies, Canada. Her research interests include image and video coding, and

image processing. She was a recipient of the NSERC Alexander Graham Bell Canada Graduate Scholarship

from 2011 to 2012.

October 1, 2013 DRAFT



19

PLACE

PHOTO

HERE

Sorina Dumitrescu received the B.Sc. and Ph.D. degrees in mathematics from the University of Bucharest,

Romania, in 1990 and 1997, respectively. From 2000 to 2002 she was a Postdoctoral Fellow in the

Department of Computer Science at the University of Western Ontario, London, Canada. Since 2002 she

has been with the Department of Electrical and Computer Engineering at McMaster University, Hamilton,

Canada, where she held Postdoctoral, Research Associate, and Assistant Professor positions, and where

she is currently an Associate Professor. Her current research interests include multimedia coding and

communications, network-aware data compression, multiple description codes, joint source-channel coding, signal quantization.

Her earlier research interests were in formal languages and automata theory. Dr. Dumitrescu held an NSERC University Faculty

Award during 2007-2012.

PLACE

PHOTO

HERE

Xiaolin Wu got his B.Sc. from Wuhan University, China in 1982, and Ph.D. from University of Calgary,

Canada in 1988, both in computer science. Dr. Wu started his academic career in 1988, and has since been

on the faculty of University of Western Ontario, New York Polytechnic University, and currently McMaster

University, where he is a professor at the Department of Electrical & Computer Engineering. His research

interests include image processing, multimedia signal coding and communication, joint source-channel

coding, multiple description coding, and network-aware visual communication. He has published over

two hundred research papers and holds three patents in these fields. Dr. Wu is an IEEE fellow, a past associated editor of IEEE

Transactions on Image Processing and on Multimedia.

October 1, 2013 DRAFT



20

0

5

10

15

20

25

30

35

0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000

l ∞
 E

rr
or

 B
ou

nd
 

Bit Rate (bpp) 

Near-lossless CALIC

Proposed

JPEG 2000

(a) Hair

0

5

10

15

20

25

30

35

1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000

l ∞
 E

rr
or

 B
ou

nd
 

Bit Rate (bpp) 

Near-lossless CALIC

Proposed

JPEG 2000

(b) Plant

0

5

10

15

20

25

30

1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000

l ∞
 E

rr
or

 B
ou

nd
 

Bit Rate (bpp) 

Near-lossless CALIC

Proposed

JPEG 2000

(c) Flowers

0

5

10

15

20

25

30

35

40

1.6000 2.6000 3.6000 4.6000

l ∞
 E

rr
or

 B
ou

nd
 

Bit Rate (bpp) 

Near-lossless CALIC

Proposed

JPEG 2000

(d) Plants

0

5

10

15

20

25

30

35

0.6000 1.1000 1.6000 2.1000 2.6000 3.1000 3.6000

l ∞
 E

rr
or

 B
ou

nd
 

Bit Rate (bpp) 

Near-lossless CALIC

Proposed

JPEG 2000

(e) Fruits

Fig. 8. `∞ error bound of test images compressed at different rates.
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Fig. 9. PSNR of test images compressed at different rates.
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