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Abstract.

We study algorithmic approaches for rate-fidelity optimal packetization of a single and multiple

scalable source code streams with uneven erasure protection (UEP). A new algorithm is developed

to obtain the globally optimal solution for scalable source codes of convex rate-fidelity function

and for a wide class of erasure channels, including channels for which the probability of losing

n packets is monotonically non-increasing in n, and independent erasure channels with packet

erasure rate smaller than 0.5. This is achieved at linear space complexity and near-linear time

complexity in the transmission budget, representing significant improvement over the known

globally optimal algorithm. When applied to SPIHT compressed images, the results of the

proposed algorithm are virtually the same as the global optima.

The above success is also extended to UEP packetization of multiple scalable code streams.

We improve the existing algorithms in both speed and performance.
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I. INTRODUCTION

In multimedia streaming over the Internet, the quality of service (QoS) hinges on how well

the problem of packet losses is dealt with. Optimal packetization of scalable source sequences

with uneven erasure protection (UEP) offers a principled solution to the problem.

Scalable compression algorithms, such as SPIHT [12] and EBCOT [15], can reconstruct

a coded signal to certain fidelity from any prefix of the code stream. This feature can be

exploited by Reed-Solomon (RS) codes to generate a rate-distortion optimized UEP packetization.

Specifically, a collection of RS block codes of the same length but decreasing redundancy are

used to protect subsequent segments of the scalable source code stream, and the packets are

formed across the channel codewords. Any set of received packets can be used to reconstruct

the source to some fidelity, and the fidelity increases in the number of received packets. We are

interested in the problem of optimal UEP packetization under the criterion of maximizing the

expected fidelity at the receiver, constrained by a given transmission budget.

The UEP packetization scheme is illustrated in Figure 1. Let N be the number of packets to

be transmitted, and L the number of symbols in each packet (a symbol is a block of a fixed

number of bits, usually 8 bits). In general, only a prefix of the scalable source sequence is

packetized. This prefix of the source code stream is partitioned into L consecutive segments,

and each of these segments is protected by an RS code. Let mi be the length (in symbols) of the

i-th source segment, then the channel code assigned to protect it, is the (N,mi) RS code. The

stream of these mi source symbols followed by the fi = N−mi redundancy symbols constitutes

the i-th slice of the joint source-channel code. The packets are formed across the slices, i.e., the

n-th packet contains the n-th symbol of each slice. The effect of the (N,mi) RS code applied

to the i-th source segment is that, if at most fi of N packets are lost, then all the mi source

symbols of the i-th slice can be correctly recovered. However, since the scalable source sequence

is only sequentially refinable, the i-th source segment can be decoded only if the previous i− 1

segments are available. This requires that the number of redundancy symbols assigned to a slice

be monotonically non-increasing in the slice index: f1 ≥ f2 ≥ · · · ≥ fL, or equivalently, the

number of source symbols allocated to each slice be monotonically non-decreasing in the slice

index:

m1 ≤ m2 ≤ · · · ≤ mL, (1)
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Fig. 1. Uni-group UEP packetization scheme. The slices are positioned horizontally and the packets vertically. The shaded

squares represent the source symbols and the white squares represent the redundancy symbols.

Let m = (m1,m2, · · · ,mL) be the vector whose components are the number of source symbols

allocated to the slices. We call m the L-slice source allocation vector.

Let ϕ(r) be the rate-fidelity function of the scalable source sequence, which is a monotonically

non-decreasing function in rate r ∈ {0, 1, 2, · · · , Rmax}, where r denotes the number of symbols

in a prefix of the source sequence, and Rmax is the total number of source symbols. Let pN(n),

for 0 ≤ n ≤ N , denote the probability of losing n packets out of N . The efficiency of the

packetization scheme is measured by the expected fidelity of the reconstructed sequence at the

decoder side, denoted by Φ(m). This quantity can be expressed as [10]

Φ(m) = PN(N)ϕ(0) +
∑L

i=1 PN(fi)(ϕ(ri)− ϕ(ri−1)) =

PN(N)ϕ(0) +
∑L

i=1 PN(N −mi)(ϕ(ri)− ϕ(ri−1)), (2)

where PN(k) =
∑k

n=0 pN(n), k = 0, 1, · · · , N , and ri =
∑i

k=1mk, 1 ≤ i ≤ L, r0 = 0.

The problem of optimal UEP packetization under the rate-fidelity criterion can be formulated

as

maximize
m

Φ(m) (3)

subject to m1 ≤ m2 ≤ · · · ≤ mL,

for given N , L, pN(n), and ϕ(r).

DRAFT



4

This optimization problem has been the subject of intense research [3], [9], [10], [11], [13],

[14]. Many researchers assume the convexity of the rate-fidelity function motivated by the near

convexity achieved with modern scalable compression algorithms like SPIHT or JPEG 2000.

The algorithms of Puri and Ramchandran [11] and of Mohr et al. [9], [10] guarantee the

globally optimal solution only if the rate-fidelity function is convex, and if fractional bit allocation

is allowed. Under the practical constraint of integer redundancy assignment, however, these two

algorithms are still suboptimal even if ϕ(r) is strictly convex. The algorithm of Stankovic et

al. [13] assumes convexity of ϕ(r), too, but it does not need the additional assumption of

fractional bit allocation. However, it can find only a local optimum. The global optimal solution

for the convex setting is given by Stockhammer and Buchner [14] (an O(N2L2) time complexity

algorithm). In [3] a faster exact solution of O(NL2) running time is proposed for the case of

convex rate-fidelity function and a wide class of erasure channels. Moreover, the same paper also

presents the fastest exact algorithm known to date for the most general setting of the problem,

i.e., when no assumptions on the rate-fidelity function or on the channel statistics are made. This

is a dynamic programming algorithm of O(N2L2) running time.

In this work we show that the efficiency of the exact solution can be further improved. We

assume the convexity of the rate-fidelity function and the same additional assumptions on the

channel statistics as in [3], namely that the probability of losing n packets is monotonically

non-increasing in n, or that the channel is an independent erasure channel with packet erasure

rate no larger than N
2(N+1)

. The new algorithm proposed for this setting is based on a Lagrangian

formulation of the problem. For each value of the Lagrangian multiplier λ, the algorithm takes

O(NL) time. The number of iterations needed to find the optimal λ, and hence to complete the

algorithm, is much smaller than L, leading to great savings of computations from the O(NL2)

time algorithm of [3]. The memory usage also drops from O(NL2) in [3] to O(NL). The saving

in memory partially accounts for the increased speed of the new algorithm.

We also investigate the problem of optimal UEP packetization of multiple scalable code

streams posed in [6], and improve the existing algorithm in both speed and performance.

In the multiple streams variant of the optimal UEP design problem, which has applications

in multimedia communication, K code streams representing K contents are first packetized

separately, each into N packets of some small length. Then the small packets, one from each

object, are concatenated to produce N large packets of size L each. The optimization problem
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is to find the optimal allocation of slices between objects and of redundancy symbols for each

object such that the fidelity is maximized. We maintain the same assumption on the channel

statistics and on the rate-fidelity function as above, and propose for this setting two globally

optimal algorithms faster than that of [6] for this problem.

The paper is structured as follows. In the next section we prove that the optimal UEP

packetization problem can be formulated as a maximum-weight path problem constrained on

the number of edges, in a certain weighted directed acyclic graph. This graph has some nice

properties which induce the convexity of the optimization problem. This allows us to transform

the constrained problem to the unconstrained problem of minimizing the Lagrangian. This is

the topic of Section 3. We also show that for each value of the Lagrangian multiplier λ, the

unconstrained problem can be efficiently solved in O(NL) time. Specifically, binary search

suffices to find the optimal λ (i.e., for which the constraint is satisfied). Section 4 examines the

problem of multiple scalable codestream UEP packetization introduced in [6] and presents a

globally optimal algorithm of the same time complexity as the suboptimal algorithm in [6]. In

section 5 we present a Lagrangian solution for this problem. Experimental results are reported

in Section 6 to verify the improved efficiency and good rate-fidelity performance of the new

algorithms.

II. GRAPH MODELING OF THE PROBLEM

We assume that the rate-fidelity function ϕ(r) is convex1 and that pN(n) is non-increasing in

n (the other case when the channel is an independent packet erasure channel will be discussed

at the end of this section). It was shown in [3] that for convex ϕ(r) (without any restriction on

the channel) the optimal UEP packetization can be computed by maximizing the expression (2)

without imposing the constraint (1) (because the solution will satisfy the constraint anyway).

Consequently, this result holds in our case, too. The first step in our development is to show

that maximizing (2) is equivalent to solving a maximum-weight path problem constrained on

the number of edges.

Consider the weighted directed acyclic graph G = (V,E), whose nodes (or vertices) are

identified with nonnegative integer numbers between 0 and M , where M = min(Rmax, NL),

1All over this paper the term ”convex” refers to ”upward convex”. In other words, ϕ(r) is convex if and only if for any r1

and r2 the relation ϕ(1/2r1 + 1/2r2) ≥ 1/2ϕ(r1) + 1/2ϕ(r2) holds.
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hence the set of vertices is V = {0, 1, 2, · · · ,M}, and any two nodes u, v such that 0 < v−u ≤ N

are connected by an edge, hence the set of edges is E = {(u, v)|0 ≤ u < v ≤ M, v − u ≤ N}.

The weight of an edge (u, v) is defined to be w(u, v) = PN(N − v + u)(ϕ(v)− ϕ(u)). Let the

source vertex of the graph be 0 and let the set of final vertices coincide with V .

A path in the graph is any sequence of nodes such that any two consecutive nodes are connected

by an edge. The weight of the path is the sum of weights of edges connecting the consecutive

nodes. Note that any L-slice source allocation vector m, not necessarily satisfying the constraint

(1), can be associated to a path of L edges in the graph G, starting at the source node and ending

at a final node, namely the path: r0, r1, · · · , rL, where r0 = 0. For each i ≥ 1, the ith edge on

this path (ri−1, ri) corresponds to the segment of source symbols on the ith slice of the UEP

packetization scheme. Moreover, the edge’s weight equals the contribution of this segment to the

expected fidelity (2). Therefore, the weight of the path equals the value Φ(m)−PN(N)ϕ(0). This

correspondence between source allocation vectors and paths in G is one to one. Consequently,

the problem of optimal UEP packetization is equivalent to the problem of finding the path of

maximum weight among all the paths from the source to a final node, which have exactly L

edges (the maximum-weight L-edge path problem).

For the convenience of our algorithm development we make the graph G to be complete, i.e.,

a graph where each ordered pair (u, v) of vertices with u < v, forms an edge, by setting to

−∞ the weight of pairs (u, v) /∈ E. The following proposition states a special property of this

complete graph which is essential to the complexity reduction of our new algorithm in the next

section. In order not to interrupt the flow of the ideas we defer its proof to the Appendix.

Proposition 1. The graph G satisfies the so-called Monge property, i.e.

w(u1, v1) + w(u2, v2) ≥ w(u1, v2) + w(u2, v1), (4)

for all u1, u2, v1, v2 such that r0 ≤ u1 < u2 < v1 < v2 ≤ M .

III. LAGRANGIAN RELAXATION-BASED SOLUTION

The maximum-weight L-edge problem, as stated above, is a constrained optimization problem,

where the constraint is on the number of edges in the path. It is well known that in the case of

convex objective function, the constrained problem can be transformed to an unconstrained one

through Lagrangian relaxation. We will show that this is the case for our problem.
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Let P denote the set of all paths from the source node to any terminal node, in the graph G.

For any path P ∈ P let W (P ) denote its weight and L(P ) its length (the number of its edges).

Consider the set of planar points U = {(L(P ),W (P ))|P ∈ P}.

The problem of maximum-weight L-edge path in G can be formulated as

maximizeP∈PW (P )

subject to L(P ) = L. (5)

The underlying Lagrangian is J(λ, P ) = W (P ) + λL(P ), over all paths P ∈ P and all real

values λ. A path Pλ maximizes the Lagrangian J(λ, P ) for some λ, i.e., the relation

Pλ = max
P∈P

J(λ, P ), (6)

holds if and only if the planar point (L(Pλ),W (Pλ)) is on the upper convex hull of U and the

line of slope −λ passing through this point is a support line to U [8], [4]. Thus, if (6) holds

then the path Pλ is also the maximum-weight L(Pλ)-edge path because the upper boundary of

U is not above its upper convex hull. Consequently, if a Lagrangian multiplier λ can be found

such that the path Pλ to be of length L, then this path is the solution of the constrained problem

(5). Due to the following proposition, whose proof is given in Appendix, such a multiplier λ is

guaranteed to exist.

Proposition 2. The inequality

2W̄ (l) ≥ W̄ (l − 1) + W̄ (l + 1) (7)

holds for all l, 2 ≤ l ≤ M − 1, where W̄ (l) denotes the weight of the maximum-weight l-edge

path from the source to a final node, in the graph G.

The above proposition implies that the point (L, W̄ (L)) is on the upper convex hull of U .

Therefore there is some real value λ0 such that L(Pλ0) = L. Then Pλ0 is the solution of the

constrained problem (5). Moreover, the relation L(Pλ0) = L is valid if and only if the following

inequalities hold

W̄ (L)− W̄ (L− 1) ≥ −λ0 ≥ W̄ (L+ 1)− W̄ (L) (8)

meaning that −λ0 corresponds to the slope of any support line to the curve (·, W̄ (·)), passing

through the point (L, W̄ (L)).
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Therefore, the L-edge maximum-weight path can be found by solving (6) in conjunction with

a search on λ until the number of the edges on the path becomes exactly L. To this end we

derive from G a parameterized graph G(λ) by adding λ to the weight of each edge of G. In the

resulting parameterized graph G(λ) the maximization problem of (6) reduces to an unconstrained

maximum-weight path problem. This is because J(λ, P ) equals the weight of the path P in G(λ).

The maximum-weight path in a weighted directed acyclic graph can be found by standard

algorithms in O(|V |+ |E|) time. However, for graphs with the Monge property there is a faster

solution of O(|V |) time complexity [16]. By Proposition 1 the graph G satisfies the Monge

property, consequently G(λ) satisfies the Monge property, too (the inequality in (4) still holds if

we add 2λ on each side). Therefore, the maximum-weight paths from the source to each node

can be found in O(NL) time and space by using the algorithm proposed in [16]. Further, by

computing the maximum of these paths, in no more than O(NL) time, the maximum-weight

path of the graph is found. Consequently, for each λ, the maximization of (6) is solved in O(NL)

time and space.

Relations (8) imply that the length of Pλ is non-decreasing as the parameter λ increases [8],

[1]. Therefore, to find the optimal λ0, we use bisection search.

Before presenting the search algorithm an observation is due. For some values of λ, there

may be several paths to maximize the Lagrangian, some of equal lengths, but also some of

different lengths. The latter situation occurs when −λ equals the slope of a convex hull edge

of the curve (·, W̄ (·)). Then for each l0 such that (l0, W̄ (l0)) is on this convex hull edge, there

is a path of length l0 maximizing the Lagrangian. For each λ, our proposed algorithm finds a

maximum-weight path in G(λ) with the maximal possible number of edges.

In the bisection search, a search interval for λ, [λlow, λhigh] is maintained at any time. Initially,

λlow = −ϕ(NL)
L

and λhigh = 0. At the beginning of each iteration, the current value of λ is set to

(λlow+λhigh)/2. If L(Pλ) = L the algorithm stops. Otherwise, depending on whether L(Pλ) < L

or L(Pλ) > L, the search interval [λlow, λhigh] is updated to [λ, λhigh] or [λlow, λ] respectively.

This technique ensures that the search interval for λ becomes smaller after each iteration.

However, since the path lengths L(Pλ) take values only in a finite set, it follows that the interval

[L(Pλlow
), L(Pλhigh

)] (which is guaranteed to include L) may remain unchanged after some

iterations. The first time it happens (but after λlow and λhigh have both changed from their initial

values), we switch to another strategy for updating λ, namely λ = (λhigh − λlow)/(L(Pλlow
) −
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L(Pλhigh
)). If after this switch, the interval of lengths [L(Pλlow

), L(Pλhigh
)] does not change after

some iterations, then we stop concluding that the current λ is the optimal one. This situation

corresponds to the case when the function W̄ (l) is linear for l ∈ [L(Pλlow
), L(Pλhigh

)]. Further, the

desired L-edge path can be constructed from Pλlow
and Pλhigh

in O(L) time, as described in the

proof of Lemma 2 (with l1 = L(Pλlow
), l2 = L(Pλhigh

) and i = min{L(Pλhigh
)−L,L−L(Pλlow

)}).

Optimal UEP packetization can be computed in O(τNL) time, where τ is the number of

iterations needed to find the optimal λ. For channels with non-increasing pN(n) and for convex

rate-fidelity curves. We have empirically found that on average τ does not depend on N and

increases very slowly with L (at a growth rate close to O(logL)). Thus the new algorithm is

much faster than the O(NL2) time algorithm of [3]. Moreover, the space complexity of the new

algorithm is linear in the transmission budget, i.e. O(NL) as opposed to O(NL2) in [3]. This

saving is due to the fact that the current path does not have to be stored from one iteration to

the next.

Assume now an independent erasure channel with packet erasure rate no larger than N
2(N+1)

.

Let n0 = ⌊ϵ(N + 1)⌋. It was proven in [3] that an optimal L-slice source allocation vector m

exists such that mi ≤ N − n0 for all i. Then the graph G is constructed such that only edges

(u, v) with v − u ≤ N − n0, to have finite weights (defined as previously), and all the other

edges to have the weight −∞. It was also shown in [3] that pN(n) is nonincreasing for n ≥ n0,

which is the crucial ingredient to show that the modified graph satisfies the Monge property.

Further, the same development applies as in the previous case.

IV. UEP PACKETIZATION OF MULTIPLE CODE STREAMS

The above advances in algorithmic approach to conventional optimal UEP packetization

also bring progress in design algorithms for optimal UEP packetization of multiple scalable

codestreams, an important problem for multimedia communications which was first posed by

Gan and Ma [6].

The problem proposed by [6] is the following. Assume there are K scalable code streams to

be transmitted together using N packets of payload L each. The separate code streams may be

obtained from separate encoding of different objects of the same image. Each object is allocated

a number of symbols within each packet. Let lk denote the number of symbols allocated to

object k. Clearly,
∑K

k=1 lk = L. Then the code stream corresponding to object k is packetized
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Fig. 2. Multiple stream UEP packetization scheme. The slices are positioned horizontally and the packets vertically. The shaded

squares represent the source symbols and the white squares represent the redundancy symbols.

within the UEP framework into N small packets of size lk each. Finally, the small packets, one

from each object, are concatenated to form the large packets of size L.

Figure 2 illustrates the packetization scheme. It still consists of L slices, each of N symbols, the

packets being formed across slices. The k-th object is assigned lk slices out of the total number,

more precisely, the slices from the (l1 + · · · + lk−1 + 1)-th to the (l1 + · · · + lk−1 + lk)-th. A

prefix of object k’s code stream is divided into non-overlapping consecutive segments of lengths

mk,1,mk,2, · · · ,mk,lk , respectively. The i-th segment is protected with an (N,mk,i) RS code. The

obtained channel codeword forms the i-th slice allocated to object k, i.e., the (l1+ · · ·+ lk−1+ i)-

th slice in the global scheme. The lk-slice source allocation vector mk = (mk,1,mk,2, · · · ,mk,lk)

must have the components in non-decreasing order, i.e.

mk,1 ≤ mk,2 ≤ · · · ≤ mk,lk . (9)

Let rk,0, rk,1, · · · , rk,lk , denote the partition positions of the k-th code stream, i.e., rk,0 = 0

and rk,i =
∑i

j=1mk,j . Let ϕk(r) denote its fidelity function. Then the expected fidelity of the
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reconstructed object k at the receiver is

Φk(lk,mk) = PN(N)ϕk(0) +
∑lk

i=1 PN(N −mk,i)(ϕk(rk,i)− ϕk(rk,i−1)). (10)

Assuming that the global fidelity is additive in the the separate object’s fidelities, the global

expected fidelity at the decoder is ∑K
k=1Φk(lk,mk). (11)

As discussed in [6] the terms in the above sum can be weighted differently according to each

object’s importance. We assume here that each fidelity function ϕk(r) is already scaled by the

weighting factor assigned to object k.

The problem of optimal UEP packetization of multiple scalable code streams is then

maximize
l1,··· ,lK ,m1,···mK

K∑
k=1

Φk(lk,mk) (12)

subject to
K∑
k=1

lk = L,

mk,1 ≤ mk,2 ≤ · · · ≤ mk,lk , for each k.

As observed in [6], for fixed values l1, · · · , lK , the quantity (11) can be maximized over all

m1, · · ·mK , by maximizing each Φk(lk,mk) separately. Let Φ̄k(lk) denote the solution of optimal

UEP packetization of code stream k into N packets of size lk. In other words,

Φ̄k(lk) = max
mk,1≤···≤mk,lk

Φk(lk,mk). (13)

Then problem (12) is equivalent to

maximize
l1,··· ,lK

K∑
k=1

Φ̄k(lk) (14)

subject to
K∑
k=1

lk = L.

If the quantities Φ̄k(lk) are known then problem (14) of optimal slice allocation between objects,

is a classical resource allocation problem with integer variables and separable objective function,

for which algorithmic solutions are well known [7]. However, to solve the overall problem (12),

the algorithm to solve (14) must be aided by an algorithm for optimal UEP packetization of

single code stream, in order to compute the necessary values Φ̄k(lk).
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The authors of [6] use two alternative methods to solve the slice allocation problem (14),

the dynamic programming approach and the greedy approach, combining them with the local

search algorithm of [13] for solving single UEP packetization. The two methods to solve the

overall problem (12) have time complexities O(KNL2) and O(NL2), respectively. As specified

in [6], the dynamic programming approach ensures global optimality of the solution for the

slice allocation problem, while the greedy approach can guarantee the global optimality only if

the functions Φ̄k(lk) are convex in lk. We add to this observation that, in either case, in order

to guarantee the globally optimal solution of the overall problem, the algorithm used to solve

the single UEP packetization must be globally optimal, too. However, since the local search

algorithm in [6] does not satisfy this requirement, neither of the two methods ensures global

optimality. Moreover, although the greedy approach is motivated by the empirical observations

on the near convexity of the functions Φ̄k(lk), in lk, the authors did not clarify under which

conditions exact convexity holds.

This open problem is now settled. The functions Φ̄k(lk) are indeed convex under the conditions

assumed in this paper on the channel statistics and on the rate-fidelity curves. This follows from

Proposition 2 since Φ̄k(lk) is the weight of the maximum weight lk-edge path in the graph

Gk assigned to object k, using the graph model of Section 2. Secondly, we show that the

globally optimal solution to the multiple code streams UEP packetization can be obtained in

O(NL2) time, i.e., at the same time complexity as the fastest of the two suboptimal algorithms

in [6]. Thirdly, we propose alternative Lagrangian algorithms that are faster than Gan and Ma’s

suboptimal algorithms when K is small, while still ensuring global optimality.

The first of our algorithms uses the greedy method for the slice allocation problem (14), which

can be described as follows.

1. Initialize all lk, 1 ≤ k ≤ K, to 0.

2. Find k0 = argmax
1≤k≤K

(Φ̄k(lk + 1)− Φ̄k(lk)).

3. Increment lk0 by 1. If
∑K

k=1 lk < L go to Step 2. Else Stop.

Note that Steps 2 and 3 iterate L times. At each iteration, in order to find k0, the quantity

Φ̄k(lk + 1) needs to be computed only for a single k (namely, the previous k0), because for

the other k’s these values are already known. Apparently, the computation of Φ̄k(lk + 1) here

requires O(Nl2k) time if the globally optimal algorithm with fast matrix search of [3] is used,
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implying an overall time complexity of O(NL3). However, the incremental structure of the

dynamic programming solution of [3] allows for Φ̄k(lk + 1) to be computed in O(Nlk) time,

without running the algorithm of [3] from the beginning, but using quantities already found at

previous iterations. Thus, the overall time complexity becomes O(NL2).

More precisely, the fast algorithm of [3] can be alternatively described using the graph

modelling of the problem outlined in Section 2, as follows. To compute Φ̄k(l), the algorithm

proceeds in l stages. At each stage i, the maximum-weight i-edge path from the source to node

a, is computed for each node a. Denote by Φ̂k(i, a) the weight of this path. The computation

of all Φ̂k(i, a) is performed based on the values found at the previous step. Moreover, the fast

matrix search technique proposed in [2] is used to perform these computations in O(Nl) time.

Finally, at the end of stage l, Φ̄k(l) is computed by

Φ̄k(l) = max
a

Φ̂k(l, a). (15)

We adapt this algorithm for our purpose by adding at the end of each stage i the evaluation

of Φ̄k(i) through solving

Φ̄k(i) = max
a

Φ̂k(i, a). (16)

Note that the time complexity of stage i remains unchanged. Further, in order to compute

Φ̄k(lk + 1) at some iteration we only need to run stage lk + 1 of the above outlined algorithm.

This proves our complexity claim.

V. LAGRANGIAN-BASED SOLUTION FOR MULTIPLE CODE STREAMS UEP PACKETIZATION

The second algorithm is based again on the Lagrangian multiplier technique. Since the objec-

tive function of the slice allocation problem (14) is convex (as a sum of convex functions), the

problem can be solved [4] by maximizing the underlying Lagrangian J ′(λ, l1, · · · , lK) defined

as

J ′(λ, l1, · · · , lK) =
∑K

k=1 Φ̄k(lk) + λ
∑K

k=1 lk, (17)

for various Lagrangian multipliers λ, until the condition
K∑
k=1

lk(λ) = L, (18)
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is met, where lk(λ), 1 ≤ k ≤ K, denote the values of lk for which max
l1,··· ,lK

J ′(λ, l1, · · · , lK) is

achieved. It is easy to see that the above maximization can be performed by solving separately

max
lk

(Φ̄k(lk) + λlk), (19)

for each k. Further, the solution of (19) can be found by solving separately problem (6) for each

code stream k, i.e., finding the maximum-weight path in each graph Gk(λ), for the same λ. This

solution not only gives lk(λ) (i.e. the number of slices allocated to object k), but also the source

allocation vector for object k. To find the optimal Lagrangean multiplier λ for which (18) holds,

binary search can again be used because
∑K

k=1 lk(λ) is non-decreasing as λ increases.

To summarize, for given λ, the algorithm proceeds by solving the maximum-weight path in

each graph Gk(λ). Then λ is updated by the rules of binary search until condition (18) is met.

The algorithm runs in O(τKNL) time, with τ being the number of iterations until the optimal

λ is found. In our experiments, for the case of K = 2, the number of iterations τ exhibits the

same tendencies as in the case of single sream UEP packetization, i.e., it does not depend on N

and increases very slowly with L (at a growth rate close to O(logL)). Therefore, as a practical

solution, this algorithm is more efficient than that of the preceding section, hence than those of

[6] as well, when the number K of objects is small.

VI. EXPERIMENTAL RESULTS

We have tested the new algorithm for single stream UEP packetization on seven images

compressed by SPIHT [12]. The images and their sizes are: barb (576× 720), boat (576× 720),

lena (512×512), zelda (512×512), craft (3072×2048), hat (3072×2048) and motor (3072×2048).

The fidelity measure used is the PSNR. In order to have exact convexity of the rate-fidelity curve,

we approximated the real PSNR curve by its upper convex hull (the same approximation was

also used by other researchers [10], [11], [13]).

In order to test the number of iterations τ , we ran the new algorithm for different values of L

(from 50 to 200, in increments of 25) and different values of N (from 50 to 200, in increments

of 25). In our experiments we simulated packet erasure channels with exponentially decreasing

pN(n) and different mean packet loss rates: 0.15, 0.2, 0.25, 0.3. The number of iterations for all

our tests ranges between 2 and 14 with an average of 9.61. The extreme values 2 and 14 were

statistical outliers.
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Fig. 3. Average number of iterations τ versus the number of packets N , in the case of single stream UEP packetization. The

average is computed over all images, all mean packet loss rates and all symbol lengths.

An interesting observation from our experiments is that on average, the number of iterations

does not depend on the number of packets N , and increases very slowly with L (at a rate close

to O(logL)). The average values of τ versus N and log10 L are plotted in Figures 3 and 4. These

experimental results indicate the average time complexity of O(NL logL) for our new single

stream packetization algorithm.

The proposed algorithm is globally optimal for convex rate-fidelity curves of scalable source

code, but it is in general an approximation for practical codes used in multimedia communication.

To assess the quality of this approximation we compared the new algorithm against the globally

optimal algorithm of [3]. We performed tests on all seven images and all parameter choices

as above. The new algorithm achieved solution within 0.01 dB of the optimal one in 78% of

the total, and within 0.02 dB of the optimal one in 90% of all cases, the maximum deviation

from the optimal being 0.16 dB. Therefore, for all practical purposes one can use the new faster

algorithm with confidence that the solutions are very close to the theoretical optimum.

We have also evaluated the speed of the Lagrangian algorithm proposed for the multiple

stream packetization. The setting for our experiments is similar to the one in [6]. We considered

K = 2 and obtained the two objects by manually segmenting the lena image into a foreground
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Fig. 4. Average number of iterations τ versus log10 L, in the case of single stream UEP packetization. The average is computed

over all images, all mean packet loss rates and all number of packets N .
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Fig. 5. Average number of iterations τ versus the number of packets N , in the case of multiple streams UEP packetization.

The average is computed over all mean packet loss rates and all symbol lengths.
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Fig. 6. Average number of iterations τ versus log10 L, in the case of multiple streams UEP packetization. The average is

computed over all mean packet loss rates and all number of packets N .

object and the background. The shape-adaptive SPIHT algorithm [5] was used to encode the two

objects. We ran the Lagrangian algorithm of Section 5 for a similar choice of parameters as in

the previous set of experiments. The observations on the number of iterations are consistent with

those for the single stream case. Namely, the number of iterations varies roughly in the same

range (2 to 11). It does not depend on N , and it increases very slowly with L (at a rate close

to O(logL)). These results are presented in Figures 5 and 6, and they show that the average

time complexity of the Lagrangian-based algorithm for optimal multiple stream packetization is

O(KLN logL).

VII. CONCLUSION

We have proposed a new efficient algorithm for UEP packetization of scalable source code

streams. The algorithm finds the globally optimal solution for scalable code streams of convex

rate-fidelity function over a large class of erasure channels. The space and time complexities

of the new algorithm are linear and near linear in the transmission budget NL, representing a

significant improvement over the previous O(NL2) space and time algorithm. For real SPIHT-

compressed images, the new algorithm obtains solutions extremely close to the globally optimum.
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Moreover, the above new optimal design approach was extended to UEP packetization of

multiple scalable code streams. We found conditions in which the design objective function

is convex. A new design algorithm was proposed to obtain the globally optimal solution for

multiple scalable code streams in O(NL2) time, or at the same time complexity as the fastest

suboptimal algorithm in [6]. We also developed alternative Lagrangian algorithms that are faster

than existing suboptimal algorithms for small K, without compromising global optimality.

Appendix. Proofs of Propositions.

Here we prove Propositions 1 and 2. Before proving each of these results, we will first restate

it.

Proposition 1. The graph G satisfies the so-called Monge property, i.e.

w(u1, v1) + w(u2, v2) ≥ w(u1, v2) + w(u2, v1), (20)

for all u1, u2, v1, v2 such that r0 ≤ u1 < u2 < v1 < v2 ≤ M .

Proof. It is sufficient to show the following inequality

w(u, v) + w(u+ 1, v + 1) ≥ w(u, v + 1) + w(u+ 1, v), (21)

for all u, v such that r0 ≤ u, u + 1 < v, v + 1 ≤ M . Then (4) follows easily by induction on

u2 − u1 and v2 − v1.

Recall that some of the edges of the graph G have the weight −∞, more precisely, all edges

(a, b) such that b − a > N . Therefore we consider first the case when some of the weights

involved in inequality (21) are −∞. There are three situations leading to this:

1) v − u− 1 > N . In this case all weights are −∞, hence (21) holds with equality.

2) v − u − 1 = N . In this case all weights except w(u + 1, v) are −∞, which again makes

the two sides of (21) to be −∞. Thus, (21) holds again with equality.

3) v − u = N . Only the term w(u, v + 1) is −∞, hence (21) holds again.

Assume now that all the terms in (21) are finite, i.e., v+1−u ≤ N . Then, using the definition

of the edges’ weights in the graph G, relation (21) becomes

PN(N − v + u)[ϕ(v)− ϕ(u)] + PN(N − v − 1 + u+ 1)[ϕ(v + 1)− ϕ(u+ 1)] ≥

PN(N − v − 1 + u)[ϕ(v + 1)− ϕ(u)] + PN(N − v + u+ 1)[ϕ(v)− ϕ(u+ 1)]. (22)
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The next step is to replace PN(N − v − 1 + u) by PN(N − v + u) − pN(N − v + u) and

PN(N − v + u + 1) by PN(N − v + u) + pN(N − v + u + 1). After that the terms containing

the factor PN(N − v + u) are grouped together. Since their sum is 0, inequality (22) becomes

0 ≥ −pN(N − v + u)[ϕ(v + 1)− ϕ(u)] + pN(N − v + u+ 1)[ϕ(v)− ϕ(u+ 1)]. (23)

The proof of the proposition follows by combining

ϕ(v + 1)− ϕ(u) ≥ ϕ(v)− ϕ(u+ 1) ≥ 0, (24)

and

pN(N − v + u) ≥ pN(N − v + u+ 1) ≥ 0. (25)

Relation (24) is true because the function ϕ(·) is non-decreasing, and (25) is true because pN(·)

is non-increasing. �

Before proving Proposition 2 we make the observation that such a convexity result was shown

in [1] (Corollary 7 [1]) for a complete graph with Monge property, but only one terminal node.

In our graph all nodes are terminal, therefore the result of [1] is not applicable. Moreover,

the edge weights in our graph have an additional property (incurred by the convexity of the

fidelity function ϕ(·)), which makes Proposition 2 hold. However, in our proof we will use an

intermediary result of [1], which is stated next.

Lemma 1 ([1]). Let a and b be two vertices in G with a ≤ b. Let further Pa be a path of la

edges from the source to node a, and Pb be a path of lb edges from the source to node b, such

that la > lb. Then for any integer i, 0 < i ≤ la − lb, there is a path Qa of la − i edges from the

source to a, and a path Qb of lb + i edges from the source to b, such that

W (Qa) +W (Qb) ≥ W (Pa) +W (Pb). (26)

The above result is Lemma 6 of [1]. Since the construction of the two paths Qa and Qb is

needed in our algorithm we briefly describe it following the idea in [1]. Notice first that the case

when a = b and i = la − lb is trivial because we can choose Qa to be Pb and Qb to be Pa. We

treat next the non-trivial case. Let the path Pa be a0, a1, a2, · · · , ala with a0 = 0, ala = a, and let

Pb be b0, b1, b2, · · · , blb , where b0 = 0, blb = b. Consider the largest integer j in the range from 0

to lb with the property that bj ≤ aj+i. Such an integer is guaranteed to exist because b0 ≤ a0+i.

Moreover, j ̸= lb because blb > alb+i. Hence, j ≤ lb − 1. Further, from the definition of j it
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follows that bj+1 > aj+i+1. Define now the path Qa as b0, b1, · · · , bj−1, bj, aj+i+1, aj+i+2, · · · , ala
and the path Qb as a0, a1, · · · , aj+i−1, aj+i, bj+1, bj+2, · · · , blb . Clearly, Qa has la − i edges and

Qb has lb + i edges. Using further the inequalities bj ≤ aj+i < aj+i+1 < bj+1, and the Monge

property of the graph G (Proposition 1), relation (26) easily follows.

In order to prove Proposition 2 we need the following lemma, too.

Lemma 2. Consider the paths P1 and P2 to be the l1-edge, respectively the l2-edge, maximum-

weight paths in G, for some integers 0 < l1 < l2. Then for any integer i, 0 < i ≤ (la − lb)/2,

there are two paths Q1 and Q2, of l1+ i, respectively, l2− i edges, both starting from the source

of the graph, such that

W (Q1) +W (Q2) ≥ W (P1) +W (P2). (27)

Proof. The situation when l1 = l2 − 1 is trivial, therefore we will assume that l1 < l2 − 1. Let

the path P1 be r0, r1, · · · , rl1 , and let the path P2 be r′0, r
′
1, · · · , r′l2 , where r0 = r′0 = 0. We need

to distinguish further between three cases.

Case 1: r′l2 ≤ rl1 . The paths Q1 and Q2 are constructed as in Lemma 1.

Case 2: r′l2−i ≤ rl1 < r′l2 . Let P ′
2 denote the (l2− i)-edge path from 0 to r′l2−1 obtained from P2

by removing the last i edges. Since i ≤ la− (lb− i) we can apply Lemma 1, and hence construct

an (l1 + i)-edge path Q1 from 0 to rl1 , and an (l2 − 2i)-edge path Q′
2 from 0 to r′l2−i such that

W (Q1) +W (Q′
2) ≥ W (P1) +W (P ′

2) (28)

holds. Now construct Q2 by appending to Q′
2 the last i edges of P2 (i.e., the portion of P2

between (r′l2−i and r′l2). Clearly, (27) is satisfied.

Case 3: rl1 < r′l2−i. Let Q2 be the prefix of the path P2 up to the node r′l2−i. Further, Q1 is

obtained by appending to P1 the path rl1 , rl1+1, · · · , rl1+i, where, for 1 ≤ j ≤ i, rl1+j = rl1+j−1+

r′l2−i+j − r′l2−i+j−1. Then, in order to prove (27) it is enough to show that w(rl1+j−1, rl1+j) ≥

w(r′l2−i+j−1, r
′
l2−i+j), for all j, 1 ≤ j ≤ i. This inequality is equivalent to ϕ(rl1+j)−ϕ(rl1+j−1) ≥

ϕ(r′l2−i+j) − ϕ(r′l2−i+j−1), which follows immediately using the relations rl1+j−1 ≤ r′l2−i+j−1,

rl1+j − rl1+j−1 = r′l2−i+j − r′l2−i+j−1 and the convexity of ϕ(·). �

Remark 1. If the planar points (l1, W̄ (l1)) and (l2, W̄ (l2)), for l1 and l2 as in the above lemma, are

on a convex hull edge of the curve (·, W̄ (·)), then the points (l1+i, W̄ (l1+i)) and (l2−i, W̄ (l2−i))
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are on this convex hull edge as well, and the following equality easily follows

W̄ (l1 + i) + W̄ (l2 − i) = W̄ (l1) + W̄ (l2). (29)

This implies that relation (27) is satisfied with equality and, moreover, the paths Q1 and Q2 are

the (l1 + i)-edge, respectively, (l2 − i)-edge, maximum-weight paths in G.

We are now ready to prove Proposition 2.

Proposition 2. The inequality

2W̄ (l) ≥ W̄ (l − 1) + W̄ (l + 1) (30)

holds for all l, 1 ≤ l ≤ M .

Proof. Let the paths P1 and P2 be the (l− 1)-edge, respectively (l+ 1)-edge, maximum-weight

paths in G. According to Lemma 2, there are two l-edge paths Q1 and Q2 such that the following

relation to hold:

W (Q1) +W (Q2) ≥ W (P1) +W (P2). (31)

Since 2W̄ (l) ≥ W (Q1) +W (Q2), Proposition 2 immediately follows. �
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