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Optimal Design of a Two-stage Wyner-Ziv Scalar
Quantizer with Forwardly/Reversely Degraded Side

Information
Qixue Zheng and Sorina Dumitrescu, Senior Member, IEEE

Abstract—This work addresses the optimal design of a two-
stage Wyner-Ziv scalar quantizer with forwardly or reversely
degraded side information (SI) for finite-alphabet sources and SI.
We assume that the binning is performed optimally and address
the design of the quantizer partitions. The optimization problem
is formulated as the minimization of a weighted sum of distortions
and rates. The proposed solution is globally optimal when the
cells in each partition are contiguous. The solution algorithm
is based on solving the single-source or the all-pairs minimum-
weight path (MWP) problem in certain weighted directed acyclic
graphs. When the conventional dynamic programming technique
is used to solve the underlying MWP problems, the time complex-
ity achieved is O(N3), where N is the size of the source alphabet.
A so-called partial Monge property is additionally introduced and
a faster solution algorithm exploiting this property is proposed.
Experimental results assess the practical performance of the
proposed scheme.

Index Terms—Wyner-Ziv coding, degraded side information,
scalar quantization, globally optimal algorithm, minimum-weight
path problem, Monge property.

I. INTRODUCTION

Distributed source coding (DSC) refers to the compression
of correlated, but isolated sources which are jointly decoded.
The interest in DSC is motivated by applications in sensor
networks and video coding. One case of DSC is Wyner-Ziv
(WZ) coding, which represents lossy source coding with side
information (SI) available only at the decoder [1]. The single-
letter characterization of the achievable rate-distortion (RD)
region for the WZ problem was derived by Wyner and Ziv in
[1]. Heegard and Berger [2] and Kaspi [3] studied the scenario
where the encoder transmits messages to two decoders, only
one of which has SI, referred to as the HB problem. They
provided the single-letter characterization of the RD region.
Additionally, Heegard and Berger generalized the problem to
the case of more than two decoders, each with its own SI, and
provided the characterization of the RD region when the SI is
stochastically degraded [2].

The problem was further extended to the successive refine-
ment (SR) setting [4]–[6]. Figure 1 depicts the SR scenario
with two stages and SI at the two decoders, where X is
the source, while Yκ is the SI at decoder κ, for κ = 1, 2.
Steinberg and Merhav [4] considered multi-stage coding with
stochastically degraded SI, i.e., where the decoder receiving
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Figure 1. Two-stage Wyner-Ziv coding.

higher rate has stronger SI. They characterized the RD region
for the two-stage SR problem with degraded SI, i.e., when the
Markov chain X ↔ Y2 ↔ Y1 holds. The characterization of
the RD region for general number of stages and degraded SI
was given by Tian and Diggavi in [5]. In [6] Tian and Diggavi
investigated the two-stage coding scenario where the first
decoder has stronger SI, i.e., the Markov chain X ↔ Y1 ↔ Y2

holds. They termed this problem SI-scalable coding. Further,
they provided inner and outer bounds to the RD region for
general discrete memoryless sources and derived the complete
RD region for the multi-stage case for the quadratic Gaussian
source with jointly Gaussian SI.

The research on the theoretical aspects of source coding
with varying SI at the decoders was paralleled by the inves-
tigation of practical coding schemes. While the information-
theoretical results are non-constructive1, they inspire the prac-
tical constructions. The theoretical coding schemes for prob-
lems with SI only at the decoder(s) use quantization and
binning as building blocks. For the practical implementation of
binning, cosets of powerful linear channel codes are generally
used, while for the quantization part, various scalar or vector
quantizers are employed, including lattice and trellis-based
quantizers [7]–[9].

Practical schemes for the multiple-decoder WZ problem
were proposed in [10]–[17]. Cheng and Xiong [10] considered
the case when the SI is the same at all decoders. Their scheme
is based on uniform nested scalar quantizers in conjunction
with low density parity check (LDPC) codes for binning.
Similar approaches are used in [11]–[15] to implement WZ
schemes with degraded or identical SI, targeting applications
in robust video coding. Further, Ramanan and Walsh [16] pro-
posed a coding scheme for the HB problem using successively

1Such results are based on random coding arguments and show that schemes
achieving the claimed performance exist, but do not explain how to construct
the corresponding codebooks.
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refinable trellis coded quantization and LDPC-based codes
for binning. Very recently, Shi et. al. [17] have introduced
a construction for the HB problem for binary and Gaussian
sources based on nested polar codes, respectively nested polar
lattices.

As seen from the above discussion, most of the existing
practical schemes for the multiple-decoder WZ problem use
uniform quantizer partitions. Better performance is expected
to be achieved by employing optimized quantizer partitions.
Such an approach was taken by Rebollo-Monedero et al.
[18] and by Muresan and Effros [19], [20], who addressed
the design of scalar quantizers for the single-encoder-single-
decoder WZ problem, under the assumption that the binning
is performed optimally, achieving the Slepian-Wolf rate [21].
Both works formulate the problem as the minimization of a
weighted sum of the distortion and rate. The algorithm of
[18] is an iterative algorithm in the spirit of Max-Lloyd’s
algorithm, which guarantees only a locally optimal solution
in general. The approach of Muresan and Effros [19], [20]
is to model the problem as a minimum-weight path (MWP)
problem in a certain weighted directed acyclic graph (WDAG).
This approach ensures globally optimal solution for the case
of finite-alphabet sources, subject to the constraint that the
quantizer cells are contiguous2. The authors of [19], [20] also
proposed globally optimal design algorithms for successively
refinable scalar quantizers (SRSQ) (also termed multiresolu-
tion scalar quantizers) without SI at the decoders and for
multiple description scalar quantizers (MDSQ), subject to the
same constraints as above. They addressed both the fixed-
rate and entropy-constrained cases. Additionally, Muresan and
Effros pointed out that their designs could be easily extended
to the case of SRSQ and MDSQ with SI at the decoders.
It is worth emphasizing that an algorithm for the entropy-
constrained SRSQ design similar to the one of [20] was
developed independently by Dumitrescu and Wu in [22].
Additionally, faster globally optimal design algorithms for
fixed-rate SRSQ were developed by Dumitrescu and Wu in
[23], [24] and for fixed-rate MDSQ in [25], [26], also for
finite-alphabet sources under the constraint of cell contiguity.
The key technique in the latter works was to prove that the
components of the cost function satisfy the so-called Monge
property [27], which was further exploited to accelerate the
design procedure.

In this work, we address the design of coding schemes based
on scalar quantization for the two-stage WZ coding problem
with either forwardly degraded SI, i.e., when X ↔ Y2 ↔ Y1

holds, or reversely degraded SI, i.e., when X ↔ Y1 ↔ Y2

holds. We address the case when the source and the SI have
finite alphabets. We use the acronyms F-WZ (respectively, R-
WZ) for the two-stage WZ coding problem with forwardly
degraded SI (respectively, reversely degraded SI). Addition-
ally, we utilize the notation F-WZSQ and R-WZSQ for the
proposed schemes based on scalar quantization for the F-WZ
and R-WZ problems, respectively. Our approach is to separate
the quantization and the binning parts and, like [18] and [20],

2A cell is said to be contiguous if it equals the intersection between the
source alphabet and an interval of the real line.

to assume that the binning and/or nested binning are performed
optimally achieving the theoretical limits and focus on the
optimal design of the scalar encoder partitions.

The proposed schemes are inspired by the random-coding-
based schemes used to prove the achievability of the RD re-
gions derived in [4] and [6], respectively. Thus, the encoder of
the F-WZSQ consists of two nested partitions (a coarse and a
fine partition), while the encoder of the R-WZSQ is composed
of a coarse partition and two independent refinements, one
for each decoder. In each case, the optimization problem is
formulated as the minimization of a weighted sum of the
distortions and rates. The proposed solution algorithms are
delivered in two stages. First we show how the problem can
be decomposed into solving the all-pairs MWP problem in
two WDAGs for R-WZSQ, respectively in one WDAG for
F-WZSQ, followed by solving the MWP problem in another
WDAG. For this, we closely follow the approach developed in
[20], [22] for entropy-constrained SRSQ design (without SI at
the decoder), which also involves optimizing nested partitions.
The main difference versus [20], [22] resides in the expression
of the cost function, which has to account for the presence of
the SI at the decoders. Another difference is manifested in
the R-WZSQ case and stems from the fact that the coarse
partition has two refinements, not just one as in SRSQ. If
conventional algorithms (based on dynamic programming) are
further used to solve the aforementioned MWP problems, then
the time complexity of the solution amounts to O(N3), where
N denotes the size of the alphabet of the source X . This claim
holds under the assumption that the sizes of the alphabets of
Y1 and Y2 are O(N). Note that the aforementioned solution
algorithm for each problem is globally optimal under the
assumption that the cells in each partition are contiguous.

In the following stage of our exposition, we introduce the
partial Monge property and show how the solution developed
in the first stage can be accelerated when this property holds.
The Monge property was shown to hold in several optimal de-
sign problems for systems based on fixed-rate scalar quantizers
and was leveraged to achieve significant complexity reduction
in comparison with conventional algorithms [23]–[26], [28].
It is important to highlight that the aforementioned works
which exploit the Monge property require the property to hold
for all graph edges of the WDAGs in the problem modeling.
Unfortunately, this requirement is not satisfied in the entropy-
constrained case, as is ours. However, we have observed
empirically that the Monge property is fulfilled for a certain
structured subset of the set of edges of the aforementioned
WDAGs. We refer to this as the partial Monge property and
prove that, when it is satisfied, it still can be utilized to
expedite the solution.

To summarize, our contribution lies in the following aspects.
• We extend the approach of [20], [22] for the design of

entropy-constrained SRSQ to obtain globally optimal so-
lutions for the design of F-WZSQ and R-WZSQ schemes
for finite alphabet sources and SI, under the assumption
that the binning is performed optimally achieving the
Slepian-Wolf limits. This is the first work to address the
optimization of the scalar quantizers for the two-stage
WZ problem, up to our knowledge.
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• We introduce the partial Monge property in a complete
WDAG3 and show how this can be exploited to speed
up the dynamic programming solution algorithm for the
all-pairs MWP problem.

• We prove that, if the partial Monge property holds in
the underlying WDAGs, then the time complexity of
the F-WZSQ and R-WZSQ design algorithms can be
significantly reduced.

• We show empirically, using a discretized Gaussian source
with discretized Gaussian SI, that the partial Monge
property is fulfilled in many situations of interest, thus
allowing for the fast F-WZSQ/R-WZSQ design algorithm
to be employed.

We would like to mention that our conference paper [29]
addresses only the optimal F-WZSQ design. It includes only
a succinct presentation of the fast solution enabled by the
partial Monge property, without covering the algorithm details
and the proof of correctness. Additionally, work [29] does
not contain the empirical verification of the fulfillment of the
partial Monge property.

This paper is organized as follows. The following section
introduces the notations and the problem formulation. Section
III presents the proposed dynamic programming solution based
on the MWP model for the optimal R-WZSQ/F-WZSQ design
problems. Section IV introduces the partial Monge property
and shows how this can be exploited to further reduce the time
complexity. Details about the proposed technique, which relies
on a modification of an algorithm of Hirschberg and Larmore
[30], are given in Section V. Section VI presents exten-
sive experimental results and comparison with the theoretical
bounds for a Gaussian source with Gaussian SI. Additionally,
the satisfaction of the partial Monge property is empirically
investigated. Finally, Section VII concludes the paper.

II. NOTATIONS AND PROBLEM FORMULATION

This section starts by presenting general notations. Subsec-
tion II-B introduces the R-WZSQ architecture and formulates
the problem of optimal R-WZSQ design. The following sub-
section formulates the problem of optimal F-WZSQ design.

A. Notations

Let d : R×R→ [0,∞) denote the distortion function. We
will assume that d is monotone, i.e., for any real x, y1 and y2,
if x ≤ y1 < y2 or x ≥ y1 > y2, then d(x, y1) ≤ d(x, y2). Note
that the majority of distortion measures of signal quantization
used in practice fall into this category. Let the alphabet
of the source X be X = {x1, · · · , xN} ⊂ R, where the
elements are labeled in increasing order. Denote x0 = −∞
and X̄ = X ∪ {x0}. Let Y1 and Y2 denote the alphabets of
the SI Y1 and Y2, respectively. Let X̂ be the reconstruction
alphabet of the source X . When the distortion measure is the
squared difference, we consider X̂ = R. Otherwise, we take
a finite set as X̂, with |X̂| = O(N), where |S| denotes the
cardinality of the set S. Further, we say that a set S ⊆ X is
contiguous if there exist xu, xv ∈ X̄ with u < v such that

3A WDAG is called complete if any two nodes are connected by an edge.
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Figure 2. Illustration of the three partitions f0, f1 and f2.

S = (xu, xv], where (xu, xv] , {x ∈ X|xu < x ≤ xv}.
For discrete random variables A and B, H(A) denotes the
entropy of A and H(A|B) denotes the conditional entropy of
A given B. For any positive integer k, let Ik , {1, 2, ..., k}.
For any integer n ≥ 2, an ascending n-sequence is an n-tuple
r = (r0, r1, · · · , rn−1), where r0 < r1 < · · · < rn−1 and
ri ∈ X̄, for 0 ≤ i ≤ n−1. For any xu, xv ∈ X̄ with u < v, let
Txu,xv denote the set of all ascending n-sequences such that
r0 = xu and rn−1 = xv , for all n ≥ 2.

B. Optimal R-WZSQ Design Problem

The configuration of the proposed R-WZSQ scheme is
inspired by Tian and Diggavi’s work [6]. The R-WZSQ is
specified by the encoding functions ft, t ∈ {0, 1, 2}, and
decoding functions gt, t ∈ {1, 2}, where

f0 : X→ IM0
, f1 : X→ IM1

, f2 : X→ IM2
,

g1 : IM0
× IM1

× Y1 → X̂, g2 : IM0
× IM2

× Y2 → X̂,
(1)

M0,M1,M2 are positive integers and f0, f1, f2 are surjective.
Function f0 generates the coarse partition, while f1 and f2

separately refine the partition f0. The pair (f0, ft) together
with gt forms the quantizer Qt, for t = 1, 2. We will denote
by i, respectively j and k, the indexes output by encoders f0,
f1 and f2, respectively. We use the notation Ci, 1 ≤ i ≤M0,
for the cells in the coarse partition, i.e., Ci , f−1

0 (i). As
shown in Figure 2, each Ci is further divided into M1,i and
M2,i non-empty sub-cells by the encoding functions f1 and f2,
respectively, for some M1,i, 0 < M1,i ≤M1, and some M2,i,
0 < M2,i ≤ M2. Let Cij , {x ∈ R|f0(x) = i and f1(x) =
j} and C ′ik , {x ∈ R|f0(x) = i and f2(x) = k}, for i ∈
IM0

, j ∈ IM1,i
, k ∈ IM2,i

.
We will assume that the cells in each partition, i.e., cells

Ci, Cij and C ′ik, are contiguous. It follows that there is
a unique ascending (M0 + 1)-sequence r ∈ Tx0,xN such
that Ci = (ri−1, ri], for 1 ≤ i ≤ M0. Thus, the partition
generated by f0 is completely specified by the sequence
r. Likewise, for each 1 ≤ i ≤ M0, the partition of Ci
into cells Cij is specified by the ascending (M1,i + 1)-
sequence si , (si,0, si,1, · · · , si,M1,i

) ∈ Tri−1,ri satisfying
Cij = (si,j−1, si,j ], for 1 ≤ j ≤M1,i. Similarly, for each 1 ≤
i ≤ M0, the partition of Ci into cells C ′ik is specified by the
ascending (M2,i + 1)-sequence ti , (ti,0, ti,1, · · · , ti,M2,i

) ∈
Tri−1,ri , where C ′ik = (ti,k−1, ti,k], for 1 ≤ k ≤M2,i. Further,
let us denote by s̄ the M0-tuple (s1, · · · , sM0

), and by t̄ the
M0-tuple (t1, · · · , tM0).

Let I, J and K denote the random variables representing
the outputs of f0, f1 and f2, respectively. Decoder g1 uses I, J
and Y1 to reconstruct the source, while decoder g2 uses I,K
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and Y2 for the source reconstruction. We will assume that the
reconstruction at each decoder is optimal, i.e., it minimizes the
distortion. Then the decoding functions are defined as follows

g1(i, j, y1) , x̂1(Cij |y1), g2(i, k, y2) , x̂2(C ′ik|y2),

for 1 ≤ i ≤ M0, 1 ≤ j ≤ M1,i, 1 ≤ k ≤ M2,i, y1 ∈ Y1 and
y2 ∈ Y2, where x̂κ(C|yκ) is defined for any set C ⊆ X and
any yκ ∈ Yκ, κ ∈ {1, 2} as

x̂κ(C|yκ) , arg min
x̂∈X̂

E[d(X, x̂)|X ∈ C, Yκ = yκ].

Since the decoders are determined given the encoders, it
follows that the coding scheme is fully specified by the triple
of encoding functions (f0, f1, f2), which we denote by f .

The total message to be transmitted to the two decoders can
be split into four parts M0,1, M1, M0,2, and M2. Message
M0,1 represents the information needed by decoder 1 to
recover the index I with the help of the SI Y1, while M1 is the
additional information needed at decoder 1 to recover index J
based on I and Y1. Further, M0,2 denotes the message needed
at decoder 2 in order to recover the index I with the help of
M0,1 and the SI Y2. Finally, M2 is the information needed at
decoder 2 to recover the index K based on the index I and Y2.
We assume that when coding the aforementioned message, the
binning is performed on blocks of length approaching ∞, so
that the limits in the Slepian-Wolf Theorem [21] are achieved.
Thus, the rates of the messages M0,1, M1, M0,2, and M2 are
H(I|Y1), H(J |I, Y1), H(I|Y2) − H(I|Y1) and H(K|I, Y2),
respectively. Note that, since the Markov chain X ↔ Y1 ↔ Y2

holds, the aforementioned rates for M0,1 and M0,2 can be
achieved by using nested binning, where M0,1 is the index of
the coarse bin, while M0,2 is the index of the fine bin inside
the coarse bin [6].

Let us denote by R1(f) the rate for the portion of the
message needed by decoder 1 and by R2(f) the rate for the
message portion that only decoder 2 will use. In other words,
R1(f) is the rate for M0,1 and M1, while R2(f) is the rate
for M0,2 and M2. Additionally, let R(f) , R1(f) + R2(f).
Finally, for κ = 1, 2, let Dκ(f) denote the distortion at decoder
κ.

We conclude that the rate-distortion performance of
an R-WZSQ can be characterized by the quadruple(
R1(f), R(f), D1(f), D2(f)

)
. The optimum such quadruple is

not unique. Rather, any such quadruple (we will call them
RD quadruples) situated on the lower boundary of the convex
hull of the set of all possible RD quadruples is optimal in
some sense. Note that any RD quadruple on the lower convex
hull can be obtained by minimizing a weighted sum of the
distortions and rates with positive weights [31]. Clearly, if the
weights are normalized so that the weights of the distortion
terms add up to 1, the result of the minimization remains the
same. Therefore, we will consider as our cost function the
following

O(r, s̄, t̄) , ρD1(f)+(1−ρ)D2(f)+λ1R1(f)+λ2R(f), (2)

for some 0 < ρ < 1 and λ1, λ2 > 0. Further, we formulate
the problem of optimal R-WZSQ design as follows

min
r,s̄,t̄

O(r, s̄, t̄). (3)

Note that the weights ρ, 1−ρ, λ1, λ2 in (2) could be interpreted
as the priorities that code designers place on the minimization
of D1(f), D2(f), R1(f), R(f), respectively. We emphasize that
the approach of formulating the optimal design problem as the
problem of minimizing a weighted sum of distortions and rates
was also adopted in [18], [19], [32], [33].

C. Optimal F-WZSQ Design Problem

In the case of F-WZSQ, the encoders generate only two
partitions, a coarse partition, to be used at decoder 1, and a fine
partition, to be used at decoder 2. Thus, the difference versus
the coding scheme in (1) is that the encoding function f1

disappears, or, equivalently, M1 = 1. Additionally, out of the
four parts constituting the total message to be transmitted to
the decoders, only two remain, namely M0,1 and M2. Message
M0,1 is needed at decoder 1 in order to recover index I based
on the SI Y1. Thus, it can be transmitted at a rate equal to
H(I|Y1). Since SI Y2 is stronger than Y1, the second decoder
is able to recover I as well from M0,1. Additionally, the second
decoder uses M2 to recover the refinement index K based on
I and Y2. Therefore, the rate for M2 equals H(K|I, Y2). In
other words, R1(f) = H(I|Y1), while R2(f) = H(K|I, Y2).

The cost function is also defined as in (2), but is only a
function of r and t̄, i.e.,

O(r, t̄) , ρD1(f)+(1−ρ)D2(f)+(λ1+λ2)R1(f)+λ2R2(f).
(4)

The problem of optimal F-WZSQ design is formulated as

min
r,t̄

O(r, t̄). (5)

III. DYNAMIC PROGRAMMING SOLUTION BASED ON THE
MWP PARADIGM

In this section, we present the proposed solution algorithms
based on the MWP model. We first review the MWP problem
in a complete WDAG and its dynamic programming solution
in subsection III-A. Next we describe the solution to the
optimal R-WZSQ design problem in subsection III-B. The
following subsection presents the preprocessing step, whose
aim is to make possible the computation of each edge weight
in constant time. Finally, the solution to the optimal F-WZSQ
design problem is discussed in subsection III-D.

A. MWP in a WDAG

A DAG (short for directed acyclic graph) consists of a set
of vertices (or nodes) V and a set of directed edges E. In this
work, we consider V = {0, ..., N} and E = {(u, v) ∈ V 2|0 ≤
u < v ≤ N}. We denote by G this DAG. Note that G is a
“complete” DAG, meaning that any two nodes are connected
by an edge. If we assign a real value, called “weight”, to each
edge, the graph becomes a WDAG (short for weighted DAG).
Let G(ω) denote the WDAG obtained from the DAG G with
the weight function ω : E → R. A path in the WDAG is
a sequence of connected edges. Alternatively, a path can be
regarded as a sequence of nodes, where any two consecutive
nodes are connected by an edge. The weight of the path is
the sum of the weights of its edges. The MWP problem in the
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WDAG is the problem of finding the path of minimum weight
from the source node to the final node, where one node is
designated as the source and another as the final node. The
solution to this problem essentially finds the MWP from the
source node to any other node in the graph, i.e., it solves what
is referred to as the single-source MWP problem. Let u be the
source node. For each n with u ≤ n ≤ N , let Ŵu(n) denote
the weight of the MWP from node u to node n in the WDAG
G(ω). Thus, Ŵu(u) = 0 and the following recurrence relation
holds

Ŵu(n) , min
u≤m<n

(Ŵu(m) + ω(m,n)), (6)

for all u < n ≤ N . It follows that the single-source MWP
problem can be solved using dynamic programming based on
(6) in O(N2) time when all edge weights are given. A related
problem is the all-pairs MWP problem, which refers to finding
the MWP between any pair of nodes of the WDAG. The latter
problem can be solved in O(N3) time, when all edge weights
are known, simply by solving the single-source MWP problem
N times, each time with a different node as the source.

B. Solution to the Optimal R-WZSQ Design Problem

For C ⊆ X, yκ ∈ Yκ, κ = 1, 2, denote

Pκ(C, yκ) , P[X ∈ C, Yκ = yκ],

v1,κ(C) ,
∑
yκ∈Yκ

Pκ(C, yκ)E[d(X, x̂κ(C|yκ))|X ∈ C, Yκ = yκ],

v2,κ(C) , −
∑
yκ∈Yκ

Pκ(C, yκ) log2(Pκ(C, yκ)).

Since

D1(f) = E[d(X, g1(I, J, Y1))],

D2(f) = E[d(X, g2(I,K, Y2))],

we obtain

D1(f) =

M0∑
i=1

M1,i∑
j=1

v1,1(Cij),

D2(f) =

M0∑
i=1

M2,i∑
k=1

v1,2(C ′ik).

(7)

The rates R1(f) and R2(f) can be written as follows

R1(f) = H(I|Y1) +H(J |I, Y1) = H(I, J |Y1)

= H(J, I, Y1)−H(Y1)

=

M0∑
i=1

M1,i∑
j=1

v2,1(Cij)−H(Y1),

(8)

R2(f) = H(I|Y2)−H(I|Y1) +H(K|I, Y2)

= H(I,K|Y2)−H(I|Y1)

= H(K, I, Y2)−H(Y2)−H(I, Y1) +H(Y1)

=

M0∑
i=1

M2,i∑
k=1

v2,2(C ′ik)−H(Y2)

−
M0∑
i=1

v2,1(Ci) +H(Y1).

(9)

By plugging (7)-(9) in (2) we obtain

O(r, s̄, t̄) = ρ

M0∑
i=1

M1,i∑
j=1

v1,1(Cij) + (1− ρ)

M0∑
i=1

M2,i∑
k=1

v1,2(C ′ik)

+ (λ1 + λ2)

M0∑
i=1

M1,i∑
j=1

v2,1(Cij)− (λ1 + λ2)H(Y1)

+ λ2

M0∑
i=1

M2,i∑
k=1

v2,2(C ′ik)−
M0∑
i=1

v2,1(Ci)


+ λ2(H(Y1)−H(Y2)).

Since the quantity −λ1H(Y1) − λ2H(Y2) is a constant, it
can be subtracted from the objective function O(r, s̄, t̄). After
doing so and rearranging the terms, the new cost becomes

O′(r, s̄, t̄) =

M0∑
i=1

(
− λ2v2,1(Ci)

+

M1,i∑
j=1

(
ρv1,1(Cij) + (λ1 + λ2)v2,1(Cij)

)
︸ ︷︷ ︸

w1(Ci,si)

+

M2,i∑
k=1

(
(1− ρ)v1,2(C ′ik) + λ2v2,2(C ′ik)

)
︸ ︷︷ ︸

w2(Ci,ti)

)
.

(10)

We notice from (10) that, if Ci is fixed, then the partition si
of Ci can be optimized by minimizing the subcost w1(Ci, si).
Likewise, the partition ti can be optimized by minimizing
w2(Ci, ti). Therefore, for each xu, xv ∈ X̄ with u < v, let
s∗(xu, xv) and t∗(xu, xv) denote the corresponding optimal
partitions of Ci if Ci = (xu, xv], i.e.,

s∗(xu, xv) , arg min
s∈Txu,xv

w1((xu, xv], s), (11)

t∗(xu, xv) , arg min
t∈Txu,xv

w2((xu, xv], t), (12)

where Txu,xv was defined at the end of Subsection II-A.
Further, for each xu, xv ∈ X̄ with u < v, denote

w0(xu, xv) ,− λ2v2,1((xu, xv]) + w1((xu, xv], s
∗(xu, xv))

+ w2((xu, xv], t
∗(xu, xv)).

(13)
It follows that, if the optimal partitions s∗(ri−1, ri) and
t∗(ri−1, ri) are known for each possible pair (ri−1, ri) (i.e.,
for each possible coarse cell Ci), then problem (3) reduces to
solving the following

min
M0,r

Ō(r) ,
M0∑
i=1

w0(ri−1, ri). (14)

The above discussion suggests the following strategy to
solve problem (3).

1) Determine s∗(xu, xv) for all pairs xu, xv of elements in
X̄ with u < v.

2) Determine t∗(xu, xv) for all pairs xu, xv of elements in
X̄ with u < v.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2018.2875486

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

3) Solve problem (14).
Next we will discuss how to solve the problem at each step.
The key idea is to model each component problem as an MWP
problem in a WDAG obtained from the DAG G. Note that any
contiguous cell (xm, xn] can be associated to the edge (m,n)
in the DAG G. Then any partition of some cell (xu, xv] into
contiguous cells can be regarded as a path in G between the
vertices u and v. Furthermore, the cost of the partition can be
written as the sum of the costs of the individual cells. Thus, if
we define the weight of an edge as the cost of the associated
cell, then the cost of the partition becomes equal to the cost
of the associated path.

Specifically, consider the partition s = (s0, · · · , sM ) of
(xu, xv] into M cells, for some M > 0, i.e., s ∈ Txu,xv .
For each j, 0 ≤ j ≤ M , let qj ∈ V such that sj = xqj . Then
the sequence q = (q0, · · · , qM ) is an M -edge path from node
u to node v in G. For each i, 1 ≤ i ≤ M , the ith edge on
this path, namely (qi−1, qi), corresponds to the ith cell in the
partition, namely (si−1, si]. Consider now the weight function
ω1 defined as follows

ω1(m,n) , ρv1,1((xm, xn])+(λ1 +λ2)v2,1((xm, xn]). (15)

Then the cost of the partition s is equal to the weight of the
associated path q in the WDAG G(ω1), i.e., w1((xu, xv], s) =∑M
j=1 ω1(qj−1, qj). Clearly, the aforementioned correspon-

dence between contiguous-cell partitions of (xu, xv] and paths
from u to v in G(ω1) is one-to-one. Therefore, solving
problem (11), i.e., finding the optimal partition s∗(xu, xv), is
equivalent to finding the MWP between the nodes u and v in
G(ω1). Since in Step 1 we need to find s∗(xu, xv) for all pairs
(u, v) ∈ E, it follows that the problem at Step 1 is equivalent
to the all-pairs MWP problem in G(ω1), which can be solved
in O(N3) time if each edge weight can be evaluated in O(1)
time.

Similarly, the problem at Step 2 is equivalent to the all-pairs
MWP problem in G(ω2), where

ω2(m,n) , (1− ρ)v1,2((xm, xn]) + λ2v2,2((xm, xn]), (16)

for each (m,n) ∈ E. Thus, the problem at Step 2 can also be
solved in O(N3) time if each edge weight can be evaluated
in O(1) time.

Finally, problem (14) can be modelled as the MWP problem
in the WDAG G(ω0), where the source node is 0, the final
node is N and ω0(u, v) , w0(xu, xv), for w0 defined in (13).
After having solved the problems at Steps 1 and 2, each weight
ω0(u, v) can be determined in constant time and, thus, problem
(14) can be solved in O(N2) operations.

C. Preprocessing Step

To make sure that each quantity ω1(m,n) and ω2(m,n)
can be computed in constant time, we include a preprocessing
step which evaluates and stores all values v1,κ((xm, xn])
and v2,κ((xm, xn]), for κ = 1, 2, 0 ≤ m < n ≤
N . In order to compute the values v2,κ((xm, xn]), we
first evaluate for each κ = 1, 2, and yκ ∈ Yκ,
the cumulative probabilities CumP (yκ, n) , P[X ∈
(x0, xn], Yκ = yκ]. This process requires O(N(|Y1| + |Y2|))

time. Then each v2,κ((xm, xn]) is calculated by first comput-
ing Pκ((xm, xn], yκ) = CumP (yκ, n) − CumP (yκ,m) and
then performing the summation over yκ. It follows that the
computation of all values v2,κ((xm, xn]), for κ = 1, 2, and
(xm, xn) ∈ X̄×X̄, takes O(N2(|Y1|+|Y2|)) time. The amount
of memory needed to store all these values is clearly O(N2).

To explain how the quantities v1,κ((xm, xn]) are evaluated,
first denote for each (m,n) as above, each κ = 1, 2, and each
yκ ∈ Yκ,

γκ(m,n, yκ) , Pκ(C, yκ)E[d(X, x̂κ(C|yκ))|X ∈ C, Yκ = yκ],

where C = (xm, xn]. Then one has

v1,κ((xm, xn]) =
∑
yκ∈Yκ

γκ(m,n, yκ).

Let us first consider the case when the distortion measure is
not the squared distance. Recall that in this case X̂ is finite.
As shown in [28], since the distortion measure is monotone,
for fixed κ and yκ, all values γκ(m,n, yκ) can be computed in
O(|X̄||X̄∪X̂|) = O(N2) operations. A simpler technique with
the same time complexity was proposed in [24]. It follows that
all values v1,κ((xm, xn]) for κ = 1, 2 and (xm, xn) ∈ X̄× X̄,
can be evaluated with O(N2(|Y1|+ |Y2|)) time complexity.

When the distortion measure is the squared distance we have
X̂ = R. Then the following relations hold

x̂κ(C|yκ) = E[X|X ∈ C, Yκ = yκ],

E[d(X, x̂κ(C|yκ)|X ∈ C, Yκ = yκ]

= E[X2|X ∈ C, Yκ = yκ]− (x̂κ(C|yκ))
2
.

We first compute and store the cumulative first and second mo-
ments, for i = 1, 2, Cumi(yκ, n) ,

∑
x≤xn x

ipXYκ(x, yκ).
Their computation takes O(N(|Y1| + |Y2|)) time. Based on
these values, each γκ(m,n, yκ) can be computed in con-
stant time. Thus, the evaluation of all v1,κ((xm, xn]) takes
O(N2(|Y1|+ |Y2|)) operations. To summarize, the time com-
plexity of the preprocessing step amounts to O(N2(|Y1| +
|Y2|)) = O(N3) according to our assumption that |Y1|+|Y2| =
O(N). Corroborating with the discussion in the previous
subsection, we conclude that the asymptotical time complexity
of the solution algorithm for the optimal R-WZSQ problem
is O(N3) when conventional methods are used to solve the
underlying MWP problems.

D. F-WZSQ Design Algorithm

In the F-WZSQ case, D2(f) remains as in (7), while D1(f)
becomes

D1(f) =

M0∑
i=1

v1,1(Ci).

Additionally, we have

R1(f) = H(I|Y1) = H(I, Y1)−H(Y1)

=

M0∑
i=1

v2,1(Ci)−H(Y1),
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R2(f) = H(K|I, Y2) = H(I,K, Y2)−H(I, Y2)

=

M0∑
i=1

M2,i∑
k=1

v2,2(C ′ik)−
M0∑
i=1

v2,2(Ci).

The cost function O(r, t̄) is given by

O(r, t̄) = ρ

M0∑
i=1

v1,1(Ci)

+ (1− ρ)

M0∑
i=1

M2,i∑
k=1

v1,2(C ′ik)

+ (λ1 + λ2)

M0∑
i=1

v2,1(Ci)− (λ1 + λ2)H(Y1)

+ λ2

M0∑
i=1

M2,i∑
k=1

v2,2(C ′ik)−
M0∑
i=1

v2,2(Ci)

 .

After removing the constant term −(λ1 + λ2)H(Y1) and
rearranging the remaining terms, the cost becomes

O′(r, t̄) =

M0∑
i=1

(
ρv1,1(Ci) + (λ1 + λ2)v2,1(Ci)− λ2v2,2(Ci)

+

M2,i∑
k=1

(
(1− ρ)v1,2(C ′ik) + λ2v2,2(C ′ik)

)
︸ ︷︷ ︸

w2(Ci,ti)

)
.

Notice that the quantity w2(Ci, ti) is the same as for R-
WZSQ. Thus, the optimal partition ti, for a given Ci, can be
found as in the previous section. Thus, problem (5) reduces to
solving (14) with w0(xu, xv), for u < v, defined as follows

w0(xu, xv) , ρv1,1((xu, xu]) + (λ1 + λ2)v2,1((xu, xv])

− λ2v2,2((xu, xv]) + w2((xu, xv], t
∗(xu, xv]). (17)

In conclusion, problem (5) can be solved using the following
two steps.

1) Determine t∗(xu, xv) for all pairs xu, xv of elements in
X̄ with u < v.

2) Solve problem (14) with the definition of w0 given in
(17).

The problem at Step 1 is equivalent to the all-pairs MWP prob-
lem in G(ω2), while the problem at Step 2 is equivalent to the
MWP problem in G(ω0), where ω0(u, v) , w0(xu, xv). Thus,
using the conventional dynamic programming algorithms for
the aforementioned MWP problems, the time complexity of
the solution becomes O(N3).

IV. TIME COMPLEXITY REDUCTION USING THE PARTIAL
MONGE PROPERTY

Clearly, the most computationally demanding parts in the
solutions to the optimal R-WZSQ and F-WZSQ design prob-
lems are solving the all-pairs MWP problem in G(ω1) and
G(ω2), requiring O(N3) operations. In this section, we intro-
duce the partial Monge property and propose a method for
reducing the time complexity of this task when the weight
functions ω1 and ω2 satisfy it.

If the weight function ω satisfies the Monge property [27],
the dynamic programming solution to the single-source MWP
problem in G(ω) can be accelerated by a factor of N/ logN
[30] or of N [34], thus leading to the acceleration by the
same factor of the all-pairs MWP algorithm. The general
idea behind this complexity reduction is the following. The
dynamic programming single-source MWP algorithm needs
to examine each graph edge in order to determine if that edge
is part of an optimal path or not. If all edge weights satisfy the
Monge property, after examining a single edge, a conclusion
can be drawn about a larger number of edges. Thus, the set
of edges which need to be further investigated is significantly
decreased.

Unfortunately, the Monge condition is not fulfilled by our
weight functions ω1 and ω2. However, we have observed
empirically that the Monge property may hold for a structured
subset E′ of edges. In this section we prove that this partial
satisfaction of the Monge property can still be exploited to
decrease the running time of the all-pairs MWP algorithm. The
basic idea is to exploit the partial Monge property to reduce
the number of edges in E′ which are examined. This idea is
used in conjunction with a simple test to determine another
set E′′ of edges which cannot appear in any optimal path
and thus need not be checked either. Note that determining
each of the sets E′ and E′′ requires a scan through the whole
set of edges E, i.e., O(N2) operations. Thus, this technique
cannot expedite the single-source MWP solution algorithm.
However, as we will show shortly, it can effectively speed up
the algorithm for the all-pairs MWP problem.

Let V and E be defined as in Subsection III-A.
Definition 1: We say that the real-valued weight function

ω : E → R satisfies the Monge property [27]4 if, for all
0 ≤ m ≤ m′ < n ≤ n′ ≤ N , the following holds

ω(m,n) + ω(m′, n′) ≤ ω(m,n′) + ω(m′, n).

As pointed out in [27], the Monge property can be extended
to weight functions taking values in R∪{∞}. In this case, the
addition operation and the order ≤ are extended to R ∪ {∞}
in a natural way by requiring that a +∞ = ∞, for all a ∈
R ∪ {∞}, and that a <∞, for all a ∈ R.

Further, for any real-valued weight function ω : E → R,
denote

∆ω(m,n) , ω(m,n+1)+ω(m+1, n)−ω(m,n)−ω(m+1, n+1),

for all 0 ≤ m < n− 1 ≤ N − 2.
Definition 2: For any real-valued weight function ω : E →

R, let (T1(ω), T2(ω)) denote the pair of integers (T1, T2), 2 ≤
T1 ≤ T2 ≤ N , with the largest T2−T1, for which the following
holds

∆ω(m,n) ≥ 0, for all 0 ≤ m,n ≤ N − 1, T1 ≤ n−m ≤ T2.
(18)

If more such pairs exist, the one with the smallest T1 is chosen.

4This property has received various denominations in the literature. For
instance, the authors of [30], work which we rely upon in this section, refer
to this as the concavity property. We prefer to use here the term “Monge
property”, which has been more widely adopted in the newer literature [27].
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Definition 3: We say that the real-valued weight function
ω : E → R satisfies the partial Monge property if T1(ω) <
T2(ω).

Remark 1: It is easy to see that the pair (T1(ω), T2(ω)) can
be determined in one pass through the edge set E in O(N2)
time.

Definition 4: For any real-valued weight function ω : E →
R, let T3(ω) be the smallest positive integer T3, smaller than
N , satisfying

ω(m,n) ≥ ω
(
m,

⌊
m+ n

2

⌋)
+ ω

(⌈
m+ n

2

⌉
, n

)
, (19)

for all 0 ≤ m < n ≤ N,n−m ≥ T3. If such an integer does
not exist, we set T3(ω) = N .
Notice that (19) implies that the edge (m,n) can be replaced
in any path by two other edges without increasing the weight
of the path. Therefore, we can safely remove all edges (m,n)
with n−m ≥ T3(ω) when calculating the all-pairs MWPs in
G(ω). Note that the value T3(ω) can also be determined in
one scan through the edge set E, in O(N2) time.

Consider the single-source MWP problem in G(ω) with
node 0 as the source node. Recall that, for each 0 ≤ n ≤ N ,
Ŵ0(n) denotes the weight of the MWP from node 0 to node
n in the WDAG G(ω). Further, define E′ , {(m,n) ∈
E|T1(ω) − 1 ≤ n −m ≤ T2(ω) + 1} and E′′ , {(m,n) ∈
E|n − m ≥ T3(ω)}. Relation (6) and the discussion below
equation (19) imply that

Ŵ0(n) = min(Ŵ ′(n), Ŵ ′′(n)), (20)

where
Ŵ ′(n) , min

(m,n)∈E′
(Ŵ0(m) + ω(m,n)), (21)

Ŵ ′′(n) , min
(m,n)∈E\(E′∪E′′)

(Ŵ0(m) + ω(m,n)). (22)

Consider now the weight function ω′ : E → R ∪ {∞},
where ω′(m,n) = ω(m,n) if (m,n) ∈ E′, and ω′(m,n) =
∞ otherwise. The following result, which is proved in the
appendix, is essential for our development.

Proposition 1: The weight function ω′ satisfies the Monge
property.
Further, note that equation (21) implies that

Ŵ ′(n) , min
0≤m<n

(Ŵ0(m) + ω′(m,n)). (23)

We will achieve the complexity reduction by exploiting the
Monge property of ω′ to expedite the computations in (23).
For this, we will use a modification of the Basic Algorithm
of Hirschberg and Larmore [30] for solving the single-source
MWP problem in a WDAG with Monge weights. More
specifically, the algorithm of [30] determines all values F (n),
for 1 ≤ n ≤ N , where

F (n) , min
0≤m<n

(F (m) + ω′(m,n)), (24)

F (0) = 0, and the weights ω′(m,n), which are given, satisfy
the Monge property. Consider now the upper triangular matrix
G, with elements g(m,n), 0 ≤ m < n ≤ N , defined as

g(m,n) , F (m) + ω′(m,n). (25)

Then the problem of solving (24) for all n can be regarded as
the problem of finding the minimum element on each column
in the upper triangular matrix G, i.e., finding, for 1 ≤ n ≤ N ,

F (n) = min
0≤m<n

g(m,n). (26)

The fact that the weights ω′(m,n) satisfy the Monge property
implies that the values g(m,n) also satisfy this property,
fact which is straightforward to verify. The authors of [30]
exploit the Monge property of the function g to reduce the
time complexity from O(N2) to O(N logN). Their Basic
Algorithm iterates over m from 1 to N − 1. For each m,
at the end of the (m − 1)th iteration, the value of F (m) is
computed. The algorithm is based on comparing elements of
the matrix. Note that, while the weights ω′ are all available
at the beginning, the matrix elements are not. Specifically, an
element g(m,n) can be accessed only after the (m − 1)th
iteration, i.e., after F (m) was computed. We will refer to the
Basic Algorithm of [30] as algorithm A.

Now consider a modification of problem (24) as follows

F (n) , min
0≤m<n

(L(m) + ω′(m,n)), (27)

where L(0) = 0 and L(m) is computed based on F (m), for
each 1 ≤ m ≤ n − 1, according to a specified procedure.
Further, let us modify the definition of g(m,n) in (25) as
follows

g(m,n) , L(m) + ω′(m,n), (28)

for 0 ≤ m < n ≤ N . Then problem (27) remains equivalent
to problem (26) of finding all column minima in the modified
matrix G. Relation (28) implies that the elements g(m,n) of
the modified upper triangular matrix G still satisfy the Monge
property. Then problem (27) can be solved by using algorithm
A enhanced with a procedure which evaluates L(m) based
on F (m), immediately after the latter is computed. We will
refer to this algorithm as EA (short for Enhanced A). Clearly,
the running time of EA is equal to the running time of A

augmented by the time needed to evaluate L(m) from F (m),
for all m.

To solve problem (23) for all n, we will use algorithm EA

with Ŵ0(m) in place of L(m) and Ŵ ′(n) in place of F (n).
The enhancement procedure computes each Ŵ0(n) based on
Ŵ ′(n) using the computations in (22) and (20). The running
time to solve the minimization in (22) for a given n is O(T (ω))
operations and doing so for all n requires O(T (ω)N) opera-
tions, where T (ω) , T1(ω)−2 +max(0, T3(ω)−T2(ω)−2).
Thus, by employing the enhanced algorithm to solve the
single-source MWP problem in G(ω), we obtain a time
complexity of O(N(T (ω) + logN)). Further, by using EA

repeatedly to solve the all-pairs MWP problem in G(ω), the
time complexity achieved is O(N2(T (ω)+logN))5. We point
out that, for this technique to be applicable, we first must
determine the values T1(ω), T2(ω), T3(ω). This process takes
O(N2) operations and thus it does not contribute to increasing
the overall asymptotical time complexity.

5Recall that this evaluation of the time complexity holds when each edge
weight can be computed in constant time. Thus, it does not account for the
preprocessing step described in subsection III-C.
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It is important to point out that in [30] it is assumed that the
weights ω′(m,n) are real-valued. This implies that all values
g(m,n) are finite, while in our case some of them are ∞. For
this reason, we need to perform some slight adjustments to
algorithm A. These are explained in detail in the following
section, where we also show that they do not impact the
algorithm correctness.

Let us discuss now the impact in terms of running time
of using the above development to solve the all-pairs MWP
problem in our WDAGs of interest, namely G(ω1) and G(ω2).
According to (15) and (16), the weight functions ω1 and ω2

comply to the following general form

ω(m,n) = µv1,κ((xm, xn]) + λv2,κ((xm, xn]), (29)

for some positive µ and λ. For simplicity, we use the notation
T1, T2, T3, T instead of T1(ω), T2(ω), T3(ω), T (ω), respec-
tively, in the rest of the paper. Notice that the values T1, T2

and T3 depend on the joint probability distribution of X
and Yκ, denoted by pXYκ , and on the ratio λ/µ. In our
experiments, where we used discretized Gaussian sources with
discretized Gaussian SI, we found that there exist two thresh-
olds τ1(pXYκ) ≤ τ2(pXYκ) such that, when λ/µ < τ1(pXYκ),
we have T3 ≤ T2, while for λ/µ > τ2(pXYκ), we have
T3 = N . Thus, when λ/µ < τ1(pXYκ), the running time
of EA is O(N(T1 + logN)). We have observed empirically
that T1 could be lower than N/10 when λ/µ < τ1(pXYκ),
which leads to the conclusion that applying EA may lead
to significant savings in running time. On the other hand,
when λ/µ > τ2(pXYκ) we have T > N/2, thus, the
proposed complexity reduction is not sufficient to decrease
the asymptotical time complexity.

We have observed in our experiments that in the F-WZSQ
case, the condition λ/µ < τ1(pXYκ) holds in many cases of
interest. Thus, in such cases, by using EA, the running time
to solve the F-WZSQ design problem, excluding the prepro-
cessing stage, decreases to O(N2(T1 +logN)). The total time
time complexity, which accounts for the preprocessing stage
as well, is then O(N2(T1 + logN + |Y1| + |Y2|)). Note that
this value is o(N3) when6 T1 + |Y1|+ |Y2| = o(N).

In the R-WZSQ case, the condition λ/µ < τ1(pXYκ) is
also satisfied in at least one of the two WDAGs G(ω1) and
G(ω2) in most cases of interest, but rarely in both of them.
However, even if the solution to the all-pairs MWP problem
is accelerated in only one of the two WDAGs, this contributes
significantly to the reduction of the actual running time, even if
the asymptotical value still remains O(N3). More specifically,
the constant hidden in the big-O notation is reduced in half
when, additionally, the preprocessing stage takes only o(N3)
operations (i.e., when |Y1|+ |Y2| = o(N)).

V. ALGORITHM EA

This section presents algorithm EA in detail. The following
notations will be used

g(m,n) , Ŵ0(m)+ω′(m,n), g2(m,n) , Ŵ0(m)+ω(m,n),

6It is said that f(N) = o(g(N)) if lim
N→∞

f(N)
g(N)

= 0.

Algorithm EA: Solution to the single source MWP prob-
lem in G(ω).

begin
Ŵ0(0)← 0, D← {0}
for m = 1 to N − 1 do

Ŵ ′(m)← g(f,m), bestleft(m)← f ;
Ŵ ′′(m)← min

k,m−k∈S
g2(k,m)

bestleft2(m)← arg min
k,m−k∈S

g2(k,m)

Ŵ0(m)← min(Ŵ ′(m), Ŵ ′′(m)); Compute
bestleft0(m)
while |D| > 1 and g(f2,m+ 1) ≤ g(f,m+ 1) do

RemoveFront
while |D| > 1 and Bridge(r2, r,m) do

RemoveRear
InsertAtRear(m)

Ŵ ′(N)← g(f,N), bestleft(N)← f ;
Ŵ ′′(N)← min

k,N−k∈S
g2(k,N)

bestleft2(N)← arg min
k,N−k∈S

g2(k,N)

Ŵ0(N)← min(Ŵ ′(N), Ŵ ′′(N)); Compute bestleft0(N)

for 0 ≤ m < n ≤ N . Further, denote S , {k|0 ≤ k <
T1 − 1 or T2 + 1 < k < T3}. For each 1 ≤ n ≤ N , let
bestleft(n) denote the value of m achieving the minimum
in (23) (which also achieves the minimum in (21)) and let
bestleft2(n) be the value of m achieving the minimum in
(22). Further, let bestleft0(n) denote the node before n in
the optimum path from 0 to n in G(ω). In virtue of (20),
bestleft0(n) is the best of bestleft(n) and bestleft2(n).

The pseudocode of algorithm EA is presented at the top of
this column. The algorithm exploits the fact that the function
g satisfies the Monge property, fact which follows easily based
on Proposition 1. Algorithm EA uses a deque (i.e., a double-
ended queue) D. At all times D will contain a sequence of
increasing integers in the range between 0 and N − 1. The
element at the front, which is the smallest in the deque, will
be denoted f , and the next element f2. The element at the
rear, which is the largest, will be denoted r, and the previous
element r2. Note that f2 and r2 are defined only when the
deque has at least two elements. The update operations allowed
on D are RemoveFront, which deletes f , RemoveRear,
which deletes r, and InsertAtRear(m), which appends m at
the rear. The access of f , f2, r, and r2 is also allowed on D.

The deque contains all current candidates for bestleft(m),
for all m which are yet to be considered. The algorithm uses
the procedure Bridge(r2, r,m), where r2 < r < m, which
returns true if and only if g(r, k) ≥ min(g(r2, k), g(m, k)),
for all m < k ≤ N .

We point out that in the Basic Algorithm of [30] operation
InsertAtRear(m) is performed only if g(m,N) < g(r,N).
However, a careful examination of the proof of correctness
given in [30] reveals that the algorithm is still correct if that
condition is removed.

The fact that function g satisfies the Monge property implies
that the following property holds. Its proof is deferred to the
appendix.
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Figure 3. F-WZSQ results. (a) Practical and theoretical (blue line) distortion region. (b) Practical rate region. (c) Difference between R1, respectively R, and
the corresponding theoretical rate bounds for all the distortion pairs in (a). Circle markers are for the cases when the gap in R1 is higher than 0.261, square
markers are for the cases when the gap in R is higher than 0.263.

The Forward Property (FP): Let 0 ≤ a < b < c < d ≤ N .

FP1) If g(b, c) < g(a, c), then g(b, d) ≤ g(a, d).
FP2) If g(b, c) < g(a, c) and g(b, d) 6= ∞, then g(b, d) <

g(a, d).

Note that in the case when the weights have only finite
values (as in [30]) a stronger variant of FP holds, where the
inequality g(b, d) ≤ g(a, d) in FP1 is always strict. The proof
of correctness of algorithm A given in [30] relies on the strong
FP. However, a careful examination of their proof leads to the
conclusion that only the weaker FP1 and FP2 are sufficient.
Specifically, FP is invoked in the proof in four places and
in each of them FP1 is actually used. The Monge condition
(referred to as the concavity condition in [30]) is also invoked
at the end of the proof, where actually FP2 suffices.

The subroutine Bridge(a, b, c) proposed in [30] relies on
the stronger FP and uses a binary search over the set of integers
from c to N to determine whether some k, c < k ≤ N ,
exists such that g(b, k) < min(g(a, k), g(c, k)). Specifically,
the procedure finds the smallest such value if it exists. Clearly,
for such a k we have g(b, k) 6=∞. Thus, it is safe to restrict
the search range to the range for which g(b, k) 6= ∞, i.e.,

from max(c+ 1, b+T1− 1) to min(N, b+T2 + 1). Then the
stronger FP holds for this range and no further adjustment is
needed. The pseudocode of the subroutine Bridge(a, b, c) is
shown as follows.

Bridge(a, b, c)

begin
max← min(N, b+ T2 + 1);
if c=max then return true;
min← max(c+ 1, b+ T1 − 1);
low ← min; high← max;
if g(a,max) ≤ g(b,max) then return true;
while high− low ≥ 2 do

mid← b(low + high)/2c;
if g(a,mid) ≤ g(b,mid) then

low ← mid
else

high← mid

if g(c, high) ≤ g(b, high) then
return true

else
return false
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Figure 4. (a) Plot of λ1
ρ

versus R1 when R ≥ 2.2. (b) Plot of λ2
1−ρ versus R when R2 > 0.001.

VI. EXPERIMENTAL RESULTS

This section assesses the practical performance of the pro-
posed design algorithms for the two scenarios considered in
this work. In our experiments, the source X is obtained by dis-
cretizing a continuous Gaussian variable X̃ with mean 0 and
variance 1. Specifically, N = 1000 and the source alphabet X
is formed of the centroids of the intervals (−∞,−6), (6,∞)
and of the sets obtained by partitioning (−6, 6) into 998 equal-
size intervals. The distortion measure is the squared distance
and X̂ = R. For κ = 1, 2, the SI Yκ is obtained by discretizing
the random variable X̃+Zκ, where Zκ is 0-mean Gaussian and
independent of X̃ . Specifically, for κ = 1, 2, the alphabet Yκ
consists of 300 values, which are the centroids of the intervals
(−∞,−6), (6,∞) and of the sets obtained by partitioning
(−6, 6) into 298 equal-size intervals. More details about each
Zκ will be given when discussing each scenario.

Since we will compare our results with the theoretical
bounds for the continuous Gaussian source, we will evaluate
the performance of our schemes for the continuous case, i.e.,
when the source is X̃ and the SI is X̃ + Zκ. Note that
there is no difference between the continuous case and the
discretized version in terms of rate, but only in terms of
distortion. Namely, when evaluating the distortion D̃κ(f) for
the continuous case we need to account for the distortion
due to the discretization as well. Throughout this section we
use the notations Dκ, R and Rκ instead of D̃κ(f), R(f) and
Rκ(f), respectively, for κ = 1, 2. We first present the results
for the F-WZSQ problem in subsection VI-A. We continue
with the experimental results for the R-WZSQ scenario in
subsection VI-B. We end the section with a discussion of
our empirical observations regarding the satisfaction of the
partial Monge property and its impact on the running time in
subsection VI-C.

A. Discussion of F-WZSQ Results

In the F-WZSQ case, we have Z1 = N1 + N2

and Z2 = N2, where N1 ∼ N(0, 1√
10

), N2 ∼

N(0, 1√
10

), and N1 and N2 are independent of each other
and of X̃ . The values of ρ used in our experiments
are 0.05, 0.1, 0.102, 0.105, 0.11, 0.12, 0.13, 0.15, 0.2, 0.3, 0.5,
0.8, 0.95. The values of λ1 are in the range of (10−5, 0.9)
and the values of λ2 are in the range of (10−5, 0.3).

The distortion pairs (D1, D2) and the rate pairs (R1, R)
are plotted in Figure 3(a) and Figure 3(b), respectively.
Figure 3(a) also shows the boundary of the theoretically
achievable distortion region given in [5] (in blue). Addition-
ally, Figure 3(c) plots the difference between the practical
rate pairs (R1, R) and the pair of theoretical lower bounds
(RWZ(D1), RHB(D1, D2)) [5], where RWZ(·) denotes the
RD function in the single encoder-decoder pair WZ scenario,
while RHB(·) denotes the RD function for the general HB
problem where each decoder has its own SI. We see that in
most of our experiments the gap in both R1 and R is within
0.263. The corresponding points are marked using black dots
in all three subfigures of Figure 3. The points which do not
fit in the aforementioned category (termed “extra loss points”)
exhibit an additional loss in either R1 (points marked using
red circles) or in R (points marked using blue squares). The
cases with extra loss in R1 appear for relatively small D1 and
R2. The cases with extra loss in R are mostly occurring when
D2 is very small, hence R is large. Note that the rate gap
between scalar quantization and infinite dimensional vector
quantization predicted by the high rate quantization theory for
the single encoder-decoder pair problem is 0.254 bits/sample
[35]. The existence of additional rate loss on top of these 0.254
bits can be attributed to the additional tension introduced in the
optimization problem because of the need to meet the quality
requirements at two decoders instead of one, while preserving
rate constraints at two encoders as opposed to one.

It is instructive to analyze how the choice of the parameters
ρ, λ1 and λ2 influences the algorithm outcome. In our exper-
iments, we have obtained R1 > 0 only when λ1

ρ < 0.4, while
R2 > 0 was obtained only when λ2

1−ρ < 0.9. We point out that
for λ2

1−ρ > 0.2, R2 is very small, namely R2 ≤ 0.001. Our
results show a strong correlation between R1 and the value of
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Figure 5. R-WZSQ results. (a) Practical and theoretical (blue line) distortion region. (b) Practical rate region. (c) Difference between R1, respectively R,
and the corresponding theoretical rate bounds for all the distortion pairs in (a). Circle markers are for the cases when the gap in R1 is higher than 0.256,
square markers are for the cases when the gap in R is higher than 0.26.

λ1

ρ when R is higher than 2.2 bits, and between R and λ2

1−ρ
when R2 > 0.001. Specifically, Figure 4(a), where we plot the
value of λ1

ρ versus R1, for the cases when R ≥ 2.2, shows that
R1 tends to increase with the decrease of λ1

ρ . Further, Figure
4(b), containing the plot of λ2

1−ρ versus R when R2 > 0.001,
shows that R increases as λ2

1−ρ becomes smaller. Additionally,
notice that we have R2 > 0.001 and R1 + R2 ≥ 0.57 only
if λ2

1−ρ ≤ 0.16. This observation will be useful in the last
subsection where we discuss the satisfaction of the partial
Monge property.

B. Discussion of R-WZSQ Results

In the R-WZSQ case, we have Z1 = N1 and Z2 =
N1 + N2, where N1 ∼ N(0, 1√

10
), N2 ∼ N(0, 1√

10
),

and N1 and N2 are independent of each other and
of X̃ . The values of ρ used in our experiments are
0.1, 0.12, 0.15, 0.2, 0.85, 0.9, 0.95, 0.96, 0.97. The values of λ1

range between 0.01 and 0.1. The values of λ2 range between
10−5 and 0.4.

Tian and Diggavi [6] showed that the achievable RD region
they proposed for the R-WZ problem is exact in the quadratic

Gaussian case with jointly Gaussian SI. Moreover, they proved
that any rate pair on the lower boundary of the rate region for
given (D1, D2) can be achieved with only two codebooks,
a coarse codebook to be used at one decoder, and a fine
codebook, to be used at the other decoder. Which decoder
recovers the fine codebook depends on the particular distortion
pair (D1, D2). Our experimental results confirm this property
since all the time at most one of the two quantizers Q1 and Q2

has a more refined partition than the coarse partition f0. Figure
5(a) and Figure 5(b) plot the achieved distortion pairs and rate
pairs, respectively. Unlike the case with forwardly degraded
SI, the theoretical distortion region is a filled rectangle. Its
boundaries are shown in blue in Figure 5(a). The curve
connecting the bottom left corner with the top right corner
corresponds to the case when both decoders use only the
coarse partition, i.e. there is no refinement in either of Q1

and Q2. We will refer to this case as the “no-refinement” case.
Note that the blue curve contains the theoretical no-refinement
distortion pairs, while the black points situated close to this
curve represent the practical no-refinement pairs. The no-
refinement rate pairs are marked using crosses in Figure 5(b).
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Figure 6. (a) Relation between λ1+λ2
ρ

and R1 when Q1 has a refinement. (b) Relation between λ2
1−ρ and R2 when Q1 has a refinement. (c) Relation

between λ1
ρ

and R1 when Q2 has a refinement. (d) Relation between λ2
1−ρ and R when Q2 has a refinement. The points which deviate significantly from

the main curve correspond to very small refinement in Q2.

The no-refinement distortion curve separates the distortion
region into two sub-regions: lower and upper. The upper
distortion sub-region represents the case when only quantizer
Q2 has a refined partition. The corresponding rate pairs appear
below the no-refinement curve in Figure 5(b). The lower
distortion sub-region contains the distortion pairs achieved
when only Q1 has a refinement. The corresponding rate pairs
are above the no-refinement curve in Figure 5(b). Notice that
the rate sub-region for the latter case is much smaller than the
other sub-region. This is because for a fixed sum-rate, once
R2 is big enough, Q2 gets a refinement.

Figure 5(c) plots the difference between the practical rate
pairs (R1, R) and the pair of theoretical lower bounds [6]. We
observe that in most of our experiments the gap in both R1

and R is within 0.26. The remaining points exhibit an extra
loss either only in R1 (points marked with red circles) or only
in R (points marked with blue squares). Similarly to F-WZSQ,
the cases with extra loss in R1 appear for relatively small D1

and R2. The cases with extra loss in R are mostly occurring
when D2 is very small, hence R is large.

In our experiments, we found that when Q1 has a refine-

ment, we have λ1+λ2

ρ < 0.255 and λ2

1−ρ >= 0.9. On the other
hand, when Q2 has a refinement, we have λ1

ρ < 0.84 and
λ2

1−ρ < 0.44, with λ2

1−ρ > 0.26 only when R < 0.44. When
Q1 has a refinement, we found that R1 increases as λ1+λ2

ρ

decreases, as seen in Figure 6(a), while R2 increases as λ2

1−ρ
decreases, as seen in Figure 6(b). When Q2 has a refinement,
we notice from Figure 6(c) that R1 tends to increase as λ1

ρ
decreases. Additionally, the sum-rate R generally increases as
λ2

1−ρ decreases, except when the refinement in Q2 is very small,
as seen in Figure 6(d).

C. Fulfillment of the Partial Monge Property

In this subsection, we first evaluate T1, T2 and T3 for the
graph G(ω) with the weight function ω given in (29). We
consider the SI Yκ obtained by discretizing X̃ + Z, where Z
is 0-mean Gaussian and independent of X̃ . We will discuss
three cases with the variances σ2

Z = 1√
10
, 2√

10
and 0.8.

In Table I we show the values of T1, T2 and T3 for the
aforementioned cases of SI for several values of λ/µ ranging
from 0.05 to 0.5. We observe that, as the ratio λ/µ increases,
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T1 and T3 are nondecreasing, while T2 is nonincreasing at a
very slow rate. Another interesting observation is that, for fixed
λ/µ, T1 and T2 are nondecreasing as the SI becomes weaker
(T1 changing at a very slow rate), while T3 is nonincreasing.

For the strongest SI, we have τ1(pXYκ) ≈ 0.16 and
τ2(pXYκ) ≈ 0.1635. For the second strongest SI, we have
τ1(pXYκ) ≈ τ2(pXYκ) ≈ 0.26.

Recall that, for the F-WZSQ design, the all-pairs MWP
problem has to be solved only in G(ω2). The edge weights
are given in (16), which corresponds to equation (29) with
κ = 2, λ = λ2 and µ = 1 − ρ. Recall that the SI Y2 used
in our experiments for F-WZSQ design has σ2

Z = 1√
10

, hence
it is the strongest among the three cases considered in this
subsection. Thus, when λ2

1−ρ < 0.16, a significant complexity
reduction can be achieved. As seen in Figure 4(b), all of
the cases corresponding to a sum-rate larger than 0.57 and
R2 > 0.001 are obtained when this condition holds.

The R-WZSQ design algorithm has to solve the all-pairs
MWP problem in both G(ω1) and G(ω2). For G(ω1) we have
κ = 1, λ = λ1 + λ2 and µ = ρ. The SI Y1 used in the
experiments for R-WZSQ is the strongest among the three
considered in this subsection. Thus, a significant complexity
reduction can be achieved when λ1+λ2

ρ < 0.16. On the other
hand, for G(ω2) we have κ = 2, λ = λ2 and µ = 1− ρ. The
SI Y2 has σ2

Z = 2√
10

. A considerable complexity reduction
can be obtained when λ2

1−ρ < 0.26. As seen from Figure 6, in
order to achieve R1 > 0.57 or R > 0.44, at least one of the
conditions λ1+λ2

ρ < 0.16 and λ2

1−ρ < 0.26 must hold. In such
a case, the all-pairs MWP problem in at least one of the two
WDAGs will run considerably faster. However, cases when
both conditions λ1+λ2

ρ < 0.16 and λ2

1−ρ < 0.26 are satisfied
are more rare. Thus, the asymptotical time complexity will be
reduced only in a smaller number of cases, however, in many
cases the constant hidden in the big-O notation will be reduced
in half, effectively decreasing the practical running time.

VII. CONCLUSION

In this work, we address the design of a two-stage Wyner-
Ziv scalar quantizer with forwardly or reversely degraded
side information (SI) for finite-alphabet sources and SI. We
assume that the binning is performed perfectly so that the
theoretical limits are achieved and focus on the optimization
of the quantizer partitions. The optimization problem aims to
minimize a weighted sum of distortions and rates. The pro-
posed solution is based on solving the single-source or the all-
pairs minimum-weight path (MWP) problem in some weighted
directed acyclic graphs. By employing dynamic programming,
which is the conventional solution for the underlying MWP
problems, the time complexity achieved is O(N3), where N
denotes the size of the source alphabet. Further, we introduce
a so-called partial Monge property and propose a technique
to exploit it in order to expedite the solution algorithm. We
point out that the proposed solution is globally optimal when
the quantizer cells are contiguous. Experimental results using
a discretized Gaussian source with discretized Gaussian SI
assess the practical performance of the proposed schemes and
show that the partial Monge property holds in many situations

of interest. An interesting direction for future work is to
investigate theoretically if the partial Monge property holds
for general sources and SI or to derive sufficient conditions
under which this property is satisfied.

APPENDIX

Proof of Proposition 1: We have to show that the
following holds, for all 0 ≤ m ≤ m′ < n ≤ n′ ≤ N ,

ω′(m,n) + ω′(m′, n′) ≤ ω′(m,n′) + ω′(m′, n). (30)

If n−m′ < T1 − 1, then ω′(m′, n) =∞, while if n′ −m >
T2 +1, then ω′(m,n′) =∞. In either case, the right hand side
of (30) equals ∞, thus the relation is satisfied. It remains to
consider the case when n−m′ ≥ T1−1 and n′−m ≤ T2 +1.
In this case, all quantities in (30) are real values. Note that, if
m = m′ or n = n′, the relation is trivially satisfied. Therefore,
let us assume that m < m′ and n < n′. For any k such that
m ≤ k < m′, denote

∆(k, n, n′) , ω′(k, n′)+ω′(k+1, n)−ω′(k, n)−ω′(k+1, n′).

The quantities appearing on the right hand side of the above
equation are all real values, therefore, the expression is well
defined. Further, we have

∆(k, n, n′) = ω(k, n′) + ω(k + 1, n)− ω(k, n)− ω(k + 1, n′)

=
n′−1∑
j=n

∆ω(k, j).

For m ≤ k ≤ m′ − 1 and n ≤ j ≤ n′ − 1, we have T1 ≤
n−m′ + 1 ≤ j − k ≤ n′ −m− 1 ≤ T2. Then ∆ω(k, j) ≥ 0
in virtue of (18). It follows that ∆(k, n, n′) ≥ 0 and, further,
that

ω′(m,n′) + ω′(m′, n)− ω′(m,n)− ω′(m,n′)

=

m′−1∑
k=m

∆(k, n, n′) ≥ 0.

This observation completes the proof.
Proof of FP: When g(a, d) =∞ the claim holds trivially.

Let us assume now that g(a, d) 6= ∞. Since the inequality
g(b, c) < g(a, c) is strict, we have g(b, c) 6= ∞. The Monge
property

g(a, c) + g(b, d) ≤ g(b, c) + g(a, d) (31)

further implies that g(a, c) 6= ∞ and g(b, d) 6= ∞. Then
(31) is equivalent to g(a, c)− g(b, c) ≤ g(a, d)− g(b, d). The
expression on the left hand side is strictly positive according
to the hypothesis, thus g(a, d)−g(b, d) > 0, proving the claim.
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Table I
T1, T2, T3 EXPERIMENTAL DATA

σ2
Z = 1√

10
σ2
Z = 2√

10
σ2
Z = 0.8

λ/µ T1 T2 T3 T1 T2 T3 T1 T2 T3
0.05 34 363 98 34 496 96 34 531 95
0.1 50 363 166 51 489 156 51 526 155
0.16 66 363 285 67 482 221 68 510 218

0.1635 66 363 424 68 482 225 69 510 222
0.2 74 363 1000 77 476 262 78 510 257
0.26 86 358 1000 90 473 448 92 508 314
0.3 93 358 1000 98 473 1000 100 508 1000
0.4 107 358 1000 116 471 1000 119 506 1000
0.5 120 357 1000 131 465 1000 135 496 1000

REFERENCES

[1] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 22,
no. 1, pp. 1–10, Jan. 1976.

[2] C. Heegard and T. Berger, “Rate distortion when side information may
be absent,” IEEE Trans. Inf. Theory, vol. 31, no. 6, pp. 727–734, Nov.
1985.

[3] A. H. Kaspi, “Rate-distortion function when side-information may be
present at the decoder,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp.
2031–2034, Nov. 1994.

[4] Y. Steinberg and N. Merhav, “On successive refinement for the Wyner-
Ziv problem,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1636–1654,
Aug. 2004.

[5] C. Tian and S. N. Diggavi, “On multistage successive refinement for
Wyner–Ziv source coding with degraded side informations,” IEEE Trans.
Inf. Theory, vol. 53, no. 8, pp. 2946–2960, July 2007.

[6] C. Tian and S. N. Diggavi, “Side-information scalable source coding,”
IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5591–5608, Dec. 2008.
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