
1

Fast Encoder Optimization for Multi-resolution

Scalar Quantizer Design
Sorina Dumitrescu

Abstract- The design of optimal multi-resolution scalar quantizers using the generalized Lloyd method

was proposed by Brunk and Farvardin for the case of squared error distortion. Since the algorithm details

heavily rely on the quadratic expression of the error function, its extension to general error functions

faces some challenges, especially at the encoder optimization step. In this work we show how these

challenges can be overcome for any convex difference distortion measure, under the assumption that

all quantizer cells are convex (i.e., intervals), and present an efficient algorithm for optimal encoder

partition computation. The proposed algorithm is faster than the algorithm used by Brunk and Farvardin.

Moreover, it can also be applied to channel-optimized and to multiple description scalar quantizer design

with squared error distortion, and it outperforms in speed the previous encoder optimization algorithms

proposed for these problems.

Keywords- Convex difference distortion, encoder optimization, generalized Lloyd algorithm, Multi-

resolution scalar quantizer.

I. INTRODUCTION

Successively refinable coders, also known as progressive or rate-scalable, provide embedded or layered

bitstreams. The base layer can be decoded to a coarse reconstruction of the source, and by decoding any

additional layer the reconstruction quality improves. Such coding strategies have received growing atten-

tion lately due to their ability to easily adapt the source rate to varying channel conditions. A successively

refinable coder offers a graceful degradation in reconstruction quality when channel conditions deteriorate,

c⃝2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

The author is with the Department of Electrical and Computer Engineering McMaster University, Hamilton, ON, Canada L8S

4K1; e-mail: sorina@mail.ece.mcmaster.ca

DRAFT

2

as opposed to a non-scalable code which may fail abruptly when the effective transmission rate drops

below the target bit rate.

A multi-resolution scalar quantizer (MRSQ) is a successively refinable coder based on scalar quanti-

zation. Specifically, an MRSQ of L refinement stages is essentially a sequence of L scalar quantizers

Q = (Q1, Q2, · · · , QL), whose encoder partitions are embedded. In other words, the encoder partition

of Qi is a refinement of the encoder partition of Qi−1. The problem of optimal MRSQ design can be

formulated as the minimization of a weighted sum of the distortions of the L component quantizers,

subject to a constraint on each quantizer’s rate. When each weight is the probability of the MRSQ to

operate at the corresponding refinement stage, the cost function has the meaning of the expected distortion

of the signal reconstruction. This problem was first addressed in [2] for the fixed-rate case, and in [16]

for the entropy-constrained case. In the aforementioned work, the optimal MRSQ is assumed to have

convex cells (i.e., intervals of the real line) and the squared error is considered as a distortion measure.

The proposed solution algorithm is a generalization of Lloyd’s method for optimal single resolution scalar

quantizer design [18], which can only guarantee a local optimum. Such an approach was also used for

the design of multi-resolution vector quantizers in [8]. Globally optimal solutions for the MRSQ design

problem under the cell convexity constraint were proposed in [19], [24], [3], [4], [20] using combinatorial

approaches. The complexity of globally optimal MRSQ design without the cell convexity restriction was

also discussed in [11] and fast near-optimal algorithms were proposed in [10], both for the case of discrete

sources. An algorithm for adaptive MRSQ design with convex cells was introduced in [15].

The generalized Lloyd method is a popular approach in source coders and joint source-channel coders

design. Algorithms based on this approach are generally easier to implement than the combinatorial

algorithms. They alternatively optimize the decoder and the encoder, when the other component is fixed.

Since the sequence of expected distortions is non-increasing, the algorithm eventually converges to a

locally optimal solution. As proved in [5], [7], for fixed-rate MRSQ’s with convex cells and convex

difference distortion measure, there is a large class of sources (including sources with log-concave

probability distribution functions) for which the locally optimal solution is unique, and thus globally

optimal.

Motivated by the above observations we revisit the fixed-rate MRSQ design via the generalized Lloyd

method. Like most of previous work, we restrict our attention to MRSQ’s with convex cells and address

the optimal design within this class. While the authors of [2] address only the case of squared distance

distortion, we consider any convex difference distortion measure. The use of this more general distortion

metric poses some challenges in the encoder optimization step. The algorithm used in [2] to optimize

DRAFT

3

the encoder is borrowed from previous work on multiple description scalar quantizer (MDSQ) design

[22], and it heavily relies on the quadratic expression of the distortion. Therefore it is not clear if it

can be generalized to the case of any convex difference distortion. We prove that indeed, for the latter

case, the characterization of the optimal encoder partition is similar in spirit to that given in [22], and

present an efficient algorithm for its computation. Furthermore, we show that the proposed algorithm can

be used to solve the encoder optimization step in the design of a wider class of coding systems based

on scalar quantization, such as channel-optimized scalar quantizers ([17],[12]) and MDSQ’s ([22], [23]),

with squared distance distortion, outperforming in speed the existing solutions. The fast algorithm for cell

boundaries computation in the optimized encoder partition, proposed in this work, was first presented in

[6] for the problem of MDSQ design with squared distance distortion.

The condition of cell convexity is not restrictive in fixed-rate single resolution quantizer design [13].

Unfortunately, it may be so in the case of multi-resolution counterpart. In [9], [20] an example of finite

alphabet source with mean squared error (MSE) distortion, was given for which the optimal MRSQ

with two refinement stages must have non-convex cells (in other words, non-contiguous cells). Discrete

distributions may rend non-convexity of cells in the optimal scalar quantizers even in the case of entropy-

constrained single resolution quantization. Specifically, Gyorgy and Linder [14] have shown that there

exist discrete distributions and an interval of rates, for which the optimal entropy-constrained scalar

quantizer cannot have convex cells. On the other hand, the same work proves that such an example

cannot be found when the source distribution is continuous, the number of quantizer cells is finite and

the error function is non-decreasing and convex. Unfortunately, the transition from discrete to continuous

distributions does not exhibit such a change of behavior with respect to cell convexity in the multi-

resolution case as recently proved in [1]. The work [1] constructs a continuous probability density function

(pdf) for which the optimal fixed-rate MRSQ with two refinement stages, four cells in the central partition

and MSE distortion, cannot have convex cells. However, it is worth to mention that the pdf used as a

counterexample in [1] has a non-convex support consisting of four small and disjoint intervals of the real

line, and thus, it does not resemble too much continuous distributions commonly encountered in practical

signal processing applications.

For MRSQ positive results in favor of convexity are also available. Most notable is the case of uniform

distribution for which the optimal MRSQ has convex cells (using uniform partitions in each component

quantizer). For general distributions, Effros and Muresan proved in [9], [20] that convexity of cells in the

highest resolution partition does not prevent from optimality when the distortion measure is the squared

distance. Moreover, in [7] it was shown that convexity of cells is asymptotically optimal for fixed-rate

DRAFT

4

MRSQ’s with the rth power distortion, as the rate of each component quantizer approaches∞. This result

strongly suggests that the class of distributions for which the optimal MRSQ has convex cells, at least

when the rates are sufficiently high, might contain more than just the uniform distribution. However, the

questions how large this class is and, more importantly, if it contains or not the distributions encountered

in practical applications, remain open problems.

The paper is structured as follows. Next section presents the necessary definitions and notations. In

Section III we formulate the optimization problems to be solved at each iteration in the design algorithm

based on the generalized Lloyd method. Then we present a characterization of the optimal solution for

the encoder optimization problem given fixed decoder. In Section IV we propose an efficient algorithm

to compute the cell boundaries in the optimal encoder partition, which is faster than existing solutions.

Section V presents our approach to deal with empty cells in the optimized encoder. Section VI contains

some simulation results to demonstrate the improvement in speed achieved by the proposed algorithm.

Finally, Section VII concludes the paper.

II. DEFINITIONS, NOTATIONS, PROBLEM FORMULATION

Let X be a random variable over the continuous alphabet A = (V,W), where V,W are extended real

numbers. Let p(x) be the probability density function of the random variable X . We assume that p(x)

is continuous and positive.

We consider a distortion function d(x, y) = ρ(|x−y|), where ρ : [0,∞)→ [0,∞), is a convex function

with its only zero point in 0. Consequently, ρ(·) is continuous and strictly increasing. Additionally, we

assume that for any y ∈ R the following inequality holds∫ W

V
ρ(|y − t|)p(t)dt < +∞.

A fixed-rate scalar quantizer (SQ, for short) Q for the random variable X is a pair of two mappings:

the encoder fQ : A → {0, 1}r, for some positive integer r, and the decoder, which is a one-to-one

function gQ : {0, 1}r → Y ⊂ R. For each symbol x ∈ A, the value gQ(fQ(x)), also denoted by Q(x), is

called the reproduction value or reconstruction value for x, whereas fQ(x) is called the binary codeword

index for x. The set Y of all reproduction values is called the codebook.

The quantizer generates a partition of the input alphabet A into the sets Ci = {x ∈ A|fQ(x) = b(i−1)},

1 ≤ i ≤ 2r, called cells or bins, where b(i− 1) denotes the binary r-bit representation of integer i− 1.

The quantizer mapping Q induces a distortion d(x,Q(x)) between a symbol x and its reproduction Q(x).

DRAFT

5

The overall reproduction quality of the quantizer Q is measured by the expected distortion:

D(Q) = E{d(X,Q(X))} =
2r∑
i=1

∫
Ci

d(x, gQ(i))p(x)dx.

The rate of the quantizer Q is R(Q) = r.

A fixed-rate multi-resolution scalar quantizer (MRSQ) of L refinement stages is a sequence of L fixed-

rate scalar quantizers Q = (Q1, Q2, · · · , QL) such that R(Q1) < R(Q2) < · · · < R(QL), and for each

x ∈ A and 1 ≤ k < L, the following holds

fQk+1
(x) ∈ fQk

(x){0, 1}R(Qk+1)−R(Qk).

The above condition states that the binary codeword index assigned to x by quantizer Qk+1 is obtained

by appending exactly R(Qk+1)−R(Qk) bits to the end of the codeword index assigned to x by Qk. This

condition implies that each cell of Qk is the union of nk = 2R(Qk+1)−R(Qk) cells of Qk+1. Specifically,

for any i, 1 ≤ i ≤ 2R(Qk), we have:

Ck
i = ∪ink

ℓ=(i−1)nk+1C
k+1
ℓ , (1)

where Ck
i denotes the i-th cell of Qk.

The performance of the MRSQ Q can be measured in terms of its expected distortion D̄(Q) defined

as

D̄(Q) =

L∑
k=1

ωkD(Qk), (2)

where each ωk denotes the probability that the MRSQ operates at the k-th refinement stage. Then the

problem of optimal MRSQ design can be formulated as follows. Given a fixed integer L, a set of positive

values ωk, 1 ≤ k ≤ L summing up to 1, and L target rates 0 < R1 < R2 < · · · < RL, design the

L-refinement stage MRSQ which minimizes the expected distortion (2) subject to the constraints

R(Qk) = Rk, for all 1 ≤ k ≤ L.

We refer to the L-tuple of functions f = (fQ1
, fQ2

, · · · , fQL
) as the encoder of the MRSQ, and to the

L-tuple of functions g = (gQ1
, gQ2

, · · · , gQL
), as the decoder of the MRSQ. Clearly, due to relation (1),

the encoder is completely specified by the encoder partition at the highest resolution QL, which we will

also refer to as the central partition. Therefore, in order to describe an MRSQ with the desired target

rates, let us make the following notations Mk = 2Rk , M = ML, and mk = M/Mk, for all k, 1 ≤ k ≤ L.

We impose the condition that all component quantizers have convex cells (i.e., intervals). Then the central

DRAFT

6

partition consists only of intervals, hence it is completely specified by the interval boundaries, which are

called the partition thresholds. Therefore, let us denote by x0, x1, · · · , xM , the partition thresholds, where

V = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xM−1 ≤ xM = W. (3)

Further, let CL
i = (xi−1, xi], 1 ≤ i ≤ M − 1, and CL

M = (xM−1, xM). Note that relation (1) implies

that for any k, 1 ≤ k ≤ L − 1, we have Ck
i = (x(i−1)mk

, ximk
], when 1 ≤ i ≤ Mk − 1 and

Ck
Mk

= (x(Mk−1)mk
, xMkmk

). Consequently, the condition of cell convexity is satisfied for any component

quantizer Qk.

Denote by yki the codeword corresponding to cell Ck
i . Then the expected distortion (2) can be rewritten

as

D̄(Q) =

L∑
k=1

ωk

Mk∑
i=1

∫ ximk

x(i−1)mk

ρ(|t− yki |)p(t)dt. (4)

Note that we allow equality in (3) between consecutive thresholds, in order to account for the case

when some cells become empty during the design algorithm. However, as proved in [7], for an optimal

fixed-rate MRSQ of convex cells, all cells must be non-empty, therefore, at optimality, the relations in

(3) will hold with strict inequalities.

III. GENERALIZED LLOYD ALGORITHM FOR OPTIMAL MRSQ DESIGN

The design procedure based on the generalized Lloyd method starts from an initial MRSQ (with all

cells non-empty) and proceeds in iterations as follows. Each iteration consists in three steps: I) fix the

encoder and optimize the decoder; II) fix the decoder and optimize the encoder; III) resize the partition

to make all cells non-empty. Obviously, the third step is necessary only if some cells become empty after

step II. Note that most authors unify II) and III) in a single step. However we will treat them separately.

Step I: Decoder optimization given fixed encoder. When the encoder is fixed, the thresholds xi, 0 ≤

i ≤ M , of the central partition are fixed. The decoder can be optimized by separately optimizing each

integral in the summation of (4), i.e., by setting the codewords such that the relation∫ ximk

x(i−1)mk

ρ(|t− yki |)p(t)dt = min
y∈A

∫ ximk

x(i−1)mk

ρ(|t− y|)p(t)dt,

to hold for all 1 ≤ k ≤ L, and all 1 ≤ i ≤Mk.

As shown by Trushkin [21], for every V ≤ a < b ≤ W , the function Da,b(y) =
∫ b
a ρ(|t − y|)p(t)dt,

defined for every y ∈ (V,W), achieves its minimum in some unique point µ(a, b), situated inside the

DRAFT

7

interval (a, b). This value is called generalized centroid. Therefore for each 1 ≤ k ≤ L, and 1 ≤ i ≤Mk,

we set

yki = µ(x(i−1)mk
, ximk

).

This also ensures that after the decoder optimization step the following property holds

x(i−1)mk
< yki < ximk

, (5)

for all 1 ≤ k ≤ L, and 1 ≤ i ≤Mk.

Because the function Da,b(·) is convex and thus unimodal, µ(a, b) can be efficiently computed using

bisection search. Moreover, since for any a < b, Da,b(µ(a, b)) is a strict minimum of the function

Da,b(·), and since p(t) > 0 for all t, it follows that, if the decoder changes after this step then the

expected distortion of the MRSQ strictly decreases.

Finally, notice that in the case of squared error distortion, the optimal reconstruction value µ(a, b) is

the centroid of the interval [a, b], i.e.

µ(a, b) =

∫ b
a tp(t)dt∫ b
a p(t)dt

. (6)

Step II: Encoder optimization given fixed decoder. At this step the codewords are fixed and the encoder

partition is optimized. Since each cell of any Qk, 1 ≤ k ≤ L − 1, is the union of some cells of QL,

we can write the expected distortion as a summation of integrals over the cells of the highest resolution

quantizer. Specifically, because each central partition cell CL
i is included in the cell Ck

⌈i/mk⌉ of Qk, where

⌈a⌉ denotes the smallest integer greater than or equal to a, we obtain

D̄(Q) =

M∑
i=1

∫ xi

xi−1

L∑
k=1

ωkρ(|t− yk⌈i/mk⌉|)p(t)dt.

Thus, each integer i, 1 ≤ i ≤ M , is associated an L-tuple of codewords ci = (yk⌈i/mk⌉)
L
k=1. Denote

ϕi(t) =
∑L

k=1 ωkρ(|t− yk⌈i/mk⌉|) for all, 1 ≤ i ≤M and t ∈ (V,W). Following [2], [22], notice that the

encoder optimization can be performed by mapping each value t ∈ (V,W) to the L-tuple ci for which

ϕi(t) is minimized. For this let us consider the sets Ai for 1 ≤ i ≤M , defined as follows

Ai = {t ∈ (V,W)|ϕi(t) ≤ ϕi′(t), 1 ≤ i′ ≤M, i′ ̸= i}.

Then the optimized encoder should satisfy

CL
i =ae Ai, (7)

for all i, 1 ≤ i ≤M , where the notation A =ae B for two sets A,B of real numbers, represents the fact

that the two sets have the characteristic functions equal almost everywhere.

DRAFT

8

However, we need caution before taking this approach due to our constraint that the MRSQ’s cells be

convex. In order to maintain the convexity status of the optimized encoder by using this method, the sets

Ai must have certain properties. In the case of squared distance distortion, it is easy to see that all Ai are

convex [2], a fact which ensures the convexity of all cells in the highest resolution partition. Moreover,

as shown in [2] the relative position of sets Ai on the real line agrees with the increasing order of the

index i (i.e., for i < j, x ∈ Ai, x′ ∈ Aj , we have x ≤ x′), a fact which implies that the cells in the lower

resolution quantizers will be convex, too. However, when considering a more general error function it is

not clear whether these properties will still hold. Fortunately, it can be shown that for convex difference

distortion, which is the case of our study, these properties are indeed satisfied. In order to prove this

result, let us first define the function hi,i′ : R→ R, for each pair of integers 1 ≤ i < i′ ≤M , as follows

hi,i′(t) = ϕi(t)− ϕi′(t). Using the above notation, Ai becomes

Ai = ∩1≤ℓ<i{t ∈ (V,W)|hℓ,i(t) ≥ 0}
∩
∩i<i′≤M{t ∈ (V,W)|hi,i′(t) ≤ 0}. (8)

A key result for our development is the following lemma, which is proved in Appendix A.

Lemma 1. For each pair of integers i, i′, 1 ≤ i < i′ ≤M , the function hi,i′(·) is non-decreasing and has

a unique zero point denoted by ti,i′ . Moreover, V < ti,i′ < W .

With this result at hand we are able to give a simple characterization of the sets Ai similar in spirit

to that implicitly used in [2] (via the method of [22]) for the case of squared error distortion. For this,

let us denote

left(Ai) = maxℓ,1≤ℓ<i tℓ,i, for any 1 < i ≤M (9)

right(Ai) = minj,i<j≤M ti,j for any 1 ≤ i < M. (10)

Then equation (8) and Lemma 1 imply that

A1 = (V, right(A1)],AM = [left(AM),W) and (11)

Ai = [left(Ai), right(Ai)], for 1 < i < M, (12)

with the convention that [a, b] = ∅ if a > b. Relations (11), (12) prove that each Ai is an interval

(possibly with empty interior) or the empty set. If Ai is empty or consists of a single point, i.e. if

left(Ai) ≥ right(Ai), we will say that the interval Ai is degenerate. Clearly, in order to construct the

optimal encoder partition, only the non-degenerate intervals Ai are of interest. As shown in Example 1

of Section V, the case when some sets Ai are degenerate cannot be excluded.

DRAFT

9

Let us denote by I the set of integers i with 1 ≤ i ≤M , such that Ai is non-degenerate. Let M ′ be the

size of I, and let j1, j2, · · · , jM ′ be the integers in I ordered in increasing order. It is easy to see that A1

and AM are always non-empty (according to the last conclusion of Lemma 1). Therefore, indices 1 and

M are always in I. Specifically, j1 = 1 and jM ′ = M . Also, note that for any s,m, 1 ≤ s < m ≤ M ′,

we have

right(Ajs) = min
j,js<j≤M

tjs,j ≤ tjs,jm ≤ max
ℓ,1≤ℓ<jm

tℓ,jm = left(Ajm). (13)

In other words, the relative position of the non-degenerate intervals Ai on the real line agrees with the

order between their indices. Furthermore, from the fact that
∪M

i∈I Ai = (V,W), combined with (13), it

follows that

right(Ajs) = left(Ajs+1
) = tjs,js+1

,

for every s with 1 ≤ s < M ′. Consequently, the partition thresholds in the optimized encoder should

be tj1,j2 , · · · , tjs,js+1
, · · · , tjM′−1,jM′ . Therefore, upon computing these values, in order to complete the

encoder optimization step, for each 1 ≤ i ≤M − 1, we set

xi = tjs,js+1
,

if js ≤ i < js+1. According to the above discussion this strategy ensures that

V = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xM−1 ≤ xM = W, (14)

and

CL
i = (xi−1, xi] =ae Ai,

for all i, 1 ≤ i ≤M . We conclude that this strategy optimizes the encoder and generates an MRSQ with

convex cells.

Note that the equality xi−1 = xi may appear in (14) for some values of i if and only if the set Ai is

degenerate. In this case the cell CL
i obtained after this step will be empty. Such undesirable cases will

be handled at step III of the generalized Lloyd algorithm, which is described in Section V.

Because for distinct i and j the sets Ai and Aj overlap in at most one point (according to (13)), and

since p(·) is non-zero everywhere, it follows that, if the encoder partition is changed after the encoder

optimization step then the expected distortion strictly decreases.

The generalized Lloyd method was used in the optimal design for a variety of coding systems based on

scalar quantization. Beside the single resolution SQ and MRSQ, other examples of such coding systems

are channel-optimized SQ ([17], [12]), and multiple description scalar quantizer (MDSQ) ([22],[23]), both

DRAFT

10

with squared error distortion. In [17] the cell boundaries in the optimized partition, are computed according

to an analytical formula derived based on the necessary conditions for locally optimum. Applying this

approach to our case is equivalent to setting the boundary between cells CL
i and CL

i+1 to be equal to

ti,i+1. Unfortunately, due to the possibility of some sets Ai to be degenerate, this approach does not

guarantee that the optimality conditions (7) are satisfied for all i’s, as shown in Example 1, in Section

V. Farvardin and Vaishampayan pointed out in [12] this limitation of the algorithm of [17]. They further

proved that the sets Ai are intervals and provided a characterization similar in spirit to (9)-(12). In their

case, since ρ(x) = x2, the function hi,i′(·) is a linear function. Thus, Lemma 1 trivially holds and a closed

form expression is available to compute the values ti,i′ . Note that a straightforward way to compute the

optimal partition is to solve all maximizations and minimizations involved in (9), respectively (10). Such

a procedure clearly requires O(M2) running time, assuming that the values ti,i′ are already available.

The algorithm proposed in [12] to solve this problem reduces the time complexity to O(MM ′) based on

the observation that if some sets Aℓ or Aj have been established to be degenerate, then indices ℓ and j

do not need to be further considered in the maximizations and minimizations of (9), respectively (10). In

[22], in the context of MDSQ design with squared error distortion, Vaishampayan shows that the optimal

cells in the central MDSQ partition have a form similar in spirit to (9)-(12) and uses a different algorithm

to determine their boundaries. A tight bound on the running time of this algorithm is more difficult to

determine. However, we can easily find a lower bound. Specifically, its running time is Ω(M +M ′2) as

shown in Appendix B. Finally, the same algorithm is used in [2] to find the optimal thresholds in the

central partition in the case of MRSQ design with squared error distortion.

In the next section we present an O(M logM) algorithm to compute the optimized central partition

for fixed-rate MRSQ with convex error function. We prove that its running time can be further reduced

to O(M) in the case of squared distance distortion. Then we show that this algorithm can be applied to

channel-optimized SQ and MDSQ design problems with squared distance distortion, thus outperforming

in speed the previous solutions.

IV. FAST COMPUTATION OF CENTRAL PARTITION THRESHOLDS

As pointed out in the previous section, the thresholds in the optimized central partition are the values

tjs,js+1
, with 1 ≤ s ≤M ′− 1. Recall that I denotes the set of indices i such that Ai is a non-degenerate

interval, and the elements of I are denoted j1 < j2 < · · · < jM ′ . Thus, the focus of our algorithm will be

to determine the indices of non-degenerate intervals. The next key result, which is proved in Appendix

A, allows us to design an efficient algorithm for this purpose.

DRAFT

11

Lemma 2. For any integers 1 ≤ ℓ < i < j ≤M we have

min{tℓ,i, ti,j} ≤ tℓ,j ≤ max{tℓ,i, ti,j},

with equalities only if tℓ,i = ti,j .

The main idea of the algorithm is described next. It processes all indices j from 1 to M , in increasing

order, and maintains a stack S of indices i smaller than j, which are candidates to belong to the set I.

In other words, if k < j and k is not in the stack, it follows that the interval Ak is degenerate. The

indices in the stack are sorted in increasing order from bottom to top. For each i ∈ S, a candidate for

the left boundary of Ai is also provided as left(i) = tprev(i),i, where prev(i) is the index below i in

the stack. The next index to be pushed onto the stack is j, but before doing so, a degeneracy test is

performed on the index i on top of S , by checking if ti,j ≤ left(i). If this inequality holds, then clearly

left(Ai) ≥ right(Ai), hence Ai is degenerate and therefore index i is removed from the stack. Next,

the value of j is kept unchanged and the degeneracy test is performed on the new index on top of S, i.e.

on prev(i). The algorithm continues this way until the top of S fails the degeneracy check. Only then

index j is pushed onto the stack and the algorithm proceeds to process index j +1. The algorithm stops

when the current value of j equals M + 1. At this moment the contents of S equals the contents of I.

The pseudocode of the algorithm is provided below.

Algorithm 1.

1) Create an empty stack of integers S. Push 1 onto stack S; SET left(1)← V , and j ← 2.

2) SET i ← top of stack S . Compute ti,j . IF ti,j ≤ left(i) GO TO step 4). ELSE push j onto stack

S and SET left(j)← ti,j .

3) SET j ← j + 1. IF j ≤M , go to step 2). ELSE STOP.

4) Pop i from stack S and GO TO to 2).

The following proposition proves the correctness of the algorithm.

Proposition. At the end of Algorithm 1 the contents of the stack coincides with the set of indices

i, 1 ≤ i ≤M , for which Ai is a non-degenerate interval.

Proof. Note first that the integer 1 is never popped from the stack because the condition t1,j > V is always

satisfied, according to Lemma 1. Therefore the stack is non-empty at the beginning of each iteration and

hence the first operation of step 2) is correctly defined. It is clear that any index i in the stack is smaller

than the current value of j, therefore ti,j (used at step 2) is correctly defined. Also it is easy to see that

at any time, the integers in the stack are ordered in increasing order, from bottom to top.

DRAFT

12

Let Sf denote the contents of the stack at the end of the algorithm. Note that index M is on top of Sf
because M is the last item pushed on the stack and it is never popped. In order to prove the conclusion

of the proposition, we need to show that Sf = I. For establishing that I ⊆ Sf it is enough to prove that

for any k, 1 ≤ k ≤ M , which is not in Sf , Ak is degenerate. For this note that index k was at some

point pushed onto the stack, but later it was removed due to passing the degeneracy test. Hence Ak is

degenerate.

Now we are left to show that Sf ⊆ I. For this we need to establish the following facts.

F1) For i ∈ I, in order to compute left(Ai) and right(Ai) it is sufficient to perform the maximization

in (9) , respectively minimization in (10), only over indices in Sf , in other words, the following

relations hold

left(Ai) = max1≤ℓ<i,ℓ∈Sf
tℓ,i, for any i ∈ I ∩ {2, · · · ,M}, (15)

right(Ai) = mini<j≤M,j∈Sf
ti,j , for any i ∈ I ∩ {1, · · · ,M − 1}. (16)

F2) Let i1, i2, · · · , iq be the items in Sf ordered from bottom to top. Clearly, we have 1 = i1 < i2 <

· · · < iq = M . Then for any integers s,m such that 1 < s < m ≤ q the following is true

tis−1,is ≤ tis−1,im ≤ tis,im . (17)

Proof of F1: If Ai is non-degenerate then its boundaries are thresholds in the central partition. Thus

left(Ai) = tℓ,i and right(Ai) = ti,j for some ℓ, j ∈ I. Since I ⊆ Sf , it follows that ℓ, j ∈ Sf , which

proves the claim.

Proof of F2: It is clear that for any s, 1 ≤ s < q, we have left(is+1) = tis,is+1
. It is also obvious that

for 1 ≤ s ≤ q− 2, we have left(is+1) < tis+1,is+2
because this condition had to hold when pushing is+2

onto the stack. Thus, we have

ti1,i2 < ti2,i3 < · · · < tim−1,im < tim,im+1
< · · · < tiq−1,iq (18)

Let us fix some m, 3 ≤ m ≤ q and prove relation (17) using induction over s, downwards from s = m−1

to s = 2. The base case is when s = m−1. In this case (17) reduces to tim−2,im−1
≤ tim−2,im ≤ tim−1,im ,

which is true by (18) and Lemma 2. Let us proceed now to the inductive step. Assume that the claim

holds for some s with 2 < s < m − 1, and and let us prove it for s − 1. Then we have tis−2,is−1
≤

tis−1,is ≤ tis−1,im , where the first inequality is due to (18), and the second is due to the inductive

hypothesis. Applying further Lemma 2 we obtain that tis−2,is−1
≤ tis−2,im ≤ tis−1,im , and the inductive

step is completed, thus completing the proof of F2.

DRAFT

13

F2 implies that for any m, 1 < m ≤ q, we have tim−1,im ≥ tip,im for all p, 1 ≤ p < m. Consequently,

we have that tim−1,im = max1≤ℓ<im,ℓ∈Sf
tℓ,im . Equality (15) further implies that, if im ∈ I, then we have

tim−1,im = left(Aim). (19)

On the other hand, by F2 the inequality tim−1,im ≤ tim−1,in holds for all n,m ≤ n ≤ q, fact which leads

to tim−1,im = minim−1<j≤M,j∈Sf
tim−1,j . Further, by (16) it follows that, if im−1 ∈ I, then the following

equality is valid

tim−1,im = right(Aim−1
). (20)

Clearly i1, iq ∈ I, hence we are left to prove that im ∈ I for all 1 < m < q. For this let us define the set

B = (V, ti1,i2]∪
∪

m,1<m<q,im∈I [tim−1,im , tim,im+1
]∪ [tiq−1,iq ,W). Notice that, from the strict inequalities

in (18) it follows that set B coincides with the whole interval (V,W) if and only if im ∈ I for all

1 < m < q. On the other hand, by (19), (20), and I ⊆ Sf , we have B = ∪i∈I∩Sf
Ai = ∪i∈IAi = (V,W),

consequently the proof is completed. �

Let us evaluate now the running time of Algorithm 1. In order to calculate the number of iterations over

the steps 2)-4), note that at each iteration either a push or a pop is performed. The number of pushes is M

since each index j, 1 ≤ j ≤M , is pushed onto the stack exactly once. On the other hand, the number of

pops is M−M ′, since only indices i corresponding to degenerate sets Ai are popped, and each such index

is popped only once. Consequently, the number of iterations is 2M −M ′. Note that the time complexity

of an iteration is dominated by the time requirement to compute ti,j . For a general error function ρ(·),

a closed form may not be available for ti,j , but since ti,j is the unique zero point of the non-decreasing

function hi,j(·), it can be found by using the bisection search technique. The number of iterations of

the bisection search is in the worst case ⌈log2((W − V)N)⌉, where 1/N is the required precision. Each

iteration takes O(L) time, since O(L) operations are necessary to compute hi,j(t) for some trial value t.

Assuming N to be constant, the time complexity of Algorithm 1 thus becomes O(LM) = O(M logM),

where we have used the fact that M ≥ 2L.

The number of operations can be further reduced by replacing the degeneracy test ti,j ≤ left(i) by

the equivalent test hi,j(left(i)) ≥ 0. The equivalence follows from Lemma 1. Specifically, step 2) is

replaced by 2’) presented next:

2’) SET i← top of stack S. IF hi,j(left(i)) ≥ 0 GO TO step 4). ELSE compute ti,j , push j onto stack

S and SET left(j)← ti,j .

DRAFT

14

In the case when ρ(x) = x2, the computation of values ti,j is easier. According to [2], [22], the

following relation holds hi,j(t) = (αj − αi)t+ βi − βj where

αi =

L∑
k=1

ωky
k
⌈i/mk⌉, βi =

L∑
k=1

ωk(y
k
⌈i/mk⌉)

2, (21)

for all 1 ≤ i ≤M . Thus,

ti,j =
βj − βi

2(αj − αi)
. (22)

If the quantities αi and βi are precomputed then the evaluation of each ti,j requires only a constant number

of operations. The computation of all αi and βi using relations (21) amounts to O(LM) time. However, we

can discard the factor L by doing the computation recursively as follows. Denote αk
i =

∑k
k′=1 ωk′yk

′

⌈i/mk⌉

and βk
i =

∑k
k′=1 ωk′(yk

′

⌈i/mk⌉)
2, for all 1 ≤ k ≤ L and 1 ≤ i ≤ Mk. Then the following equalities are

valid

αk
i = αk−1

⌈iMk−1/Mk⌉ + ωky
k
i , β

k
i = βk−1

⌈iMk−1/Mk⌉ + ωk(y
k
i)

2, (23)

for all 1 ≤ k ≤ L and 1 ≤ i ≤Mk. Employing (23), the computation of all αi (i.e., αL
i) and βi (i.e., βL

i),

1 ≤ i ≤ M requires O(M) time overall. We conclude that when the distortion function is the squared

distance, Algorithm 1 runs in O(M) time.

Next we show that Algorithm 1 can also be applied to compute the optimal encoder partition in the

case of channel-optimized SQ and MDSQ design, with squared error distortion. Specifically, in these

cases we have hi,i′(t) = (α′
i′ − α′

i)t+ β′
i − β′

i′ , for some constants α′
i, β

′
i which are computed based on

the fixed decoder [12], [22]. As shown in [12], [22], [23] if α′
i′ = α′

i and β′
i < β′

i′ , then the interval Ai′

is degenerate, thus index i′ can be eliminated. Moreover, if α′
i′ = α′

i and β′
i = β′

i′ , assigning some source

sample t to index i is equivalent to assigning it to index i′. Therefore, nothing is lost if all elements of

the cell Ci′ are transferred to cell Ci, leaving Ci′ empty. Consequently, these indices i′ can be eliminated

as well. After performing these eliminations, the remaining M0 indices are relabeled from 1 to M0 such

that the values αi to be strictly increasing as i increases. Then Lemma 1 will be satisfied. From the proof

of Lemma 2 it follows that its conclusion holds when the conclusion of Lemma 1 holds. Thus, Lemma 2

is satisfied as well. Consequently, we can apply Algorithm 1 to compute the thresholds in the optimized

encoder partition, thus improving in speed the existing solution.

V. GENERATING AN ALL NON-EMPTY CELLS PARTITION

Empty cells may appear in practical applications of Lloyd’s method even in the case of single resolution

quantizer design due to the finiteness of the training set. On the other hand, in MRSQ design empty cells

DRAFT

15

may appear however even when working on a continuous alphabet, which is the case of our study. This

is due to the possibility of having left(Ai) ≥ right(Ai) for some index i, 1 < i < L. We illustrate this

possibility by the following example.

Example 1. Consider the uniform distribution over the interval [0, 26]. Consider the design of an MRSQ

with 2 refinement stages at rates R1 = 1 and R2 = 3, and squared error distortion. Hence, the quantizer

Q1 has 2 cells. Each of them is partitioned into 4 cells of quantizer Q2. Assume that the thresholds of

the initial central partition are: x1 = 2, x2 = 4, x3 = 6, x4 = 8, x5 = 10, x6 = 12, x7 = 18. Then the

optimized decoder has the following codewords for Q2: y21 = 1, y22 = 3, y23 = 5, y24 = 7, y25 = 9, y26 = 11,

y27 = 15, y28 = 22, and for Q1: y11 = 4, y12 = 17. Assume that ω1 = ω2 = 0.5. Then, by using (22), we

obtain

t4,5 =
1

2

ω1((y
1
2)

2 − (y11)
2) + ω2((y

2
5)

2 − (y24)
2)

ω1(y12 − y11) + ω2(y25 − y24)
=

61

6
,

t5,6 =
1

2

ω1((y
1
2)

2 − (y12)
2) + ω2((y

2
6)

2 − (y25)
2)

ω1(y12 − y12) + ω2(y26 − y25)
= 10.

Since t4,5 > t5,6, it follows that A5 = ∅, hence C1
5 becomes empty after the encoder optimization step.

It is common procedure in quantization design to split some non-empty cells in order to generate

a partition with all cells non-empty. The approach taken for single resolution quantizer is to split the

non-empty cell with the highest partial expected distortion [13]. As realized in [2] this approach cannot

be directly used in MRSQ design, due to the more complex structure of the MRSQ. The technique

proposed by the authors of [2] resizes the partitions Qk, proceeding in increasing order of k, as follows.

If some cell Ck
i is empty and the cell of Qk−1 containing it, i.e., Ck−1

ℓ , where ℓ = ⌈(imk)/mk−1⌉, is

non-empty, then Ck−1
ℓ is partitioned uniformly into mk−1/mk intervals which become the new cells Ck

j ,

ℓmk−1/mk ≤ j ≤ (ℓ+1)mk−1/mk−1. We note that this procedure does not guarantee that the expected

distortion will not increase.

Therefore we propose a different technique. We operate directly at the highest resolution partition. Note

first that cells CL
1 and CL

M cannot be empty because A1 and AM are non-degenerate as justified in Section

III. Assume now that we have xi−1 < xi = xi+1 = · · · = xj < xj+1 for some 1 ≤ i < j ≤ M − 1. In

other words, all cells CL
i+1, C

L
i+2, · · ·CL

j are empty, while CL
i and CL

j+1 are not empty. Let ξ denote the

common value of xi, · · · , xj . First we find the lowest resolution level k0 such that ξ is a threshold in

Qk0
. Note that k0 is the smallest integer in the range 1 to L such that ⌈i/mk0

⌉ < ⌈(j+1)/mk0
⌉, and let

i0 = ⌈i/mk0
⌉mk0

. Then i0 < j + 1 since otherwise we would have ⌈i/mk0
⌉ = i0/mk ≥ ⌈(j +1)/mk0

⌉,

leading to a contradiction. Clearly, i ≤ i0. Then we set the new thresholds x′i, · · · , x′j such that the

DRAFT

16

following to be satisfied:

xi−1 < x′i < x′i−1 < · · · < x′i0 = ξ < x′i0+1 < · · · < x′j < xj+1. (24)

In other words the old cell CL
i is split into the new non-empty cells CL

i , · · · , CL
i0

, and the old cell CL
j+1

is split to generate new non-empty cells CL
i0+1, · · · , CL

j+1. We will prove that this technique followed by

a decoder optimization step leads to a strict decrease of the MRSQ’s expected distortion.

It is known that by splitting a quantizer cell into two non-empty cells and then optimizing the decoder,

the quantizer expected distortion strictly decreases (because p(·) is positive everywhere). By a simple

inductive argument it follows that our procedure leads to a strict decrease of D(QL). We will show

that this is true for the lower resolutions, too. Notice that by the definition of k0, for k < k0, none of

x′i, · · ·x′j is a threshold in Qk, hence the quantizers at resolutions lower than k0 are not affected. Let us

fix now some k ≥ k0, and let ℓ1 = i0/mk. Clearly ℓ1 is an integer. Further consider the positive integers

ℓ0 = ⌈i/mk⌉ and ℓ2 = ⌈(j + 1)/mk⌉ − 1. Then we have

(ℓ0 − 1)mk ≤ i− 1 < i ≤ ℓ0mk ≤ ℓ2mk ≤ j < j + 1 ≤ (ℓ2 + 1)mk.

It is obvious that ℓ0 ≤ ℓ1 ≤ ℓ2. Then the effect of (24) on Qk is that the old non-empty cell Ck
ℓ0

is

split into the new non-empty cells Ck
ℓ0
, · · · , Ck

ℓ1
, and the old non-empty cell Ck

ℓ2+1 is split into the new

non-empty cells Ck
ℓ1+1, · · · , Ck

ℓ2+1. Therefore, D(Qk) is strictly decreased, too. Thus, the proof of our

claim is completed.

VI. EXPERIMENTAL RESULTS

This section presents experimental results to demonstrate the computational savings offered by the

proposed algorithm for the encoder optimization step. We consider a memoryless Gaussian source of

0 mean and variance 1, truncated to the interval [−3, 3]. The generalized Lloyd algorithm is used for

the optimal design of MRSQ’s with 2 refinement stages and squared distance distortion. Notice that,

although this work is concerned with the MRSQ design for continuous distributions, in practice some

form of discretization is necessary in order to compute the integrals needed for the calculation of the

centroids at the decoder optimization step according to (6). Therefore, the Gaussian source is discretized

by applying a fine uniform quantizer of step size 3×10−6. Thus, the alphabet of the discrete distribution,

C = {c1, · · · , cN}, contains N = 2×106 symbols. Let us denote by q(ci) the probability of ci, 1 ≤ i ≤ N ,

and assume that c1 < c2 < · · · < cN .

We have implemented two variants of the design algorithm: variant A uses the proposed fast algorithm

for computing the central partition thresholds, while variant B uses the algorithm of [22] for the same

DRAFT

17

purpose. All the other steps are identical. Both variants contain a preprocessing step which computes

and stores the cumulative probabilities cum(i) and first moments mom(i), 0 ≤ i ≤ N . Specifically,

cum(i) =
∑i

j=1 q(cj) and mom(i) =
∑i

j=1 cjq(cj) for all 0 ≤ i ≤ N . Having these quantities available,

the centroid of any cell C = {ci, ci+1, · · · , ci+j} can be efficiently computed at the decoder optimization

step as µ(C) = mom(i+j)−mom(i−1)
cum(i+j)−cum(i−1) . Thus, the time complexity of the decoder optimization step becomes

O(M). Corroborating with the observations in the previous sections, it follows that the asymptotical time

complexity of variant A is O(λM), and that of variant B is Ω(λM2) (assuming that M ′ = O(M)),

where λ denotes the number of iterations. We mention that we have excluded the time complexity of the

preprocessing step in the aforementioned evaluation since it becomes negligible as λ increases.

The design algorithm, in both variants, stops at convergence, in other words, when the central partition

thresholds become identical with those at the previous iteration. Notice that convergence is guaranteed

to occur after a finite number of iterations since the number of possible different central partitions is

finite (as a result of the discretization) and since any change in the central partition after some iteration

generates a strict decrease in the expected distortion, according to the discussion in Section III.

In our simulations we have considered three values for R2: R2 = 8, 9, 10, and in each case all possible

integer values of R1: R1 = 1, · · · , R2 − 1. For each MRSQ we have set ω1 = ω2 = 0.5. The tests

were run on an Intel Core 2 Duo Processor P8400 with clock speed of 2.26 GHz. The results of our

experiments are recorded in Tables I, II and III corresponding to R2 = 8, 9, 10, respectively. Each table

presents for each value of R1, the number of iterations λ until convergence, and the running time in

seconds of variants A (TA) and B (TB).

As our results show, variant A is faster than variant B in all the cases as expected. Moreover, the

advantage in speed heightens as R2 and λ increase. An interesting observation is that, for fixed R2, the

number of iterations until convergence does not depend monotonically on R1. It rather tends to increase

as the absolute difference between R1 and R2 −R1 increases.

Based on our simulation results we conclude that the proposed algorithm for the central partition

computation can provide a significant speed up of the MRSQ design when the number of cells in the

central partition is sufficiently high.

VII. CONCLUSION

In this work we address the problem of optimal design of multi-resolution scalar quantizer (MRSQ)

via the generalized Lloyd method. Such a design procedure was used previously in [2] for the case

of squared error distortion. The algorithm employed to compute the optimal partition thresholds in the

DRAFT

18

R1 # iterations TA in sec. TB in sec.

1 20419 0.7 2.3

2 7668 0.38 1.0

3 2560 0.25 0.47

4 949 0.2 0.28

5 1456 0.22 0.34

6 4123 0.31 0.63

7 10858 0.52 1.36

TABLE I

RUNNING TIMES OF VARIANTS A AND B FOR R2 = 8 AND DIFFERENT VALUES OF R1 .

R1 # iterations TA in sec. TB in sec.

1 43629 2.2 16.25

2 21331 1.25 7.98

3 7833 0.61 3.05

4 2634 0.33 1.16

5 1713 0.28 0.81

6 4302 0.45 1.77

7 12036 0.88 4.73

8 27916 1.77 10.5

TABLE II

RUNNING TIMES OF VARIANTS A AND B FOR R2 = 9 AND DIFFERENT VALUES OF R1 .

encoder optimization step was borrowed from the work of [22] on multiple description scalar quantizer

design. As in [2], we assume that the MRSQ cells are intervals, but generalize the distortion metric to

any convex difference distortion. This generalization poses some challenges at the encoder optimization

step. We show how these challenges can be overcome and propose an efficient algorithm for computing

the optimized encoder partition. Our algorithm is more efficient than the algorithm of [2]. Moreover, it

can be applied to solve the similar task in channel-optimized scalar quantizer and in multiple description

scalar quantizer design, outperforming in speed the existing solutions.

DRAFT

19

R1 # iterations TA in sec. TB in sec.

1 28225 2.59 38.92

2 46289 4.25 63.92

3 21472 2.2 29.94

4 7700 1.0 10.88

5 3048 0.55 4.36

6 4565 0.69 6.61

7 12519 1.53 17.64

8 30749 3.33 44.34

9 48190 5.11 67.09

TABLE III

RUNNING TIMES OF VARIANTS A AND B FOR R2 = 10 AND DIFFERENT VALUES OF R1 .

APPENDIX A

PROOF OF LEMMAS

In this appendix we prove Lemma 1 and Lemma 2.

Lemma 1. For each pair of integers i, i′, 1 ≤ i < i′ ≤M , the function hi,i′(·) is non-decreasing and has

a unique zero point denoted by ti,i′ . Moreover, V < ti,i′ < W .

Proof. Fix some pair i < i′. Let K be the smallest element of the set {k|1 ≤ k ≤ L, ⌈i/mk⌉ ̸= ⌈i′/mk⌉}.

In other words, K is the coarsest resolution level at which the sets CL
i and CL

i′ are not included in

the same quantization cell. Because i < i′, we have ⌈i/mK⌉ < ⌈i′/mK⌉, hence the interval CK
⌈i/mK⌉

is situated to the left of CK
⌈i′/mK⌉. Moreover, CK

⌈i/mK⌉ contains the sets Ck
⌈i/mk⌉ for all k,K ≤ k ≤ L.

Likewise, CK
⌈i′/mK⌉ contains the sets Ck

⌈i′/mk⌉ for all k,K ≤ k ≤ L. Using further the fact that each

codeword is contained in the interior of the corresponding cell (as a consequence of the previous decoder

optimization step (5)), it follows that

yk⌈i/mk⌉ < x⌈i/mK⌉mK
< yk⌈i′/mk⌉ for all K ≤ k ≤ L. (25)

To obtain the above relations we used the fact that x⌈i/mK⌉mK
is the upper boundary of CK

⌈i/mK⌉.

For each k,K ≤ k ≤ L, consider the function h(k)(t) defined as follows:

h(k)(t) = ρ(|t− yk⌈i/mk⌉|)− ρ(|t− yk⌈i′/mk⌉|).

DRAFT

20

Then

hi,i′(t) =

L∑
k=K

ωkh
(k)(t). (26)

As proved in [14], (Lemma 1), the inequality yk⌈i/mk⌉ < yk⌈i′/mk⌉ implies that h(k)(·) is a non-decreasing

function, for all k,K ≤ k ≤ L. Then, using (26) and the fact that ωk are positive, it follows that hi,i′(·)

is non-decreasing too.

Note that for K ≤ k ≤ L, and t ≤ yk⌈i/mk⌉ we have |t − yk⌈i/mk⌉| < |t − yk⌈i′/mk⌉| due to (25). Since

ρ(·) is strictly increasing it follows that h(k)(yk⌈i/mk⌉) < 0. Further, using the positivity of ωk it follows

that

hi,i′(t) < 0 for all t ≤ mink,K≤k≤L yk⌈i/mk⌉. (27)

Likewise, for K ≤ k ≤ L, and t ≥ yk⌈i′/mk⌉ we obtain that h(k)(yk⌈i′/mk⌉) > 0, and further that

hi,i′(t) > 0 for all t ≥ maxk,K≤k≤L yk⌈i′/mk⌉. (28)

Relations (27) and (28) together with the continuity of hi,i′(·) imply that hi,i′(·) has at least one zero

point ti,i′ satisfying

ti,i′ ∈ (min
K≤k≤L

yk⌈i/mk⌉, max
K≤k≤L

yk⌈i′/mk⌉). (29)

We next show that this point is unique using a proof by contradiction.

Denote by null the set of zero points of the function hi,i′(·), i.e., null = {t|hi,i′(t) = 0} and assume

that null contains two distinct values t1 < t2. Since each h(k)(·) is non-decreasing, it follows that

hk(t1) ≤ hk(t2), for all k,K ≤ k ≤ L. If at least for one value of k the previous inequality were strict

then we would have hi,i′(t1) < hi,i′(t2) (because ωk > 0 for each k), which contradicts the definition of

null. Therefore, we conclude that each h(k)(·) must be constant on the set null.

Furthermore, note that each h(k)(·) is strictly increasing on the interval [yk⌈i/mk⌉, y
k
⌈i′/mk⌉]. This claim

follows easily from the fact that ρ is strictly increasing. Therefore, in order for each h(k)(·) to be constant

on null, the following condition must be satisfied

null ⊆
L∩

k=K

((−∞, yk⌈i/mk⌉] ∪ [yk⌈i′/mk⌉,∞)). (30)

Relation (25) implies that maxk,K≤k≤L yk⌈i/mk⌉ < mink,K≤k≤L yk⌈i′/mk⌉, leading to the conclusion that

L∩
k=K

((−∞, yk⌈i/mk⌉] ∪ [yk⌈i′/mk⌉,∞)) =

L∩
k=K

(−∞, yk⌈i/mk⌉] ∪
L∩

k=K

[yk⌈i′/mk⌉,∞)

= (−∞, min
K≤k≤L

yk⌈i/mk⌉] ∪ [max
K≤k≤L

yk⌈i′/mk⌉,∞). (31)

DRAFT

21

Relations (30), (31), (27), and (28) imply that hi,i′(t) ̸= 0 for any t ∈ null, thus contradicting the

definition of null.

We conclude that the function hi,i′(·) has a unique zero point ti,i′ . Moreover, the inequalities (29)

imply that ti,i′ ∈ (V,W), thus completing the proof. �

Lemma 2. For any integers 1 ≤ ℓ < i < j ≤M we have

min{tℓ,i, ti,j} ≤ tℓ,j ≤ max{tℓ,i, ti,j}, (32)

with equalities only if tℓ,i = ti,j .

Proof. The following equality is immediate

hℓ,j(t) = hℓ,i(t) + hi,j(t). (33)

The function hℓ,j(·) is continuous and, according to Lemma 1, its unique zero point is tℓ,j . Therefore, in

order to prove the relation (32) it suffices to show that the quantities hℓ,j(tℓ,i) and hℓ,j(ti,j) have different

signs. Since hℓ,i(tℓ,i) = 0 and hi,j(ti,j) = 0, we obtain from (33) that

hℓ,j(tℓ,i) = hi,j(tℓ,i) and hℓ,j(ti,j) = hℓ,i(ti,j). (34)

The functions hi,j and hℓ,i are non-decreasing, therefore each of them is negative to the left of its zero

point and positive to the right. Therefore, a moment of thought reveals that, when tℓ,i ̸= ti,j , we obtain

that hi,j(tℓ,i)hℓ,i(ti,j) < 0, leading to hℓ,j(tℓ,i)hℓ,j(ti,j) < 0 via (34), which further implies that (32)

holds with strict inequalities. Moreover, in the case when tℓ,i = ti,j we have hℓ,j(tℓ,i) = 0 by (34), hence

tℓ,j = tℓ,i = ti,j . Thus, the proof is completed. �

APPENDIX B

COMPLEXITY ANALYSIS OF ALGORITHM OF [22] FOR CENTRAL PARTITION OPTIMIZATION

In this appendix we analyze the time complexity of Vaishampayan’s algorithm for encoder partition

optimization [22]. The pseudocode of the algorithm is presented below.

1) SET m← 1, p← (m+ 1), left(m) = V , n←M .

2) Compute tm,p and SET t← tm,p.

3) Evaluate ϕl(t) for m < l ≤ n. SET p′ ← argminm<l≤n ϕl(t). If this minimum is achieved by

several indexes then choose the highest index.

4) IF p′ ̸= p, SET p← p′, n← p′ and return to step 2); ELSE, SET left(p)← t, right(m)← t and

GO TO step 5).

DRAFT

22

5) IF p = M , STOP, ELSE, SET m← p, p← (m+ 1), n←M and return to step 2).

Note that the most computationally intensive is step 3). As justified in [22], the values taken by m are

all indices in I r {M}. Moreover, for each such m, the first time Step 3) is executed, the value of n

equals to M , consequently this execution of step 3) requires M −m comparisons to solve the underlying

maximization. Thus, a lower bound on the total number of operations is
M ′−1∑
s=1

(M − js) ≥ (M − 1) + (M ′ − 2) + (M ′ − 1) + · · ·+ 1 + 0, (35)

which implies that the running time is Ω(M +M ′2).

REFERENCES

[1] A. Antos, ”On codecell convexity of optimal multi-resolution scalar quantizers for continuous sources”, submitted for
publication.

[2] H. Brunk and N. Farvardin, ”Fixed-rate successively refinable scalar quantizers”, Proc. DCC’96, Snowbird, Utah, March
1996, pp.250-259.

[3] S. Dumitrescu, X. Wu, ”Optimal multiresolution quantization for scalable multimedia coding”, Proc. IEEE Information
Theory Workshop 2002, pp. 139 - 142, Oct. 2002.

[4] S. Dumitrescu and X. Wu, ”Algorithms for optimal multi-resolution quantization”, J. Algorithms, 50(2004), pp. 1-22.
[5] S. Dumitrescu and X. Wu, ”On global optimality of gradient descent algorithms for fixed-rate scalar multiple description

quantizer design”, Proc. IEEE DCC’05, pp. 388-397, March 2005.
[6] S. Dumitrescu, ”Speed-up of encoder optimization step in multiple description scalar quantizer design”, Proc. of IEEE

Data Compression Conference, pp. 382-391, March 2008, Snowbird, UT.
[7] S. Dumitrescu, X. Wu, ”On Properties of Locally Optimal Multiple Description Scalar Quantizers with Convex Cells”,

IEEE Trans. on Inform. Theory, vol. 55, no. 12, pp. 5591-5606, Dec. 2009.
[8] M. Effros, D. Dugatkin, ”Multiresolution Vector Quantization”, IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3130-3145,

Dec. 2004.
[9] M. Effros and D. Muresan, ”Cell Contiguity in Optimal Fixed-Rate and Entropy-Constrained Network Scalar Quantizers”,

Proc. DCC’2002, pp. 312-321, April 2002.
[10] M. Effros, and L. Schulman, ”Rapid Near-Optimal VQ Design with a Deterministic Data Net”, Proc. ISIT’04, pp. 298,

July 2004.
[11] M. Effros, ”Optimal multiple description and multiresolution scalar quantizer design”, Information Theory and Applications

Workshop’08, Univesity of California, San Diego, 27 January-1 February 2008.
[12] N. Farvardin and V. Vaishampayan, ”Optimal Quantizer Design for Noisy Channels: an Approach to Combined Source-

Channel Coding”, IEEE Trans. Inform. Theory, vol. IT-33, pp. 827-838, Nov. 1987.
[13] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers, 1992.
[14] A. Gyorgy, and T. Linder, ”On the structure of optimal entropy-constrained scalar quantizers”, IEEE Transactions on

Information Theory, vol. 48, pp. 416-427, Feb. 2002.
[15] A. Gyorgy, T. Linder, G. Lugosi,”Tracking the Best Quantizer” IEEE Trans. Inform. Theory, vol. 54, no. 4, pp. 1604-1625,

April 2008.
[16] H. Jafarkhani, H. Brunk, and N. Farvardin, ”Entropy-constrained successively refinable scalar quantization,” Proc. IEEE

Data Compression Conference, pp. 337-346, Mar.1997.
[17] A. Kurtenbach and P. Wintz, ”Quantizing for noisy channels”, IEEE Trans. Comm. Techn., vol. COM-17, pp. 291-302,

Apr. 1969.
[18] S. P. Lloyd, ”Least squares quantization in PCM”, IEEE Trans. Inform. Theory, vol. IT-28, pp. 129-137, Mar. 1982.
[19] D. Muresan and M. Effros, ”Quantization as histogram segmentation: globally optimal scalar quantizer design in network

systems”, Proc. DCC’2002, pp. 302-311, April 2002.
[20] D. Muresan and M. Effros, ”Quantization as histogram segmentation: optimal scalar quantizer design in network systems”,

IEEE Trans. Inform. Th., vol. 54, no. 1, pp. 344-366, Jan. 2008.
[21] A. V. Trushkin, ”Sufficient conditions for uniqueness of a locally optimal quantizer for a class of convex error weighting

functions”, IEEE Trans. Inform. Th., vol. 28, no. 2, pp. 187-198, March 1982.
[22] V. A. Vaishampayan, ”Design of multiple-description scalar quantizers”, IEEE Trans. Inform. Th., vol. 39, no. 3, pp.

821-834, May 1993.
[23] V. A. Vaishampayan, J. Domaszewicz, ”Design of entropy-constrained multiple-description scalar quantizers”, IEEE Trans.

Inform. Th., vol. 40, no. 1, pp. 245-250, Jan. 1994.
[24] X. Wu and S. Dumitrescu, ”On optimal multi-resolution scalar quantization”, Proc. IEEE Data Compression Conference’02,

pp. 322-331, April 2002.

DRAFT

