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Abstract

In the previous work on multiple description lattice vector quantizers (MDLVQ) with L ≥ 3

descriptions, once the central and side lattice codebooks are fixed, the decoding quality is determined

for all numbers k of received descriptions. Therefore, it is not possible to achieve tradeoffs between the

quality of reconstruction for different values of k, 1 ≤ k ≤ L−1. This work proposes a flexible MDLVQ

capable of overcoming the above drawback. For this, a different reconstruction method is employed and

a heuristic index assignment (IA) algorithm, which uses L− 2 parameters to control the distortions for

2 ≤ k ≤ L−1, is developed. Experimental results show that the proposed MDLVQ beside achieving the

desired tradeoffs, significantly outperforms the classic MD scheme based on unequal erasure protection.

The second contribution of this work is a structured IA for the case L = 3 and the derivation

of the corresponding expressions of the distortions at high resolution. The proposed IA has a simple

mechanism for controlling the tradeoff between the reconstruction quality for k = 1, 2. The IA is able

to achieve a wide range of distortion values, while keeping the product of the distortions for k = 1, 2

the same as in the prior work.

Index Terms

Multiple description coding, lattice quantization, high resolution analysis.

I. INTRODUCTION

A multiple description (MD) coder consists of L encoders for some L ≥ 2, each encoder

generating a separate description of the signal. Each description is sent to the destination over
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a separate channel, which either transmits the whole description correctly or breaks down.

The decoder is able to reconstruct the source to some quality from any subset of received

descriptions, while the fidelity of the reconstruction generally increases with the number of

received descriptions.

An n-dimensional multiple description lattice vector quantizer (MDLVQ) is an MD coder

consisting of a so-called central lattice Λc ⊂ Rn, a so-called side lattice Λs, which is a sublattice

of Λc, and an injective mapping α : Λc → ΛL
s , which assigns to each central lattice point an L-

tuple of side lattice points. For each λc ∈ Λc, let αi(λc) denote the i-th component of the L-tuple

α(λc), 1 ≤ i ≤ n. The encoder of the MDLVQ quantizes the input vector x = (x1, x2, . . . , xn)

to the closest central lattice point λc and outputs αi(λc) as the i-th description, for 1 ≤ i ≤ L.

When all descriptions λ1, · · · , λL are received at destination the decoder is able to uniquely

identify the corresponding central lattice point and uses it as the source reconstruction. On the

other hand, when only one description λi is received, the decoder uses it to reconstruct the

source. When all descriptions are lost the decoder outputs the source mean. Notice that when

L = 2, only the above mentioned situations are possible at the decoder. On the other hand, when

L > 2, it is possible that the number k of descriptions received to be larger than 1 and smaller

than L. In such a case an appropriate decoding rule has to be specified.

The MDLVQ framework for L = 2 was introduced and analyzed in [1]. The authors of [1]

propose a general method for the index assignment (IA) design and derive analytical expressions

for the distortions at high resolution, using the squared distance as a distortion measure. While

the aforementioned work addresses the symmetric case, i.e., where the rates, respectively the

distortions, of the two descriptions are equal, the asymmetric case was considered in [2]. In

[3], [4], the authors achieve the tradeoffs between central and side distortions by modifying the

encoding rule of [1]. Additionally, an extension to more than two descriptions is briefly mentioned

in [3]. A systematic study of an MDLVQ system for L > 2 descriptions, in the symmetric case,

is performed in [5]. The authors of [5] use the setup described in the previous paragraph and

for the additional situations arisen at the decoder, i.e., when the number of received descriptions

is k, 2 ≤ k ≤ L − 1, use the arithmetic average of the received descriptions to reconstruct the

source. They propose an IA algorithm and derive asymptotical expressions of the distortions for

different numbers of received descriptions. The authors of [6] propose a simpler and faster IA

algorithm and prove its optimality for L = 2 with any N , and for L > 2 when N →∞, where
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N is the index of the side lattice with respect to the central lattice. They also derive asymptotical

expressions of the distortions. The work [7] proposes algorithms to improve the IA for finite N .

The work [8] uses a simpler method to analyze the asymptotical performance of the MDLVQ of

[6]. A multiple description scalar quantizer with translated lattice codebooks and the associated

optimal IA are discussed in [9]. In [10] an asymmetric MDLVQ scheme with L ≥ 2, which uses

the weighted average of the received descriptions as reconstruction for k < L, is investigated.

It is worth pointing out that there are non IA-based MDLVQ schemes in the literature for

L = 2 [11], [12], and for general L when only the distortions of individual descriptions and of

all descriptions are of interest [13]. In this work we are concerned only with IA-based MDLVQ,

and will omit the specification ”IA-based” in the sequel.

We emphasize that the MDLVQ framework for L ≥ 3 considered in prior work is able to

achieve tradeoffs between the reconstruction quality when all descriptions are received versus

the case when only a subset of them are received, by varying the value of N for fixed rate R

of individual description. However, it is not possible to achieve tradeoffs between the decoding

quality for different values of k, 1 ≤ k ≤ L− 1.

In this work we propose a flexible MDLVQ system for L ≥ 3, able to adjust the decoding

quality for various values of k, 1 ≤ k ≤ L − 1. To this aim we use a different reconstruction

method and propose a heuristic IA algorithm, which uses L − 2 parameters to control the

reconstruction quality for 2 ≤ k ≤ L− 1. Our simulations for L = 3, 4 not only show that the

proposed framework can achieve the desired tradeoffs, but also that it significantly outperforms

the MD scheme based on successively refinable codes and unequal erasure protection, referred

to as UEP [14], [15]. This result is very important since UEP is one of the few MD codes that

are practical and ensure flexibility in adjusting the distortions for different numbers of received

descriptions [16]. While there are theoretical constructions that outperform the UEP scheme [17]–

[19], they rely on the binning technique, which is difficult to implement in practice. Additionally,

to add to the merit of UEP as a term of comparison we point out that, even if it is suboptimal,

UEP was shown to be only at most 0.73 bits away from the theoretically optimal description

rate [20].

In the second part of this work we propose a structured IA for the case L = 3 with a simple

mechanism to control the tradeoffs between the distortions for one, respectively two, received

descriptions. We derive asymptotical expressions for D3,k for k = 1, 2, where D3,k denotes the
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average distortion when only k out of 3 descriptions are received. Our results show that a wide

range of distortion pairs (D3,1, D3,2) can be achieved even if N and R are fixed. In particular,

the proposed IA can achieve distortion pairs (D3,1, D3,2) with ratios D3,1/D3,2 = 12N
2
n

(1−β), for

all β in some compact interval I ⊂ (0, 1), while keeping the product D3,1D3,2 the same as in [6]

as n→∞. On the other hand, the MDLVQ scheme of [6] can only achieve one distortion pair

with the ratio D3,1/D3,2 = 4. Additionally, it is worth noting that the MDLVQ system of [10]

is able to achieve more distortion pairs by varying the weights assigned to different numbers of

descriptions in the optimization of the overall expected distortion. However, the distortion pairs

obtained in [10] are only linearly related, i.e., the ratio D3,1/D3,2 does not depend on N or R.

Furthermore, the analytical comparison of the structured IA with UEP shows that the proposed

IA beats UEP in certain cases.

A preliminary version of this work appeared in the conference paper [21]. We emphasize that

the structured IA for L = 3 proposed in the current work is significantly different from that

developed in [21] and has a better performance. Notably, the IA in the present work achieves

the same distortion product as in [6] as N and the vector dimension n approach ∞, while the

counterpart in [21] exhibits a small gap versus [6]. The present work also includes an extensive

empirical/analytical performance comparison with the UEP scheme, which does not appear in

[21].

The paper is structured as follows. The following section introduces the necessary definitions

and notations and reviews the relevant results from the previous work on MDLVQ. Section

III introduces the proposed flexible MDLVQ for L ≥ 3 and the heuristic IA algorithm. The

following section presents the empirical performance evaluation of the proposed MDLVQ and the

comparison with UEP. A structured IA for the case L = 3 and the derivation of the corresponding

expressions of the distortions at high resolution, are presented in Section V. This section also

includes the analytical comparison with UEP. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Definitions and Notations

Let νc, respectively νs, denote the volume of the fundamental region of the central, respectively

side lattice. Then N = νs
νc

. Let 0 denote the n-dimensional all-zero vector. For a lattice Λ ⊂ Rn
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and a lattice point λ ∈ Λ, the Voronoi region of Λ around λ, is defined as follows

V (λ) , {x ∈ Rn : ‖x− λ‖ ≤ ‖x− λ′‖, ∀λ′ ∈ Λ},

where ‖y‖ ,
√
〈y,y〉, with 〈x,y〉 ,

∑n
i=1 xiyi for all x,y ∈ Rn. We will use the subscript c,

respectively s, for the Voronoi region of Λc, respectively Λs.

To represent a missing description at the decoder we use the symbol ∗. For instance, for the

case L = 3, if the triple (λ1, λ2, λ3) is transmitted, and the second description is lost, then we

say that the triple (λ1, ∗, λ3) is received. We use L-bit sequences b = b1b2 · · · bL ∈ {0, 1}L to

represent various patterns of received descriptions, where bi = 1 means that description i is

received, while bi = 0 means that description i is lost. For λc ∈ Λc and b ∈ {0, 1}L let us

denote by ηb(λc) the reconstruction of λc when the pattern of received descriptions is b. For

b ∈ {0, 1}L, let H(b) denote the Hamming weight of b, which equals the number of 1’s in

b. Therefore, H(b) equals the number of received descriptions corresponding to pattern b. The

per symbol squared error is used as a distortion measure. Thus, the distortion of the source

reconstruction corresponding to pattern b is

Db =
1

n

∑
λc∈Λc

∫
Vc(λc)

‖x− ηb(λc)‖2f(x)dx,

where f(x) =
n∏
j=1

f (xj) is the n-fold probability density function (pdf) of the source vectors x.

Further, the distortion when k descriptions out of L are received, 1 ≤ k ≤ L, is defined as

DL,k ,
1(
L
k

) ∑
b∈{0,1}L
H(b)=k

Db. (1)

Notice that DL,L equals the distortion of the lattice quantizer with codebook Λc, referred to as

the central distortion and denoted by Dc.

As in [1], [6] we will assume that the IA α satisfies the shift-invariance property, i.e., that

αi(λc + u) = αi(λc) + u,∀λc ∈ Λc, u ∈ Λs, 1 ≤ i ≤ L.

Additionally, since α is shift-invariant we will assume that the decoder mapping is shift invariant

as well, i.e.,

ηb(λc + u) = ηb(λc) + u,∀λc ∈ Λc, u ∈ Λs,b ∈ {0, 1}L.
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As in the previous work on MDLVQ we will assume that the source is smooth and has a finite

differential entropy. Additionally, we will use the high resolution assumption in order to derive

the analytical expressions of the distortions. In other words, we will derive an approximation

of each distortion, which becomes accurate as νc → 0 and νs → 0. Thus, we assume that νc is

small enough so that the pdf of the source vectors is approximately uniform over each Voronoi

region of Λc. This implies that each central lattice point is approximately equal to the centroid

of its Voronoi region. Then [1], [5], [6]

Db ≈ Dc +
1

n

∑
λc∈Λc

‖λc − ηb(λc)‖2

∫
Vc(λc)

f(x)dx,

for every pattern b of received descriptions with H(b) < L. Based on the above relation, on the

shift-invariance of the IA and of the decoding mapping, and on the assumption that the pdf of

the source vectors is uniform over each Voronoi cell of the side lattice, one obtains [1], [5], [6]

Db ≈ Dc +
1

nN

∑
λc∈Vs(0)

‖λc − ηb(λc)‖2.

Using further (1), it follows that

DL,k ≈ Dc +
1

nN

1(
L
k

) ∑
λc∈Vs(0)

∑
b∈{0,1}L
H(b)=k

‖λc − ηb(λc)‖2. (2)

As in the previous work on MDLVQ we assume that entropy coding is used to encode each

side description. It can be easily verified that the shift invariance property of the IA ensures

that |α−1
i (λs)| = N , for every 1 ≤ i ≤ L, λs ∈ Λs, where |B| denotes the cardinality of the set

B. Based on the above observation and on the assumption that the pdf of the source vectors is

uniform over each set α−1
i (λs), 1 ≤ i ≤ L, λs ∈ Λs, it follows that each description has the rate

R (measured in bits per sample) satisfying [1], [5]

R ≈ h(f)− 1

n
log2(Nνc), (3)

where h(f) denotes the differential entropy of f , i.e., h(f) = −
∫
R f(x) log2 f(x)dx. Let Rc

denote the entropy of the central quantizer. Then, as νc approaches 0, one has [22]

Rc ≈ h(f)− 1

n
log2(νc). (4)

It is clear that R and Rc have to satisfy the following conditions

R ≤ Rc ≤ LR. (5)
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Let us write now as in [8]

Rc = R(1 + α(L− 1)). (6)

Then conditions (5) are equivalent to 0 ≤ α ≤ 1. Recall that we require that νc → 0 and

νs → 0, which in view of (3) and (4) imply that both R and Rc approach ∞. Clearly, as long

as relation (6) is valid for some α, 0 ≤ α ≤ 1, then R → ∞ implies that Rc → ∞. Thus, the

only requirement that we need to impose is that R →∞. Additionally, notice that as R varies

α does not have to be fixed. In particular, we may have α→ 0.

Note that equation (3) implies that

Nνc ≈ 2n(h(f)−R). (7)

Further, relations (4), (6) and (7) lead to

N ≈ 2nα(L−1)R. (8)

Remark 1: Recall that the derivation of (3) relies on the assumption that the pdf of the source

vectors is approximately uniform on each set α−1
i (λs). A sufficient condition for the latter to hold

as R → ∞, is that the volume of the convex closure of the set ∪λc∈α−1
i (λs)

Vc(λc) to approach

0 for all i and λs. If we assume that the largest such volume equals Nνc × Nγ , for some real

value γ, then, in view of (7) and (8), the condition Nνc ×Nγ → 0 holds if and only if

R (1− (L− 1)αγ)→∞. (9)

Since DL,L = Dc, according to [23] one has

DL,L ≈ G(Λc)ν
2
n
c ,

where G(Λc) denotes the dimensionless normalized second moment of the lattice Λc, i.e.,

G(Λc) ,
1

nν
n+2
n

c

∫
Vc(0)

‖x‖2dx.

Then equations (4) and (8) further imply that

DL,L ≈ G(Λc)2
2(h(f)−R(1+α(L−1)). (10)
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B. Previous MDLVQ Scheme for L ≥ 3

For every λc ∈ Λc, denote

µs(λc) =
1

L

L∑
i=1

αi(λc).

Additionally, for any L-tuple (λ1, · · · , λL) ∈ ΛL
s define its spread as follows [5]

sp(λ1, · · · , λL) =
L∑
i=1

∥∥∥∥∥λi − 1

L

L∑
j=1

λj

∥∥∥∥∥
2

.

Then the decoding rule used in prior work implies that for all k, 1 ≤ k ≤ L−1, one has [5], [6]

DL,k ≈ Dc +
1

nN

∑
λc∈Vs(0)

‖λc − µs(λc)‖2 +

1

nN

L− k
Lk(L− 1)

∑
λc∈Vs(0)

sp(α(λc)). (11)

A key factor in the IA design proposed in [6] is the so-called L-fraction lattice Λs/L, defined

as follows

Λs/L
∆
=

1

L
Λs =

{
λs/L ∈ Rn : λs/L =

k

L
Gs,k ∈ Zn

}
,

where Gs is the generator matrix of Λs. Let us denote by Vs/L(λs/L) the Voronoi region of Λs/L

around λs/L ∈ Λs/L. We will assume that the sublattice Λs of Λc is clean, in other words, any

central lattice point is contained in a unique Voronoi region of Λs. It is shown in [6] that, if Λs

is clean then any central lattice point is contained in a unique Voronoi region of Λs/L as well.

Further, for each λs/L ∈ Λs/L consider

T
(
λs/L

)
,

{
(λ1, λ2, ..., λL) ∈ ΛL

s :
1

L

L∑
j=1

λj = λs/L

}
.

The authors of [6] prove that the procedure of assigning the L-tuples in T (λs/L) of smallest

spread to the central lattice points in Vs/L
(
λs/L

)
, minimizes DL,k of (11) for all k, 1 ≤ k ≤ L−1,

as N →∞.

Additionally, the asymptotic analysis in [6], [8] leads, for 1 ≤ k ≤ L− 1, to

DL,k ≈
L− k
k

L−
L
L−1 (Nνc)

2
nG(SLn−n)N

2
(L−1)n (12)

as N →∞, where G (Sm) is the normalized second moment of a sphere in Rm, for m ≥ 1.
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III. PROPOSED FLEXIBLE MDLVQ FRAMEWORK FOR L ≥ 3

Notice that in the previous MDLVQ schemes once Λc and Λs have been chosen the system’s

performance is determined. Interestingly, the IA used in evaluating the performance minimizes

the distortion (as N → ∞) for every possible k, 1 ≤ k ≤ L − 1. The fact that it is possible

to optimize simultaneously the distortions for all values of k is contrary to our intuition that

there should be tradeoffs between these distortions. The first insight towards solving this conflict

is that the optimality of the IA is a result of the particular way the decoder is designed. The

second insight is that the decoding rule is natural for the side decoders, i.e., when k = 1, while

for 2 ≤ k ≤ L − 1, it seems to be rather dictated by convenience. These observations lead to

the conclusion that distortion DL,1 is, indeed, the smallest possible, but there should be room

for further decreasing DL,k, for 2 ≤ k ≤ L− 1, if DL,1 is allowed to increase. Nevertheless, for

this to be possible, the decoder mappings for 2 ≤ k ≤ L− 1 have to be changed.

Therefore, in order to introduce more flexibility into the system we start by considering a

different decoding mapping for 2 ≤ k ≤ L − 1, as follows. For any L-tuple (ξ1, ξ2, · · · , ξL) ∈(
Λs ∪ {∗}

)L
that has at least one component equal to ∗ and at least two other components in

Λs, we compute the reconstruction value as the arithmetic average of the central lattice points

in the set α−1(ξ1, ξ2, · · · , ξL), where

α−1(ξ1, ξ2, · · · , ξL) , {λc ∈ Λc : αi(λc) = ξi for all 1 ≤ i ≤ L, with ξi ∈ Λs}.

Notice that this decoding rule is optimal assuming that the pdf of the source vectors is uniform

over the set α−1(ξ1, ξ2, · · · , ξL). Further, in order to control the performance when k, descriptions

are received, for 2 ≤ k ≤ L− 1, we introduce L− 2 parameters: δk, 2 ≤ k ≤ L− 1, satisfying

the inequalities: δ2 ≥ δ3 ≥ · · · ≥ δL−1 ≥ 0, and impose the following condition.

Condition A. For any k, 2 ≤ k ≤ L− 1, and any

L-tuple (ξ1, ξ2, · · · , ξL) ∈
(

Λs ∪ {∗}
)L

having exactly L− k components equal to ∗, one must

have ‖λc − λ′c‖ ≤ δk for any λc, λ′c ∈ α−1(ξ1, ξ2, · · · , ξL).

It can be easily verified that Condition A guarantees that

DL,k / Dc + δ2
k, ∀k, 2 ≤ k ≤ L− 1.

Finally, when designing the IA α we attempt to minimize DL,1 while ensuring that Condition

A is satisfied. Note that the decoding rule for k = 1 is the same as in the previous work, therefore
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the value of DL,1 can be still computed using equation (11), leading to

DL,1 ≈ Dc +
1

nN

∑
λc∈Vs(0)

‖λc − µs(λc)‖2 +

1

nNL

∑
λc∈Vs(0)

sp(α(λc)). (13)

The proposed IA algorithm first selects a set F of Ln L-fraction lattice points λs/L ∈ Λs/L∩Vs(0),

such that the difference of any two such points is not in Λs. Let us define C , ∪λs/L∈F
(
Vs/L(λs/L) ∩ Λc

)
.

Notice that it is sufficient to specify the IA for the central lattice points in C and then extend

it to Λc via shifting. Guided by (13), for each λs/L ∈ F we assign the central lattice points

in Vs/L(λs/L) to L-tuples in T (λs/L), to minimize the first sum in (13). However, we can no

longer select the L-tuples of smallest spread to be assigned as in [6], since this would lead to

violations of Condition A. Having in mind the need to keep the last sum in (13) as small as

possible we proceed in a greedy manner as described next.

The algorithm maintains a list T of candidate triples to be assigned. The assignment is built

up gradually such that at every moment Condition A to be satisfied for the assignment obtained

by extending via shifting the partial assignment built so far. The set T is initialized to T =

∪λs/L∈FT (λs/L). At each iteration the L-tuple of smallest spread from the set T is selected

as the current candidate to be assigned. Let (λ1, · · · , λL) denote this L-tuple. Next the value

λs/L =
∑L
i=1 λi
L

is determined and for each λc in Vs/L(λs/L) which has not yet been assigned an

n-tuple the algorithm tests whether assigning the L-tuple to λc preserves Condition A for the

assignment extended by shifting. For this, it is checked whether λc satisfies Condition B stated

next.

Condition B. Given λc ∈ Λc, we say that λc satisfies Condition B if and only if for every

λ′c ∈ C assigned so far and for every k, 2 ≤ k ≤ L − 1, such that there are sk ∈ Λs and k

different positions i1, i2, · · · , ik ∈ {1, · · · , L} with the property that αij(λ
′
c) = αij(λc) + sk,

1 ≤ j ≤ k, the inequality ‖λ′c − sk − λc‖ ≤ δk holds.

If a point λc satisfying Condition B is found then the L-tuple is assigned to it and removed

from the list T . Otherwise the L-tuple is simply removed from the list T without being assigned.

When all central lattice points from the set Vs/L(λs/L), for some λs/L, are assigned, all L-tuples

in T (λs/L) ∩ T are removed from T . Finally, the algorithm stops when T becomes empty.

We point out that when δk =∞ for all k, 2 ≤ k ≤ L− 1, the algorithm produces an IA as in
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[6].
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Fig. 1: Performance of the proposed heuristic IA and the comparison with the UEP scheme.

IV. EXPERIMENTAL RESULTS

In this section, we assess empirically the performance of the proposed IA algorithm for L = 3

and L = 4. In both cases n = 2 and the central lattice Λc is the hexagonal lattice A2, i.e., the

lattice generated by the vectors (1, 0) and (−1/2,
√

3/2). Thus, νc =
√

3
2

. The side lattice Λs is

a clean sublattice of Λc.
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Fig. 2: Three description IA for the A2 lattice with N = 31. In (2a) the small hexagons are the

Voronoi regions of the central lattice and the big hexagon is the Voronoi region Vs(0). Each

lower case letter labels a sublattice point, with ”a” labelling 0. The sublattice points and their

corresponding labels are shown in (2b).

For L = 3 we consider the following values for the index N , N = 31, 73, 133, 307. We use

various values for the parameter δ2, starting at 0. The step size used to increment δ2 depends

on the particular value of N . For each N , once δ2 reaches a particular value no change in

performance is observed by further increasing δ2.

Fig. 1 plots the value of −10 log10D3,1 versus −10 log10D3,2 for each N , and various values

of δ2. The distortions are computed using relation (2), which holds if R is sufficiently large. For

this, in view of (3), we assume that h(f) is sufficiently large.

As δ2 decreases towards 0, the value of D3,2 decreases towards Dc, while the value of D3,1

increases. The leftmost point in each plot (corresponding to the smallest D3,1 and the largest

D3,2) is achieved for the largest δ2. Its corresponding pair of distortions (D3,2, D3,1) is the same

as in [6]. As we see in the figure, the proposed MDLVQ achieves the desired tradeoffs between

D3,1 and D3,2.
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In Fig. 1 we have included for comparison the plots of the distortion pairs (in dB) obtained

using the UEP scheme for a Gaussian source, with the same description rate R and the same

value of D3,3 as the proposed scheme. We assume that the variance of the Gaussian source is

large enough so that R is sufficiently large.

Recall that the UEP scheme [14], [15] uses a successively refinable source code (SRC)

along with unequal erasure protection to obtain the descriptions. To generate L descriptions

the bitstream output by the SRC is divided into L consecutive segments called layers. Let Rk

denote the rate of the prefix formed out of the first k layers, 1 ≤ k ≤ L. The distortion achieved

when k descriptions are available equals the distortion obtained when the first k layers of the

SRC are decoded, denoted by Do(Rk). Additionally, the description rate RUEP satisfies the

following relation

RUEP =
L−1∑
i=1

Ri

i(i+ 1)
+
RL

L
. (14)

We consider two different situations for the UEP scheme, labelled in Fig. 1 as n = 2, respectively

n =∞. The label n =∞ corresponds to the case when the vector dimension used in the SRC

approaches ∞. Then one has

Do,n=∞(Rk) =
1

2πe
22(h(f)−Rk). (15)

Based on equations (14) and (15) and letting RUEP be equal to R from (3) and Do,n=∞(R3) =

Dc = G(A2)νc, one obtains that the pairs (D3,1, D3,2) corresponding the UEP with n = ∞

satisfy the relation

1

12
log2

(
D3

3,1D3,2

)
= −1

6
log2 (G(A2)νc) +

1

2
log2

Nνc
2πe

,

which is the basis of the plots for UEP with n =∞ in Fig. 1.

On the other hand, the label n = 2 corresponds to the case when the vector dimension

used in the SRC is 2. More specifically, we assume that the SRC consists of a sequence of

three embedded quantizers, where each quantizers has a scaled version of the A2 lattice as the

codebook. Then, under the high resolution assumption, one obtains that

Do,n=2(Rk) = G(A2)22(h(f)−Rk), (16)

for 1 ≤ k ≤ L, as R1 → ∞ and Rk − Rk−1 → ∞ for 1 < k ≤ L. Further, it follows that the

pairs (D3,1, D3,2) corresponding to UEP with n = 2 and the same description rate R and value
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TABLE I: L = 4, N = 31
δ2 δ3 D4,1 D4,2 D4,3 ∆R
0 0 31.45 0.07 0.07 0.27
1 0 24.08 0.10 0.07 0.32
2 0 21.33 0.22 0.07 0.27
3 0 13.45 0.67 0.07 0.30
5 0 8.08 1.69 0.07 0.38
∞ 0 6.83 1.92 0.07 0.42
4 0 10.58 1.07 0.07 0.33
4 1 7.58 1.09 0.10 0.43
4 2 5.58 0.96 0.29 0.49
4 3 4.58 1.06 0.33 0.54
5 0 8.08 1.69 0.07 0.38
5 1 5.70 1.38 0.10 0.50
5 2 4.70 1.14 0.34 0.52
5 3 3.83 1.10 0.40 0.59
5 4 3.58 1.10 0.40 0.62
6 0 6.83 1.82 0.07 0.43
6 1 5.58 1.58 0.10 0.50
6 2 4.58 1.23 0.34 0.52
6 3 3.83 1.10 0.41 0.59
6 4 3.58 1.09 0.41 0.62

TABLE II: L = 4, N = 73
δ2 δ3 D4,1 D4,2 D4,3 ∆R
0 0 163.07 0.07 0.07 0.3
4 0 91.07 0.74 0.07 0.22
6 0 55.82 2.11 0.07 0.27
8 0 31.32 4.78 0.07 0.38
∞ 0 21.57 6.69 0.07 0.47
4 3 57.82 0.85 0.28 0.28
6 3 32.57 2.03 0.47 0.35
7 3 19.20 2.92 0.59 0.49
8 3 15.07 3.55 0.68 0.54
∞ 3 13.20 3.80 0.73 0.58
6 0 55.82 2.11 0.07 0.27
6 1 50.95 2.01 0.09 0.29
6 2 45.70 2.10 0.13 0.31
6 3 32.57 2.03 0.47 0.35
6 4 32.32 2.09 0.55 0.34
8 0 31.32 4.78 0.07 0.38
8 2 19.45 4.07 0.25 0.49
8 3 15.07 3.55 0.68 0.54
8 4 12.70 3.44 0.97 0.59
8 5 10.95 3.42 1.14 0.63

TABLE III: L = 4, N = 133
δ2 δ3 D4,1 D4,2 D4,3 ∆R
0 0 636.46 0.07 0.07 0.23
4 0 334.08 0.64 0.07 0.20
8 0 185.71 3.78 0.07 0.20
12 0 101.08 10.04 0.07 0.30
∞ 0 49.83 16.09 0.07 0.50
4 4 257.83 0.84 0.33 0.17
8 4 108.83 3.77 0.66 0.26
10 4 75.08 5.86 0.71 0.33
12 4 42.96 8.43 0.97 0.47
∞ 4 31.33 9.76 1.17 0.56
10 0 151.58 6.79 0.07 0.20
10 2 114.58 6.44 0.14 0.27
10 4 75.08 5.86 0.71 0.33
10 6 52.08 6.09 1.39 0.42
10 8 41.70 6.69 1.93 0.47
12 0 101.08 10.04 0.07 0.30
12 2 74.33 9.94 0.18 0.36
12 4 42.96 8.43 0.97 0.47
12 6 26.83 7.29 2.02 0.62
12 8 23.46 7.41 2.53 0.65

of D3,3 as the proposed scheme, satisfy the relation

1

12
log2

(
D3

3,1D3,2

)
= −1

6
log2 (G(A2)νc) +

1

2
log2 (G(A2)Nνc) .

The results in Fig. 1 demonstrate that the proposed MDLVQ with the heuristic IA not only

significantly outperforms the UEP with the same vector dimension, but it is also better in almost

all cases than the UEP with n =∞.

We point out that we did not compare directly the heuristic IA with the IA of [7], but we

can draw some conclusions regarding the comparison based on the results reported in [7]. As

the authors of [7] show their IA slightly outperforms the IA of [6]. Therefore, we expect that

by applying the algorithm of [7] to obtain a distortion pair slightly better than the pair in Fig. 1

corresponding to the largest δ2. On the other hand, the IA of [7] still produces only one distortion

pair, thus not being able to achieve tradeoffs between D3,1 and D3,2.

Fig. 2a illustrates the IA obtained with the proposed heuristic algorithm for the case when

n = 2, L = 3, Λc = A2 and N = 31. The small hexagons in the figure represent the Voronoi

regions of the central lattice, while the large hexagon is Vs(0). The figure shows the IA for the

central lattice points in the set C. Fig. 2b shows the side lattice points and their labels, with ”a”

labelling the point 0.

November 4, 2014 DRAFT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2014.2367014

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



15

The results for L = 4 are presented in Tables I-III for N = 31, 73, 133. From the simulation

results, we see that by varying δ2 and δ3 we achieve tradeoffs between D4,1, D4,2 and D4,3.

The tables also contain the value of ∆R, which is the additional description rate needed by the

UEP scheme with n = 2, in order to achieve the same distortion quadruple (D4,k)1≤k≤4 as the

proposed scheme. According to (14), (16), (3) and equation D4,4 = G(A2)νc, one obtains that

∆R =
1

2
log2N +

3

8
log2 (G(A2)νc)−

1

24
log2

(
D6

4,1D
2
4,2D4,3

)
.

The results illustrated in Tables I-III demonstrate that the proposed MDLVQ is far superior to

the UEP with the same vector dimension. Furthermore, the difference between the description

rate needed by the UEP with n = ∞, and the rate of the proposed scheme with n = 2, can

be computed by subtracting the value 1
2

log2 (G(A2)2πe) ≈ 0.2251 from ∆R. Thus, we see that

in most of the cases the proposed MDLVQ remains superior to the UEP even when the vector

dimension of the latter approaches ∞.

V. STRUCTURED INDEX ASSIGNMENT FOR L = 3

The IA proposed in Section III lacks structure and therefore it is difficult to analyze theo-

retically. In this section we propose a structured IA for a flexible MDLVQ in the case L = 3

and derive its asymptotical performance. For this we assume that N → ∞. In view of relation

(8), the above condition is equivalent to αR→∞, which implies that R→∞. Notice that for

αR→∞ to hold, α does not need to be fixed, but it can vary in the interval (0, 1] as R varies.

We point out that the condition N →∞ is ubiquitous in all prior work on MDLVQ that derives

its analytical performance.

We first develop an IA ensuring D3,2 = Dc and then proceed to the case D3,2 > Dc.

A. Case D3,2 = Dc

Consider the set A0 consisting of the N side lattice points that are closest to 0. Further, let T0

denote the set of triples (λ,0,−λ) with λ ∈ A0. The central lattice points in Vs(0) are assigned

to the triples in T0 in a one-to-one manner. Further, the IA is extended via shifting to all points

in Λc. Thus, the central lattice points in Vs(v), for v ∈ Λs are assigned triples of the form

(λ+ v, v,−λ+ v). It is easy to see that any two components of any assigned triple (λ1, λ2, λ3)
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uniquely identify the corresponding central lattice point λc = α−1(λ1, λ2, λ3). Therefore, one

has

D3,2 = Dc ≈ G(Λc)ν
2
n
c .

In order to proceed with the derivation of D3,1 we need the following result, which follows from

[1].

Lemma 1: Let Λ′ be a lattice in Rn with ν ′ denoting the volume of its fundamental region,

and let N0 be a positive integer. Denote by S(N0,Λ
′) the sum of the squared distances to 0

of the N0 lattice points that are closest to 0. Additionally, let r(N0,Λ
′) denote the radius of

the smallest sphere centered in 0, whose convex closure1 contains the N0 lattice points that are

closest to 0. Then one has

S(N0,Λ
′) = N0 (N0ν

′)
2
n nG(Sn)(1 + o(1)),

r(N0,Λ
′) = (N0ν

′)
1
n

√
(n+ 2)G(Sn)(1 + o(1)),

as2 N0 →∞.

Relation (13) implies that

D3,1 ≈ Dc +
1

nN

∑
λc∈Vs(0)

‖λc‖2 +
2

3nN

∑
λ∈A0

‖λ‖2. (17)

We will first prove that

Dc +
1

nN

∑
λc∈Vs(0)

‖λc‖2 ≈ G(Λs)(Nνc)
2
n . (18)

Let Ds denote the distortion of a quantizer having Λs as a codebook. Then, according to [23],

as νs approaches 0 one has

Ds ≈

∫
Vs(0)
‖x‖2dx

nNνc
= G(Λs)(Nνc)

2
n .

The above relation together with the fact that λc approximates the centroid of Vc(λc) further

imply that

Ds ≈
∑

λc∈Vs(0)

∫
Vc(λc)

‖x− λc + λc‖2dx

nNνc

≈
N
∫
Vc(0)
‖x‖2dx

nNνc
+

∑
λc∈Vs(0) ‖λc‖2

nN
,

1We point out that the convex closure of a sphere equals the union between the sphere and its interior.
2For an arbitrary function f(n), relation f(n) = o(1) holds as n→∞ if and only if limn→∞ f(n) = 0.
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which proves (18) since [23]

Dc ≈

∫
Vc(0)
‖x‖2dx

nνc
.

Further, notice that
∑
λ∈A0

‖λ‖2 = S(N,Λs), and based on Lemma 1 and equations (17), (18),

one obtains the following

D3,1 ≈ G(Λs)(Nνc)
2
n +

2

3
G (Sn)N

2
n (Nνc)

2
n

≈ 2

3
G (Sn)N

2
n (Nνc)

2
n , (19)

where the last relation is obtained by keeping only the dominant term as N →∞.

Let us now express the distortions in terms of the rate R. Let us first verify if condition (9) is

satisfied. Clearly, for λs ∈ Λs, the set α−1
i (λs) is most spread out if i = 1 or i = 3. It is sufficient

to analyze the case i = 3. It can be easily seen that the set α−1
3 (λs) contains a central lattice

point from each Voronoi region Vs(v), with v ∈ λs +A0, where λs +A0 , {λs + λ : λ ∈ A0}.

Then we may approximate the volume of the convex closure of ∪λc∈α−1
i (λs)

Vc(λc) by the volume

of the set ∪v∈λs+A0Vs(v), which equals Nνs. Then the value of γ in Remark 1 is γ = 1, and

relation (9) is equivalent to

R(1− 2α)→∞. (20)

Note that both conditions αR→∞ and (20) are satisfied if α remains in some compact interval

I ⊂ (0, 1/2), while R → ∞. Additionally, note that (20) implies that α < 1
2
, which is not a

restriction, but rather a natural condition for the requirement D3,2 = Dc to hold since 2R cannot

be smaller than Rc.

Using further relations (7), (8), (10) and (19) it follows that the following hold

D3,1 ≈
2

3
G (Sn) 22(h(f)−R(1−2α)), (21)

D3,2 = D3,3 ≈ G(Λc)2
2(h(f)−R(1+2α)), (22)

for 0 < α < 1
2

and R→∞ such that αR→∞ and R(1− 2α)→∞.

B. Case D3,2 > Dc

Let µ > 0 and let U denote the set of side lattice points in the convex closure of the n

dimensional sphere of radius µ, centered at 0. Let A denote the set of the closest d N|U|e side

lattice points to 0. Assume that 1 < |U| <
√
N . Then we can write |U| = N

β
2 for some
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β ∈ (0, 1). We require that |U| → ∞, which is equivalent to the condition that αβR→∞, and

which also implies that N →∞. Notice that for αβR→∞ to hold, α and β do not have to be

fixed. They may vary as R varies. Additionally, note that, as |U| → ∞, one has |A||U| ≈ N .

Therefore, we will assume that |A| = N1−β
2 .

Consider now a mapping ϕ : U → Λs which assigns to each u ∈ U a side lattice point denoted

by ϕ(u) such that u
6
∈ Vs(−ϕ(u)), or, in other words, u

6
+ ϕ(u) ∈ Vs(0). Define the set

T (0)
∆
= {(λ+ ϕ (u) , ϕ (u) ,−λ+ u+ ϕ (u)) : λ ∈ A, u ∈ U}.

It can be easily verified that for any two distinct ordered pairs (λ, u), (λ′, u′) ∈ Λ2
s, one has

(λ+ ϕ (u) , ϕ (u) ,−λ+ u+ ϕ (u)) 6=

(λ′ + ϕ (u′) , ϕ (u′) ,−λ′ + u′ + ϕ (u′)).

It follows that |T (0)| = |A||U| = N . Then the central lattice points in Vs(0) are assigned triples

from the set T (0). To perform the assignment the set Vs(0) ∩ Λc is first partitioned into |U|

subsets Lu, u ∈ U , such that b N|U|c ≤ |Lu| ≤ d
N
|U|e and Lu contains at most one point λc for

which −λc is not in Lu. A moment of thought reveals that such a partition is possible since

Vs(0) ∩ Λc is symmetric with respect to 0. The latter condition ensures that∥∥∥∥∥ ∑
λc∈Lu

λc

∥∥∥∥∥ ≤ `, (23)

as N →∞, for each u ∈ U , where ` is the covering radius of Λs, i.e., ` = max{‖x‖ : x ∈ Vs(0)}.

Finally, for each u ∈ U the central lattice points in each Lu are assigned triples of the form

(λ+ϕ (u) , ϕ (u) ,−λ+u+ϕ (u)), where λ ∈ A. Further, the IA is extended to Λc using shifting.

It can be easily verified that the IA mapping obtained this way is injective.

Let us now derive D3,2. To simplify the analysis we assume the following suboptimal decoding

method. For every (λ1, λ2, λ3) ∈ Λ3
s, let η(λ1, λ2, ∗) , λ2, η(∗, λ2, λ3) , λ2 and η(λ1, ∗, λ3) ,

λ1+λ3
2

, where η denotes the decoding mapping. It is easy to see that this decoder is shift invariant.

Then, according to (2), the following holds

D3,2 ≈ Dc +
1

3nN

∑
λc∈Vs(0)

(
‖λc − η110(λc)‖2 + ‖λc − η011(λc)‖2 + ‖λc − η101(λc)‖2

)
. (24)

To proceed with the derivation we need the following lemma, which is proved in the appendix.
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Lemma 2: Let y,yi ∈ Rn for 1 ≤ i ≤ m. Let ȳ ,
∑m
i=1 yi
m

. Then the following relation holds
m∑
i=1

‖y − yi‖2 = m‖y − ȳ‖2 +
m∑
i=1

‖ȳ − yi‖2.

Recall that for λc ∈ Lu, one has α(λc) = (λ+ϕ (u) , ϕ (u) ,−λ+u+ϕ (u)), for some λ ∈ A.

Then η110(λc) = η011(λc) = ϕ (u) and η101(λc) = u
2

+ ϕ (u). It follows that

η110(λc) + η011(λc) + η101(λc)

3
=
u

6
+ ϕ(u).

Relation (24) and Lemma 2 imply that

D3,2 ≈ Dc +

1

3nN

∑
u∈U

∑
λc∈Lu

(
3
∥∥∥λc − (u

6
+ ϕ (u)

)∥∥∥2

+
1

6
‖u‖2

)
=

Dc +
1

3nN

∑
u∈U

∑
λc∈Lu

(
3‖λc‖2+3

∥∥∥u
6

+ϕ (u)
∥∥∥2

−

6
〈
λc,

u

6
+ϕ (u)

〉
+

1

6
‖u‖2

)
=

Dc +
1

nN

∑
λc∈Vs(0)

‖λc‖2 +
1

18nN

∑
u∈U

∑
λc∈Lu

‖u‖2 +

1

nN

∑
u∈U

∑
λc∈Lu

∥∥∥u
6

+ ϕ(u)
∥∥∥2

−

2

nN

∑
u∈U

〈∑
λc∈Lu

λc,
u

6
+ ϕ(u)

〉
. (25)

To rewrite the third term in the last relation in (25) we use Lemma 1 and obtain that

1
18nN

∑
u∈U

∑
λc∈Lu

‖u‖2 = 1
18nN

|A|S (|U| ,Λs) ≈

1
18
G(Sn) (Nνc)

2
n |U| 2n = 1

18
G(Sn) (Nνc)

2
n N

β
n . (26)

Plugging (18) and (26) in (25) leads to

D3,2 ≈ G(Λs) (Nνc)
2
n +

1

18
G(Sn) (Nνc)

2
n N

β
n + T, (27)

where

T ,
1

nN

∑
u∈U

∑
λc∈Lu

∥∥∥u
6

+ ϕ(u)
∥∥∥2

−

2

nN

∑
u∈U

〈∑
λc∈Lu

λc,
u

6
+ ϕ(u)

〉
.
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Next we will show that the second term dominates in (27) when |U| → ∞. For this we will

derive an upper bound for T . Recall that u
6

+ ϕ (u) ∈ Vs(0). Therefore, one has∥∥∥u
6

+ ϕ (u)
∥∥∥ ≤ `. (28)

Further, using the Cauchy-Schwarz inequality along with (23) and (28) one obtains∣∣∣∣∣
〈 ∑
λc∈Lu

λc,
u

6
+ ϕ (u)

〉∣∣∣∣∣ ≤
∥∥∥∥∥ ∑
λc∈Lu

λc

∥∥∥∥∥∥∥∥u6 + ϕ(u)
∥∥∥ ≤ `2. (29)

Relations (28) and (29) imply that

T ≤ |U||A|
nN

`2 + 2
|U|
nN

`2 ≈ `2

n

(
1 +

2

N1−β
2

)
= k(Λs) (Nνc)

2
n

(
1 +

2

N1−β
2

)
, (30)

where

k(Λs) ,
`2

nν
2
n
s

(31)

is a constant that does not change as N increases (it does not change if Λs is scaled). Finally,

using (30) we conclude that the second term in (27) is dominant as |U| → ∞, therefore one

obtains

D3,2 ≈
1

18
G(Sn) (Nνc)

2
n N

β
n . (32)

Let us now evaluate D3,1. According to (13) one has

D3,1 ≈ Dc +
1

nN

∑
λc∈Vs(0)

‖λc − µs (λc)‖2 +
1

3nN

∑
λc∈Vs(0)

3∑
j=1

‖αj (λc)− µs (λc)‖2. (33)

We will first evaluate the last summation in (33). Note that for λc ∈ Lu, one has

µs(λc) =
u

3
+ ϕ(u).
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Then the following equalities hold

1

3nN

∑
λc∈Vs(0)

3∑
j=1

‖αj(λc)− µs (λc)‖2 =

1

3nN

∑
u∈U

∑
λ∈A

(∥∥∥λ− u

3

∥∥∥2

+
∥∥∥u

3

∥∥∥2

+

∥∥∥∥λ− 2u

3

∥∥∥∥2
)

=

1

3nN

∑
u∈U

∑
λ∈A

(
2‖λ‖2 +

2

3
‖u‖2 − 2〈λ, u〉

)
=

1

3nN

(
2|U|

∑
λ∈A

‖λ‖2 +
2

3
|A|
∑
u∈U

‖u‖2

)
=

1

3nN

(
2|U|S(|A|,Λs) +

2

3
|A|S(|U|,Λs)

)
=

G(Sn)(Nνc)
2
n

(2

3
|A|

2
n +

2

9
|U|

2
n

)
=

G(Sn)(Nνc)
2
n

(2

3
N

2
n

(1−β
2

) +
2

9
N

β
n

)
, (34)

where the second last equality follows from Lemma 1, while the third last equality relies on the

fact that
∑
u∈U

∑
λ∈A
〈λ, u〉 =

∑
λ∈A
〈λ,
∑
u∈U

u〉 = 0 because U is symmetric with respect to the origin.

For the remaining portion of (33) we will derive an upper bound as follows.

Dc +
1

nN

∑
λc∈Vs(0)

‖λc − µs (λc)‖2 =

Dc +
1

nN

∑
u∈U

∑
λc∈Lu

∥∥∥λc − (u
3

+ ϕ (u)
)∥∥∥2

=

Dc +
1

nN

∑
u∈U

∑
λc∈Lu

(
‖λc‖2 +

∥∥∥u
3

+ ϕ (u)
∥∥∥2

−〈
λc,

u

3
+ ϕ (u)

〉)
≤

Dc +
1

nN

( ∑
λc∈Vs(0)

‖λc‖2 + |A|
∑
u∈U

∥∥∥u
3

+ ϕ (u)
∥∥∥2

+

2
∑
u∈U

∣∣∣∣∣
〈 ∑
λc∈Lu

λc,
u

3
+ ϕ (u)

〉∣∣∣∣∣
)

(35)

Using the inequality ‖y1 + y2‖2 ≤ 2 (‖y1‖2 + ‖y2‖2) and (28) one gets∥∥∥u
3

+ ϕ (u)
∥∥∥2

=
∥∥∥u

6
+
(u

6
+ ϕ (u)

)∥∥∥2

≤ 2
∥∥∥u

6

∥∥∥2

+ 2
∥∥∥u

6
+ ϕ (u)

∥∥∥2

≤ 2

(∥∥∥u
6

∥∥∥2

+ `2

)
. (36)
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Applying further (23), (36) and the inequality 2|〈y1,y2〉| ≤ ‖y1‖2 +‖y2‖2, for y1,y2 ∈ Rn, one

obtains that

2

∣∣∣∣∣
〈 ∑
λc∈Lu

λc,
u

3
+ ϕ (u)

〉∣∣∣∣∣ ≤
∥∥∥∥∥ ∑
λc∈Lu

λc

∥∥∥∥∥
2

+
∥∥∥u

3
+ ϕ(u)

∥∥∥2

≤ 2
∥∥∥u

6

∥∥∥2

+ 3`2. (37)

Relations (35), (36) and (37) imply that

Dc +
1

nN

∑
λc∈Vs(0)

‖λc − µs (λc)‖2 ≤

Dc +
1

nN

∑
λc∈Vs(0)

‖λc‖2 +
|A|+ 1

18nN
S(|U|,Λs) +

`2

nN
(2|A||U|+ 3|U|) ≈

(Nνc)
2
n

(
G(Λs) +

G(Sn)

18
|U|

2
n +

G(Sn)

18|A|
|U|

2
n +

k(Λs)

(
2 +

3

|A|

))
≈

G(Sn)

18
(Nνc)

2
n |U|

2
n =

G(Sn)

18
(Nνc)

2
nN

β
n ,

where the third last relation follows from Lemma 1 and (31), while the second last relation is

obtained by keeping only the dominant term as |U| → ∞. Corroborating with (33) and (34)

and keeping only the dominant term in the expression of D3,1 leads to the conclusion that when

α, β ∈ (0, 1) and αβR→∞, the following holds

D3,1 ≈
2

3
G(Sn)(Nνc)

2
nN

2
n

(1−β
2

)

(
1 +

5

18
N−

2
n

(1−β)

)
. (38)

Furthermore, if we impose the additional condition that α(1−β)R→∞, so that N−
2
n

(1−β) → 0,

we obtain

D3,1 ≈
2

3
G(Sn)(Nνc)

2
nN

2
n

(1−β
2

). (39)

Let I be some compact interval included in (0, 1). Then for N sufficiently large relations (32)

and (39) hold for all β ∈ I . Interestingly, as β varies in I , the product D3,1D3,2 is constant, i.e.,

it does not depend on β, achieving

D3,1D3,2 ≈
1

27
(G(Sn))2(Nνc)

4
nN

2
n . (40)
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On the other hand, according to (12), the distortion product for the MDLVQ in [6] is

D3,1D3,2 ≈
1

27
(G(S2n))2(Nνc)

4
nN

2
n . (41)

It can be seen from (40) and (41) that the proposed IA achieves the same distortion product

D3,1D3,2 as in [6], as n goes to ∞, since limn→∞G(S2n) = limn→∞G(Sn) = 1
2πe

. However,

the MDLVQ scheme of [6] can only achieve one distortion pair (D3,1, D3,2) with the ratio

D3,1/D3,2 = 4, while the proposed scheme can achieve a wide range of pairs (D3,1, D3,2) with

ratios D3,1/D3,2 = 12N
2
n

(1−β), for all β ∈ I .

Let us now express the distortions in terms of the rate R. First let us see when (9) is satisfied.

For this we need to determine the value of γ from Remark 1. It is easy to see that for fixed

λs ∈ Λ, the set α−1
i (λs) is most spread out for i = 3. Notice that the set α−1

3 (λs) contains central

lattice points from each set Vs(v), with v = λs + λ − u − ϕ(u), for some λ ∈ A and u ∈ U .

Recall that u
6

+ ϕ(u) ∈ Vs(0). It follows that, as N →∞, one has α−1
3 (λs) ⊂ ∪v∈λs+A−UVs(v),

where A − U , {λ − u : λ ∈ A, u ∈ U}. Notice that the set ∪v∈λs+A−UVs(v) is included in a

sphere of radius

r = r(|A|,Λs) + r(|U|,Λs) + `.

Using further Lemma 1 and (31), the volume of the n-dimensional sphere of radius r given

above becomes

vol =

(
r√

(n+ 2)G(Sn)

)n

≈

νs

(
N

1
n

(1−β
2

) +N
1
n
β
2 +

√
nk(Λs)

(n+ 2)G(Sn)

)n

=

νsN
1−β

2

(
1 +N

1−β
n +

√
nk(Λs)

(n+ 2)G(Sn)
N−

1
n

(1−β
2

)

)n

.

When α(1 − β)R → ∞ one has vol ≈ νsN
1−β

2 . According to the above considerations, the

volume of the convex closure of ∪λc∈α−1
3 (λs)

Vc(λc) is smaller than or equal to vol. Then the

value of γ in Remark 1 satisfies γ ≤ 1− β
2
, and a sufficient condition for relation (9) to hold is

R (1− α(2− β))→∞. (42)

By replacing Nνc, respectively N , from (7), respectively (8), in (39) and in (32) one obtains

that, for 0 < β < 1, 0 < α < 1
2−β , and R such that relations αβR→∞, α(1− β)R→∞ and
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(42) hold, the following are satisfied

D3,1 ≈
2

3
G(Sn)22(h(f)−R(1−2α(1−β

2 ))), (43)

D3,2 ≈
1

18
G(Sn)22(h(f)−R(1−αβ)). (44)

C. Comparison with UEP

In this subsection we compare the performance of the proposed structured IA with the UEP

scheme for a Gaussian source. In both cases we assume that the block dimension of the source

code approaches ∞. Let us denote by RUEP the description rate needed by the UEP scheme to

achieve the same distortion values as the proposed MDLVQ with the structured IA, i.e., such

that Do(Rk) = D3,k for 1 ≤ k ≤ 3. Then

Rk = h(f)− 1

2
log2(2πeD3,k), 1 ≤ k ≤ 3,

and

RUEP =
R1

2
+
R2

6
+
R3

3
= h(f)− 1

2
log2(2πe)− 1

12
log2(D3

3,1D3,2D
2
3,3). (45)

Consider first the IA introduced in subsection V-A. According to [24] there is a sequence of

lattices Λn ⊂ Rn such that limn→∞G(Λn) = 1
2πe

. Then applying this result in (21), (22), one

obtains that, for n→∞,

D3,1 ≈
2

3

1

2πe
22(h(f)−R(1−2α)),

D3,2 = D3,3 ≈
1

2πe
22(h(f)−R(1+2α)).

Applying further (45), leads to

RUEP = R +
1

4
log2

3

2
≈ R + 0.1462,

results which demonstrates that the proposed MDLVQ with the structured IA for the case D3,2 =

Dc is strictly better than the UEP scheme.

Consider now the IA in subsection V-B. Recall that under the conditions 0 < β < 1, 0 < α <

1
2−β , and R → ∞ such that αβR → ∞, α(1 − β)R → ∞, (1− α(2− β))R → ∞, relations

(43), (44) and (10) hold. Further, by letting n→∞ and using (45) one obtains that

RUEP = R−Rα(1− β)

3
+

1

12
log2

35

4
≈ R−Rα(1− β)

3
+ 0.4937. (46)
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Clearly, as α(1 − β)R → ∞, one has RUEP < R, which means that the UEP performance is

better. On the other hand, relation (46) suggests that the proposed scheme may outperform UEP if

Rα(1−β)
3

< 0.4937. However, the latter relation contradicts the requirement that α(1−β)R→∞.

Therefore, let us turn our attention to the performance analysis in the case when α(1 − β)R

equals some constant value c while αβR→∞ and (42) hold. Under these conditions equations

(44) and (10) still hold, while (38) implies that

D3,1 ≈
2

3

(
1 +

5

18
2−4c

)
G(Sn)22(h(f)−R(1−2α(1−β

2 ))). (47)

By letting n→∞ it further follows that

RUEP −R ≈ 0.4937− c

3
− 1

4
log2

(
1 +

5

18
2−4c

)
. (48)

The value of RUEP − R in (48) is positive for c ∈ (0, 1.45), reaching values up to 0.4. We

conclude that the structured IA proposed in subsection V-B outperforms the UEP scheme when

αR →∞, (1− α)R →∞ and β → 1, while α(1− β)R = c ∈ (0, 1.45]. Notice that condition

(1−α)R→∞ is needed in order for (42) to hold. Additionally, notice that the above conditions

are satisfied, for instance, when α is fixed in (0, 1), R→∞ and β = 1− c
R

.

VI. CONCLUSION

In the previous work on multiple description lattice vector quantizers (MDLVQ) for L ≥ 3

descriptions, once the central and side lattice are fixed, it is not possible to adjust the decoding

quality when the number of received descriptions is higher than 1, but lower than L. This work

proposes a flexible MDLVQ that overcomes the aforementioned shortcoming. For this a different

reconstruction method is adopted and a heuristic index assignment algorithm is developed, which

uses L− 2 parameters to control the distortions when k descriptions are received, for 2 ≤ k ≤

L−1. Extensive simulations show that the proposed technique achieves the desired tradeoffs and,

additionally, is significantly superior to the MD scheme based on unequal erasure protection.

Furthermore, a structured index assignment, amenable to theoretical analysis, is proposed for

the case L = 3. By deriving the asymptotical expressions of the distortions at high resolution,

we show that a wide range of values can be achieved for the distortions when k = 1 and k = 2.

Notably, the product of distortions for k = 1, 2 is the same as in the previous work. Future

research efforts will be directed to further improving the performance of the flexible MDLVQ

and designing structured index assignments for general values of L.
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APPENDIX A

PROOF OF LEMMA 2

The following sequence of relations hold
m∑
i=1

‖y − yi‖2 =

m∑
i=1

‖y − ȳ + ȳ − yi‖2 =

m∑
i=1

‖y − ȳ‖2 +
m∑
i=1

‖ȳ − yi‖2 + 2
m∑
i=1

〈y − ȳ, ȳ − yi〉 =

m‖y − ȳ‖2 +
m∑
i=1

‖ȳ − yi‖2 + 2

〈
y − ȳ,mȳ −

m∑
i=1

yi

〉
.

The definition of ȳ implies that the last term in the above expression is 0. Thus, the conclusion

of Lemma 2 follows.
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