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Abstract—The general approach in noisy channel scalar quan-
tizer design is an iterative descent algorithm which guarantees
only a locally optimal solution. While sufficient conditions under
which the local optimum becomes a global optimum are known
in the noiseless channel case, such sufficient conditions were not
derived for the noisy counterpart. Moreover, efficient globally
optimal design techniques for general discrete distributions in
the noiseless case exist, however they seem not to extend to the
noisy scenario when a fixed index assignment is assumed.

Recently, the design of noisy channel scalar quantizer with
random index assignment (RIA) was proposed using a locally
optimal iterative algorithm. In this work we derive sufficient
conditions for the uniqueness of a local optimum, which thus
guarantee the global optimality of the solution. These sufficient
conditions are satisfied for a log-concave probability density
function which is, additionally, symmetric around its mean.
Furthermore, we show that, assuming an RIA, the globally
optimal design for general discrete sources can also be carried
out efficiently.

Index Terms—Noisy channel quantizer, random index assign-
ment, uniqueness of a local optimum, Monge property.

I. INTRODUCTION

A large body of literature was dedicated to the optimal
design of noisy channel quantizers [1]–[7]. Joint source-
channel design of multiresolution quantizer for the broadcast
channel with hierarchical modulation was also addressed [8].
The design approach taken in most of the aforementioned work
is an iterative procedure, which optimizes the encoder and
decoder, in turn, while keeping the other component fixed.
Such an approach is a generalization of Lloyd’s algorithm for
noiseless scalar quantizer design [9], [10], and it ensures only
a locally optimal solution in general. Neither globally optimal
algorithms, nor sufficient conditions for the locally optimal
solutions to be globally optimal, are known.

Sufficient conditions for the uniqueness of a locally optimal
solution were found in the case of noiseless channel scalar
quantizer [11]–[15]. These conditions were shown to hold
for any log-concave probability density function (pdf) and
a wide class of distortion functions, including the convex
increasing error functions. Additionally, it was shown in [16]
that Trushkin’s sufficient conditions also ensure the uniqueness
of a local optimum in the case of multiple description and
multiresolution scalar quantizers with convex cells, for convex
increasing error functions.
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On the other hand, efficient globally optimal design algo-
rithms have also been developed for general discrete distribu-
tions for noiseless channel scalar quantizers [17]–[22], mul-
tiresolution and multiple descriptions scalar quantizers with
convex cells [23]–[27]. The main idea of the globally optimal
approach for noiseless channel (fixed rate) scalar quantizer
design can be described as follows. The reconstruction value
for each quantizer bin (or cell) can be separately optimized
and upon doing so, the cost function becomes the sum of
the costs of individual cells. Further, the fact that each bin
is a contiguous subset of the discrete source alphabet (i.e.
the intersection between the alphabet and an interval of the
real line) allows for the modeling of the quantizer as a path
in a weighted directed acyclic graph (WDAG), where each
edge corresponds to a cell. The weight of the path equals the
value of the objective function. Thus, the optimization problem
becomes a minimum weight path problem constrained on the
number of edges, which is solvable via dynamic programming.
While the works [17]–[20] do not explicitly use the graph
and path terminology, they all essentially subscribe to the
above framework. Additionally, it is proved in [19], [20] that
the cost function satisfies a nice monotonicity property for a
wide class of distortion measures, including the squared error
distortion. This property is exploited to substantially accelerate
the dynamic programming solution from O(KN2) to O(KN)
running time, where N is the size of the source alphabet and
K is the number of quantizer bins. Further improvements
in speed are achieved in [21], [22]. On the other hand, the
modeling of the optimization problem for various types of
network scalar quantizers [23]–[27] is more sophisticated due
to the increased complexity of the quantizers, but stems from
the same basic ideas, i.e., using dynamic programming and/or
graph/path modeling.

Unfortunately, similar ideas seem not to extend to the
optimal design of noisy channel scalar quantizers. The main
deterrent is the fact that in the latter case the form of the
objective function, which is the expected distortion given a
particular index assignment, does not allow for the reconstruc-
tion value of each cell to be optimized independently of other
cells.

Recently, Yu et al. [28] proposed the joint source-channel
design of scalar and vector quantizers under the squared error
distortion, assuming a random index assignment (RIA). In
their framework the objective function is the average end to
end distortion over all possible index assignments assuming
that all index assignments are equally likely. The authors
of [28] evaluate the closed form of the above mentioned
cost function and propose an iterative generalized Lloyd-type
algorithm, which can ensure only a locally optimal solution
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in general. Because of the assumption of RIA their design
algorithm does not need complete knowledge of the chan-
nel and has smaller computational complexity than previous
designs. Additionally, the simulation results reported in [28]
show that the proposed method is more robust to the variability
in average error probability of the channel than the previous
approach which assumes a fixed index assignment. Further,
the RIA framework is extended in [29], [30] to the design
of multiresolution quantizers for the broadcast channel with
hierarchical modulation. Similarly, the proposed algorithm
cannot guarantee the globally optimal solution in general.

In this work we address the design of optimal noisy channel
scalar quantizer with squared error distortion and RIA. We first
establish the existence of an optimal solution, which was not
proved in the previous work. Next we proceed to investigating
sufficient conditions for the uniqueness of a locally optimal
solution, which would imply the global optimality of the
existing iterative design algorithm. It is worthwhile to point out
that the results on the uniqueness of the local optimum in the
case of noiseless channel [11]–[15] do not directly apply and
it is not straightforward if the same methodology would work
in the noisy channel scenario. The main difficulty in using the
techniques of the above mentioned work, is that the optimum
reconstruction value g(a, b) for a quantization interval (a, b),
does not have the same nice properties as in the noiseless
channel case. In particular, g(a, b) is not necessarily increasing
in its arguments and it is not even guaranteed to be contained
in the interval (a, b). However, we show that a locally optimal
quantizer must have the reconstruction values included in the
corresponding cells. Using this property we are able to adapt
the techniques of [13] to derive sufficient conditions for the
uniqueness of a local optimum. These sufficient conditions are
expressed in terms of the partial derivatives of the function g
and we show that they are satisfied if the pdf is log-concave
and, additionally, symmetric around its mean.

Furthermore, we present a globally optimal design algorithm
for general discrete sources. Specifically, we show that, assum-
ing an RIA, the general graph/path model idea can be extended
from the noiseless to the noisy channel case. Additionally,
we prove that a monotonicity property similar in spirit to the
property identified in [19], [20], holds, allowing for a speed up
of the dynamic programming algorithm, which thus achieves
O(KN) time complexity.

The paper is structured as follows. The following section
formulates the problem of optimal design of a noisy channel
K-level scalar quantizer with RIA, for sources with a con-
tinuous and positive pdf, and establishes the existence of its
solution. In Section III we first present necessary conditions
for a local optimum and then derive sufficient conditions for
the uniqueness of a local optimum. The next section proposes
an efficient globally optimal design algorithm for general dis-
crete sources. Section V presents several experimental results
to illustrate the performance of the algorithms discussed in
this work. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION FOR A CONTINUOUS SOURCE

Let X be a continuous random variable with pdf f . In this
work we assume that f satisfies the following conditions.

Condition A. There is an open interval (V,W ), −∞ ≤ V <
W ≤ ∞, such that f(x) is continuous and positive inside
this interval and f(x) = 0 outside this interval. Denote I =
[V,W ] ∩ R.
Condition B. The random variable X has a finite second
moment, i.e., ∫ W

V

x2f(x)dx < +∞.

Let ν denote the mean and σ2 the variance of the source X
and let K ≥ 2 be an integer. A K-level scalar quantizer Q
is composed of an encoding function ψQ : I → {1, · · · ,K}
and a decoding function φQ : {1, · · · ,K} → R. For each
i, 1 ≤ i ≤ K, let yi , φQ(i) and Ci , ψ−1

Q (i). The
sets Ci are referred to as quantization cells or bins. The set
of reconstruction values {y1, · · · , yK} is referred to as the
codebook.

The index i output by the encoder is further applied a
one-to-one index assignment mapping π : {1, · · · ,K} →
{1, · · · ,K}. Finally, the index s = π(i) is sent over the noisy
channel. At the other end, upon receiving index r, the decoder
first applies the inverse permutation π−1 followed by φQ, thus
outputting the value φQ(π−1(r)) as the source reconstruction.
Let p(r|s), 1 ≤ s, r ≤ K, denote the probability that
the channel outputs index r, given that s was transmitted.
Considering the squared error as a distortion measure, the
average end to end distortion (EED) D̄(Q) assuming an RIA1

is [28]

D̄(Q) =

(
1− Kperr

K − 1

)
D(Q) +

Kperr
K − 1

S(Q) +
Kperr
K − 1

σ2,

(1)

where

D(Q) ,
K∑
i=1

∫
Ci

(x− yi)2f(x)dx,

S(Q) ,
1

K

K∑
i=1

(yi − ν)2,

perr ,
1

K

K∑
s=1

K∑
r=1,r 6=s

p(r|s).

Notice that D(Q) is the distortion due to quantization and
S(Q) is the so-called scatter factor. In order to simplify (1)
let us denote

c1 , 1− Kperr
K − 1

, c2 ,
perr
K − 1

.

We will assume throughout this work that 0 < perr <
K−1
K

so that c1 > 0 and c2 > 0.
The problem of optimal design of a noisy channel K-level

scalar quantizer with RIA is formulated as [28]

min
ψQ,φQ

D̄(Q), (2)

1Note that a system with RIA needs common randomness that is shared by
the encoder and the decoder.
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for a fixed K. The authors of [28] also derive the necessary
conditions for the optimal solution to problem (2). Addition-
ally, they point out that these conditions can be obtained
from the necessary conditions for optimal standard noisy
channel quantizer derived in [2] for an average symmetric
channel given by p(r|s) = perr/(K − 1) for r 6= s, and
p(s|s) = 1−perr. Notice that the EED of (1) can be rewritten
as

D̄(Q) = c1D(Q) + c2

K∑
i=1

(yi − ν)2 +Kc2σ
2

=

K∑
i=1

(
c1

∫
Ci

(x− yi)2f(x)dx+ c2(yi − ν)2

)
+Kc2σ

2.

It can be easily seen that the optimum decoder must satisfy
the condition

yi = arg min
y∈R

(
c1

∫
Ci

(x− yi)2f(x)dx+ c2(yi − ν)2

)
,

leading to [28]

yi =
c1
∫
Ci xf(x)dx+ c2ν

c1
∫
Ci f(x)dx+ c2

,

for all 1 ≤ i ≤ K. An interesting observation is that if
cell Ci equals some arbitrary interval (a, b] then the optimal
reconstruction value is not guaranteed to be included in the
cell Ci, unlike the case of optimal noiseless quantizer.

It was observed in [28] that, for a fixed decoder, the encoder
is optimized by assigning each sample value x to the closest
reconstruction value. This can be easily verified based on the
expression of the EED since the assignment of x to some
cell only affects the quantization distortion D(Q). It follows
that we may restrict the search in problem (2) only to the
set of regular quantizers, i.e. where the cells are intervals.
The encoder of a regular K-level quantizer is specified by the
(K−1)-tuple of thresholds x = (x1, x2, · · · , xK−1), such that
V < x1 < · · · < xK−1 < W , where

Ci = (xi−1, xi], 2 ≤ i ≤ K − 1, (3)
C1 = [V, x1] ∩ R, CK = (xK−1,W ] ∩ R.

Further, for any (K − 1)-tuple x as above we denote x0 = V
and xK = W . Additionally, for every V ≤ a ≤ b ≤W let

g(a, b) ,
c1
∫ b
a
xf(x)dx+ c2ν

c1
∫ b
a
f(x)dx+ c2

. (4)

Then the optimal decoder corresponding to encoder x must
satisfy

yi = g(xi−1, xi), 1 ≤ i ≤ K. (5)

Let us denote OK , {(x1, x2, · · · , xK−1)|V < x1, xK−1 <
W,xi < xi+1, 1 ≤ i ≤ K − 2}. Further, for any x ∈ OK let
us denote by Qx the quantizer satisfying relations (3) and (5).
The above considerations imply that, in order to solve problem
(2) it is sufficient to solve the following problem

min
x∈OK

D̄(Qx). (6)

While problem (6) was considered in [28] it was not actually
proved that its solution exists. It is clear that inf

x∈OK

D̄(Qx) is

finite because D̄(Qx) ≥ 0 for every x ∈ OK , but it is not clear
whether or not this infimum is achieved for some x ∈ OK . It
is relevant to mention here the following difference between
the noiseless and the noisy channel quantizers. By splitting a
cell into two the distortion due to quantization will always
decrease2, therefore an optimal noiseless channel quantizer
may not have empty cells. On the other hand, splitting a cell
may lead to an increase of the scatter factor and ultimately to
an increase of the EED (in particular if the cell is situated far
away from ν). Therefore, it is not clear if the optimum noisy
channel scalar quantizer with at most K levels (if it exists)
will have K nonempty cells. The following lemma will help us
prove that the latter is true, and further establish the existence
of the minimum in problem (6). The lemma clarifies that there
are situations where it is possible to split a cell into two and
simultaneously lower the EED. In order to state the lemma we
need the following notation. For every V ≤ a ≤ b ≤W let

cost(a, b) = c1

∫ b

a

(t− g(a, b))2f(t)dt+ c2(g(a, b)− ν)2.

In other words, if (a, b] is a cell in quantizer Q with optimized
decoder, then cost(a, b) represents its contribution to the EED
D̄(Q). Notice that cost(a, a) = 0 for all V ≤ a ≤W .

Lemma 1. Let V ≤ a ≤ ν ≤ b ≤W , with a < b. Then there
is some x, a < x < b, such that

cost(a, x) + cost(x, b) < cost(a, b).

This lemma is proved in Appendix A. Next we prove the
main result of this section, namely, that the minimum in (6)
exists.

Theorem 1. There exists x̂ ∈ OK such that

D̄(Qx̂) = min
x∈OK

D̄(Qx).

Proof: Let us denote by ŌK the closure of OK , i.e.,
ŌK , {(x1, · · · , xK−1)|V ≤ x1 ≤ · · · ≤ xK−1 ≤ W}. To
each x ∈ ŌK \ OK we can still associate a quantizer Qx

satisfying (3) and (5). This quantizer has some of the cells
empty or consisting of one element. According to (4) and (5),
if Ci is empty or contains only one value, then yi = ν. Further,
notice that D̄(Qx) is a continuous function of x over ŌK , a
fact which will be used in the sequel.

Our proof is organized as follows. Part 1 proves that
inf

x∈ŌK

D̄(Qx) is achieved by some x̄ ∈ ŌK . Part 2 shows

that x̄ ∈ OK .
Part 1. First we show that there exist some finite values V0

and W0, V ≤ V0 < W0 ≤ W , such that for any x ∈ ŌK
with x1 < V0 or xK−1 > W0, there exists x′ ∈ ŌK with
x′1 ≥ V0 and x′K−1 ≤ W0 such that D̄(Qx′) ≤ D̄(Qx). This
fact implies that inf

x∈ŌK

D̄(Qx) = inf
x∈U

D̄(Qx), where U ,

{x ∈ ŌK |x1 ≥ V0, xK−1 ≤ W0}. Since U is a compact set
and a continuous function achieves its infimum on a compact

2Recall our assumption that the pdf is positive on (V,W ).
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set it follows that there is x̄ ∈ U such that

D̄(Qx̄) = inf
x∈ŌK

D̄(Qx). (7)

In order to prove the claim let Q∗ be an optimal K-level
noiseless channel quantizer, i.e., D(Q∗) = min

x∈OK

D(Qx)

= min
x∈ŌK

D(Qx). Let x∗ ∈ OK be the (K−1)-tuple describing

the partition of Q∗ and let y∗i , 1 ≤ i ≤ K, denote its
reconstruction values. Further, let

∆ ,

√√√√ K∑
i=1

(y∗i − ν)2.

It follows that S(Q∗) = ∆2/K. Notice that the claim we want
to prove is trivially satisfied if V and W are finite. Therefore,
let us assume that V = −∞ and W = ∞3. Now let V0 ,
min{ν−∆, x∗1} and W0 , max{ν+∆, x∗K−1}. Now consider
x ∈ ŌK with x1 < V0 or xK−1 > W0. Let ymin denote the
smallest value in the codebook of Qx and ymax denote the
largest value. We next distinguish between two cases.
Case 1. ymin < V0 or ymax > W0. Then S(Qx) ≥
1
K max{(ymin − ν)2, (ymax − ν)2} > 1

K∆2 = S(Q∗), while
D(Qx) ≥ D(Q∗) by the choice of Q∗. Then D̄(Q∗) < D̄(Qx)
and the claim follows by letting x′ = x∗.
Case 2. ymin ≥ V0 and ymax ≤W0. We will construct x′ by
optimizing the encoder. Let K0 denote the number of distinct
reconstruction values, 1 ≤ K0 ≤ K. We may assume that
K0 > 1 since otherwise we can obtain a quantizer with smaller
EED by splitting the only cell into two, in view of Lemma 1.
We first relabel the reconstruction values, if necessary, such
that yi < yi+1 for all 1 ≤ i ≤ K0−14. An optimal encoder for
this set of reconstruction values is given by x′ ∈ ŌK where

x′i = yi+yi+1

2 , 1 ≤ i ≤ K0 − 1, (8)
x′i = x′K0−1, K0 ≤ i ≤ K − 1.

It follows that x′ ∈ U and D̄(Qx′) ≤ D̄(Qx). Thus, the claim
follows. With this observation, the first part of the proof is
completed.
Part 2. Let x̄ ∈ ŌK such that (7) holds. We need to show
that x̄ ∈ OK . Let us assume that x̄ ∈ ŌK \OK . This implies
that Qx̄ has less than K nonempty cells. Let i, 1 ≤ i ≤ K,
be such that xi−1 ≤ ν ≤ xi and xi−1 < xi. Then, in view
of Lemma 1, it is possible to split the cell (xi−1, xi] into two
nonempty cells and strictly decrease the EED. Since the new
encoder still corresponds to some x ∈ ŌK , this contradicts
the optimality of x̄. Thus, the assumption that x̄ is not in OK
is false. Now the proof of the theorem is complete.

III. SUFFICIENT CONDITIONS FOR THE UNIQUENESS OF A
LOCAL OPTIMUM

The iterative algorithm proposed in [28] for problem (6) can
only guarantee a locally optimal solution in general. The main
goal of this section is to establish sufficient conditions under

3The case when only one of them is infite can be handled similarly.
4Unlike the noiseless channel case we cannot assume that the optimum

decoder for a fixed encoder either has all K reconstruction values distinct or
that they obey the relations yi < yi+1 for all i.

which the local optimum is unique, thus becoming a global
optimum. For this we need to introduce a few notations first
and make some observations regarding the function g. For
every V ≤ a < b ≤W denote

ρ(a, b) ,
∫ b

a

f(x)dx,

µ(a, b) ,

∫ b
a
xf(x)dx∫ b
a
f(x)dx

.

The fact that f(x) > 0 for all x ∈ (a, b) implies that

a < µ(a, b) < b,

for all V ≤ a < b ≤ W . Notice, additionally, that for every
V ≤ a < b ≤W , g(a, b) can be expressed as

g(a, b) =
c1ρ(a, b)µ(a, b) + c2ν

c1ρ(a, b) + c2
, (9)

which further implies that g(a, b) is a convex combination of
µ(a, b) and ν. Therefore, g(a, b) is situated between µ(a, b)
and ν. Further, it can be easily seen that the function g(a, b) is
continuous and differentiable on {(a, b)|V < a < b < W}. By
applying the rules of differentiation we obtain the following
relations, for all V < a < b < W ,

g1(a, b) , ∂g
∂a (a, b) = c1f(a)(g(a,b)−a)

c1ρ(a,b)+c2
, (10)

g2(a, b) , ∂g
∂b (a, b) = c1f(b)(b−g(a,b))

c1ρ(a,b)+c2
. (11)

Additionally, relation (10) also holds for V < a < b ≤ W
and (11) also holds for V ≤ a < b < W . Next we formally
state some necessary conditions for the optimal noisy channel
quantizer solving problem (6).

Proposition 1. Let x ∈ OK be a solution to problem (6).
Then the following relations hold

xi−1 < g(xi−1, xi) < xi, 1 ≤ i ≤ K, (12)
xi − g(xi−1, xi) = g(xi, xi+1)− xi, 1 ≤ i ≤ K − 1. (13)

Proof: Let K0, 1 ≤ K0 ≤ K, denote the number of
distinct values in the codebook. Relabel the reconstruction
values, if necessary, such that yi < yi+1 for all 1 ≤ i ≤ K0−1.
Construct x′ ∈ ŌK satisfying (8). Then D̄(Qx′) ≤ D̄(Qx),
implying that x′ achieves the infimum in (7). Further, accord-
ing to Part 2 of the proof of Theorem 1, x′ ∈ OK , leading
to K0 = K. Then x′ is the unique sequence of thresholds
optimizing the encoder for the given codebook. Therefore, one
has that x = x′ and yi = g(xi−1, xi) for 1 ≤ i ≤ K, a fact
which, together with (8), leads to (13).

Note further that µ(V, x1) > V , µ(xK−1,W ) < W and
V < ν < W . These inequalities imply that g(V, x1) > V and
g(xK−1,W ) < W , which means that y1 > V and yK < W .
Corroborating with the fact that xi−1 = yi−1+yi

2 < yi for
2 ≤ i ≤ K and yi <

yi+yi+1

2 = xi for 1 ≤ i ≤ K−1, relations
(12) follow. With this observation the proof is complete.

In [28] the following controlled iterative algorithm was
proposed. Start with some x(0) ∈ OK . Then, at each iteration
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j, j ≤ 1, construct x(j) according to

x
(j)
i =

ḡ(x
(j−1)
i−1 ,x

(j−1)
i )+ḡ(x

(j−1)
i ,x

(j−1)
i+1 )

2 ,

1 ≤ i ≤ K − 1, (14)

where, for V ≤ a ≤ b ≤W ,

ḡ(a, b) ,


g(a, b), if a ≤ g(a, b) ≤ b
a, if g(a, b) < a

b, if b < g(a, b)

.

The algorithm stops when the decrease in EED falls below
some threshold. Notice that

ḡ(a, b) = arg min
y∈[a,b]

(
c1

∫ b

a

(t− y)2f(t)dt+ c2(y − ν)2

)
,

and, if a < ḡ(a, b) < b then ḡ(a, b) = g(a, b). Additionally,
ḡ(a, a) = a for V ≤ a ≤W .

It was proved in [28] that the algorithm converges if V >
−∞ and W < ∞, by invoking the argument of [33]. It was
also argued that the limit point satisfies conditions (13). We
additionally show that the limit point also fulfills relations (12),
a property which will prove essential for our development.

Proposition 2. Any limit point x of the controlled iterative
algorithm described by (14) is in OK and satisfies relations
(12) and (13).

Remark 1. It is important to note that relations (12) are
not necessarily satisfied for arbitrary points in OK . The fact
that they are satisfied by the local optimum will be crucial
in establishing sufficient conditions for the uniqueness of the
local optimum.

The following lemma proves a simple property that will be
extensively used in the proof of Proposition 2.

Lemma 2. Let V ≤ a < b ≤ W . If ḡ(a, b) = a then a > ν,
while if ḡ(a, b) = b then b < ν.

Proof: Assume that ḡ(a, b) = a. Then the definition of ḡ
implies that g(a, b) ≤ a. According to (9) g(a, b) is a strictly
convex combination of µ(a, b) and ν and therefore it is situated
between the two values. Since µ(a, b) > a it follows that
ν < a. The remaining claim follows similarly.

Proof of Proposition 2: Let x be a limit point of the
controlled iterative algorithm with update equations (14). Then
x ∈ ŌK and the following equations clearly hold

xi−1 ≤ ḡ(xi−1, xi) ≤ xi, 1 ≤ i ≤ K, (15)

xi = ḡ(xi−1,xi)+ḡ(xi,xi+1)
2 , 1 ≤ i ≤ K − 1. (16)

We will first prove that x ∈ OK . Let us assume for con-
tradiction that xi−1 = xi for some 1 ≤ i ≤ K. Then at
least one of the following statements is true: S1) there exists
some 1 ≤ j ≤ K − i such that xi < xi+j ; S2) there
exists some 1 ≤ k ≤ i − 1 such that xi−1−k < xi−1.
Assume that S1 holds (the case when S2 holds can be treated
similarly) and let j be the smallest integer with the specified
property. Then one has xi−1 = xi = · · · = xi+j−1 < xi+j .
Further, aided by (16), one obtains that ḡ(xi+j−2, xi+j−1) =

xi+j−1 = ḡ(xi+j−1, xi+j). In view of Lemma 2 the latter
equality implies that xi = xi+j−1 > ν. It further follows
that statement S2 must hold as well. Therefore, let k be the
smallest integer with the property described in S2. We then
have xi−1−k < xi−k = · · · = xi−1 = xi and further that
ḡ(xi−k, xi−k+1) = xi−k = ḡ(xi−1−k, xi−k), based on (16).
Applying again Lemma 2 leads to xi = xi−k < ν, which
contradicts the previous conclusion that xi > ν. Therefore,
the proof that x ∈ OK is completed.

Let us prove now that relations (15) hold with strict inequal-
ity. Let us assume for contradiction that ḡ(xi−1, xi) = xi for
some i. Lemma 2 implies that xi < ν, consequently, i < K.
Using further (16) one obtains that ḡ(xi, xi+1) = xi, which
leads to xi > ν according to Lemma 2. Thus, we have reached
a contradiction. A similar contradiction is obtained by assum-
ing that xi−1 = ḡ(xi−1, xi). It follows that inequalities (15)
are strict. This further implies that ḡ(xi−1, xi) = g(xi−1, xi)
for all 1 ≤ i ≤ K, and, further, that (12) and (13) hold, thus
concluding the proof.

We are now ready to present the main result of this section,
which establishes sufficient conditions for the uniqueness of a
local optimum.

Theorem 2. Assume that the following relations hold for all
V < a < b < W ,

g1(a,W ) < 1, g2(V, b) < 1, (17)
g1(a, b) + g2(a, b) < 1. (18)

Then there is at most one x ∈ OK satisfying relations (12)
and (13).

Remark 2. It is relevant to mention that in the case of noise-
less channel quantizer the conditions for the local optimum
have the same form as (13), while (12) is satisfied by default.
Therefore, it is natural to ask the question whether the results
established in [11]–[15] could be applied directly to derive
sufficient conditions for the uniqueness of a local optimum in
the noisy channel case. Unfortunately, this is not possible.
One of the main reasons is that the proofs in the above
mentioned work rely heavily on the fact that the counterpart of
the function g(a, b) in the noiseless case is strictly increasing
in both a and b, and thus its partial derivatives are positive.
In our case g(a, b) is not necessarily included in (a, b) and
therefore, according to (10) and (11) its partial derivatives
may take negative values.

The proof of the theorem hinges on the following lemma,
which is proved in Appendix B.

Lemma 3. Assume that inequalities (17) and (18) hold for all
V < a < b < W . Then the following statements are valid.

T1) For any V < b0 < b1 < W one has b0 − g(V, b0) <
b1 − g(V, b1).

T2) For any V < a < b0 < b1 < W such that a < g(a, b0) <
b0 and a < g(a, b1) < b1, one has b0 − g(a, b0) < b1 −
g(a, b1).

T3) For any V < a0 < a1 < W one has g(a0,W ) − a0 >
g(a1,W )− a1.

T4) For any V < a0 < b0 < W , V < a1 < b1 < W , such
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that a0 < a1, a0 < g(a0, b0) < b0 and a1 < g(a1, b1) <
b1, the following holds

g(a0, b0)− a0 < g(a1, b1)− a1 ⇒
b0 − g(a0, b0) < b1 − g(a1, b1).

Now we are ready to prove Theorem 2.
Proof of Theorem 2: Let us assume for contradiction

that there are two distinct (K − 1)-tuples x′ and x′′ in
OK satisfying the conditions x′i < g(x′i, x

′
i+1) < x′i+1,

x′′i < g(x′′i , x
′′
i+1) < x′′i+1 for all 0 ≤ i ≤ K − 1 and

x′i − g(x′i−1, x
′
i) = g(x′i, x

′
i+1)− x′i, (19)

x′′i − g(x′′i−1, x
′′
i ) = g(x′′i , x

′′
i+1)− x′′i , (20)

for all 1 ≤ i ≤ K − 1. Since x′ 6= x′′ it follows that there is
k0, 1 ≤ k0 < K, such that x′i = x′′i for all 0 ≤ i < k0, and
x′k0 6= x′′k0 . Let us assume without loss of generality (wlg)
that x′k0 < x′′k0 . Then statements T1 and T2 of Lemma 3
imply that x′k0 − g(x′k0−1, x

′
k0

) < x′′k0 − g(x′′k0−1, x
′′
k0

). Using
further (19) and (20) it follows that g(x′k0 , x

′
k0+1) − x′k0 <

g(x′′k0 , x
′′
k0+1)− x′′k0 .

Next we will use mathematical induction to prove the
following assertion.
Assertion. For all k0 ≤ j ≤ K − 1 the following relations
hold

x′j < x′′j , g(x′j , x
′
j+1)− x′j < g(x′′j , x

′′
j+1)− x′′j . (21)

We have already shown that (21) hold for j = k0. Assume now
that (21) hold for some j, k0 ≤ j < K − 1. Then condition
T4 of Lemma 3 implies that

x′j+1 − g(x′j , x
′
j+1) < x′′j+1 − g(x′′j , x

′′
j+1). (22)

By summing all three inequalities in (21) and (22) side by
side, we obtain that x′j+1 < x′′j+1. Using further (22), (19)
and (20) for i = j + 1, one obtains that the second inequality
in (21) is also satisfied for j + 1. With this, the assertion is
proved.

It follows that relations (21) are fulfilled for j = K − 1.
On the other hand, condition T3 of Lemma 3 implies that
g(x′K−1, x

′
K) − x′K−1 > g(x′′K−1, x

′′
K) − x′′K−1, thus leading

to a contradiction. This observation concludes the proof of the
theorem.

Corollary 1. Assume that the pdf f is log-concave and
symmetric around ν (i.e., f(x) = f(2ν − x) for all x ∈ R).
Then there is at most one x ∈ OK satisfying relations (12)
and (13).

Proof: It is sufficient to prove that if f satisfies the
conditions in the hypothesis then relations (17) and (18) hold.
For this we will use the properties of the partial derivatives
of µ for log-concave densities, proved in prior work. Namely,
let µ1(a, b) , ∂µ

∂a (a, b) and µ2(a, b) , ∂µ
∂b (a, b) for V < a <

b < W . It was proved in [13] that, if f is log-concave then
for all V < a < b < W one has

µ1(a,W ) ≤ 1, µ2(V, b) ≤ 1, (23)
µ1(a, b) + µ2(a, b) ≤ 1. (24)

We will first prove inequality (18). The following equalities
can be easily derived based on (9)

g1(a, b) = c1ρ(a,b)µ1(a,b)
c1ρ(a,b)+c2

+ c1c2f(a)(ν−µ(a,b))
c1ρ(a,b)+c2

,

g2(a, b) = c1ρ(a,b)µ2(a,b)
c1ρ(a,b)+c2

+ c1c2f(b)(µ(a,b)−ν)
c1ρ(a,b)+c2

.

The above relations imply that

g1(a, b) + g2(a, b) =
c1ρ(a, b)(µ1(a, b) + µ2(a, b))

c1ρ(a, b) + c2
+

c1c2(f(a)− f(b))(ν − µ(a, b))

c1ρ(a, b) + c2
.

The log-concavity of f implies that the first term in the above
expression is strictly smaller than 1, in light of (24) and of
the fact that c1ρ(a,b)

c1ρ(a,b)+c2
< 1. We will next show that the

second term is non-positive when f is additionally symmetric
around ν. First notice that the log-concavity and the symmetry
of f around ν imply that f is non-decreasing on (V, ν] and
non-increasing on [ν,W ). If b ≤ ν then f(a) ≤ f(b), while
µ(a, b) < b ≤ ν, thus the claim follows. When a ≥ ν, we
have f(a) ≥ f(b) and µ(a, b) > a ≥ ν, which again imply
the claim. Assume now that a < ν < b. If a ≤ 2ν − b then
one has f(a) ≤ f(b) and µ(a, b) ≤ ν. If a > 2ν − b then one
has f(a) > f(b) and µ(a, b) > ν, thus proving the claim.

Let us prove now inequalities (17). One has

g2(V, b) =
c1ρ(V, b)µ2(V, b)

c1ρ(V, b) + c2
+
c1c2f(b)(µ(V, b)− ν)

c1ρ(V, b) + c2

< 1 +
c1c2f(b)(µ(V, b)− ν)

c1ρ(V, b) + c2
< 1,

where the first inequality follows from (23) and 0 <
c1ρ(V,b)

c1ρ(V,b)+c2
< 1, while the last one follows since µ(V, b) <

µ(V,W ) = ν. On the other hand, one obtains

g1(a,W ) =
c1ρ(a,W )µ1(a,W )

c1ρ(a,W ) + c2
+
c1c2f(a)(ν − µ(a,W ))

c1ρ(a,W ) + c2
< 1

using the facts that µ1(a,W ) ≤ 1 according to (23), 0 <
c1ρ(a,W )

c1ρ(a,W )+c2
< 1 and µ(a,W ) > µ(V,W ) = ν. Thus, the

proof is complete.

IV. GLOBALLY OPTIMAL ALGORITHM FOR DISCRETE
SOURCES

In this section we consider a finite source alphabet and
present a globally optimal design algorithm for the noisy
channel scalar quantizer with RIA. The case of a finite source
is relevant in practical situations where the design is performed
based on a set of training samples.

Let A = {a1, a2, · · · , aN} ⊆ R be the source alphabet,
where N > 0 and an < an+1, 1 ≤ n ≤ N − 1. Let f(an)
denote the probability of symbol an. We will assume that
f(an) > 0 for all n. We preserve the notation ν and σ2

for the mean, respectively the variance of the source. Let ψ′Q
denote the encoding function of a K-level quantizer Q for
this discrete alphabet, i.e., ψ′Q : A → {1, · · · ,K}, and let φ′Q
denote the decoding function, i.e., φ′Q : {1, · · · ,K} → B. For
each i, 1 ≤ i ≤ K, let yi , φ′Q(i) and Ci , ψ

′−1
Q (i). Further,

the setup of the transmission system remains as in Section II.
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We make the following assumptions on the reconstruction
alphabet B. Either B = R or B is a discrete set satisfying the
following conditions:
C1) B = {b0 + ∆i|i ∈ Z} for some b0 ∈ R and ∆ > 0.
C2) B ∩ [au, au+2] 6= ∅ for all 0 ≤ u ≤ N − 1, where a0 =

a1 − 1 and aN+1 = aN + 1 by convention.
The reason for the above assumptions will become clear
shortly.

Since the source alphabet is discrete, the average EED
D̄(Q) assuming an RIA is given by

D̄(Q) =

K∑
i=1

(
c1
∑
a∈Ci

(a− yi)2f(a) + c2(yi − ν)2

)
+Kc2σ

2.

(25)

The problem of optimal design of a noisy channel K-level
scalar quantizer with RIA becomes

min
ψ′Q,φ

′
Q

D̄(Q), (26)

for a fixed K.
The optimum decoder condition is now

yi = arg min
y∈B

(
c1
∑
a∈Ci

(a− y)2f(a) + c2(y − ν)2
)
. (27)

Since the expression to be minimized in (27) is quadratic in
y, it easily follows that its minimizer over the set B is ŷ(Ci)
defined as

ŷ(Ci) , roundB

(
c1
∑
a∈Ci af(a) + c2ν

c1
∑
a∈Ci f(a) + c2

)
, (28)

where roundB(z) denotes the element in B that is closest to
z. We make the convention that in case of a tie the smallest
value is considered.

As in the case of a continuous source, the optimum encoder
given a fixed decoder has to assign each source sample to the
closest reconstruction value. Therefore, we will impose the
condition that each quantizer cell Ci is a contiguous subset of
A, i.e., a set of the form C(u, v] = {x ∈ A : au < x ≤ av},
for some integers u, v with 0 ≤ u ≤ v ≤ N . Additionally,
we may restrict the search in problem (26) only to quan-
tizers that are decoder optimized. Therefore, the quantizer is
completely specified by the sequence of partition thresholds.
However, there is a notable difference versus the continuous
case. Namely, the solution to problem (26) is no longer
guaranteed to have all K cells nonempty. We will illustrate
this observation with an example.
Example: Consider a uniform source over the alphabet
{−12,−10, 10, 12}. Let B = R. Clearly, ν = 0 and σ2 = 122.
Let K = 4 and assume that the channel is a binary symmetric
channel with bit error rate ε = 0.1. Then perr = 0.19,
c1 = 0.7467 and c2 = 0.0633. The only quantizer with
four nonempty cells is Q1 with C1 = {−12}, C2 = {−10},
C3 = {10} and C4 = {12}. The optimal reconstructions are
y1 = −8.9600, y2 = −7.4667, y3 = 7.4667 and y4 = 8.9600.
Then the quantization distortion and the scatter factor are
D(Q1) = 7.8297 and S(Q1) = 68.0164 leading to D̄(Q1) =
53.9836. Consider now quantizer Q2 with C1 = {−12,−10},

C2 = {10, 12} and C3 = C4 = ∅. The optimal reconstructions
are y1 = −9.4046, y2 = 9.4046 and y3 = y4 = 0. Then
one has D(Q2) = 3.5454 and S(Q2) = 44.2231 leading to
D̄(Q2) = 44.7570. It follows that D̄(Q2) < D̄(Q1), which
implies that the quantizer with all four cells nonempty is not
optimal.

According to the above considerations in order to solve
problem (26) we need to consider quantizers with k nonempty
contiguous cells for all 1 ≤ k ≤ K. Such a quantizer is
completely specified by the (k+1)-tuple of integer thresholds
tk = (0 = t0, t1, · · · , tk = N) with ti−1 < ti, 1 ≤ i ≤ k.
Its cells are Ci = C(ti−1, ti], for 1 ≤ i ≤ k, and Cj = ∅ for
k + 1 ≤ j ≤ K. Let us, additionally, denote Tk , {tk ∈
Nk+1 : ti−1 < ti, 1 ≤ i ≤ K, t0 = 0, tk = N}.

Now let us assign a cost ω(Ci) to each cell Ci, as follows,

ω(Ci) =c1
∑
a∈Ci

(a− ŷ(Ci))2f(a) + c1(ŷ(Ci)− ν)2.

Then it becomes clear that the EED D̄(Q) of (25) equals the
sum of the costs of all cells plus a term that does not depend on
Q, i.e., D̄(Q) =

∑K
i=1 ω(Ci) + Kc2σ

2. We will assume for
simplicity that ν ∈ B. Then ν is the optimal reconstruction
corresponding to each empty cell, leading to ω(∅) = 0. It
follows that problem (26) can be recast as

min
1≤k≤K

min
tk∈Tk

k∑
i=1

ω(C(ti−1, ti]). (29)

Consider now the WDAG G = (V,E,w), where the vertex
set is V = {0, 1, · · · , N} and the edge set is E = {(u, v) ∈
V 2 : 0 ≤ u < v ≤ N}. Let the weight of edge (u, v) be
w(u, v) , ω(C(u, v]). The source node in G is 0 and the
final node is N . A path from some node u to another node v
is a sequence of connected edges, and the length of the path
equals the number of edges in the path. If the beginning and
the end of the path are not specified we will understand that
the path starts at the source node and ends at the final node.

It is easy to see that for every k, 1 ≤ k ≤ K, there is
a one-to-one correspondence between the set Tk of quantizer
thresholds and the set of k-edge paths in G. Additionally, the
weight of the path corresponding to some tk, i.e., the sum of
the weights of its component edges, equals the cost in (29).
Therefore, problem (29) can be solved by finding the minimum
weight k-edge path in G for every k, 1 ≤ k ≤ K, followed
by solving the outer minimization over all values of k. If the
weight of each edge can be computed in constant time, then the
solution can be found via dynamic programming in O(KN2)
running time. In order to see how this can be done, let us
denote by W̄k(v) the weight of the minimum weight k-edge
path from the source to vertex v, for each 0 ≤ k ≤ K, and
each vertex v ∈ V, v ≥ k. Then the following recurrence
relation holds, for 1 ≤ k ≤ K, and v ∈ V, v ≥ k,

W̄k(v) = min
k−1≤u<v

(
W̄k−1(u) + w(u, v)

)
. (30)

The dynamic programming algorithm computes the values
W̄k(v) for all vertices v ≥ k, in increasing order of k from 1 to
K. After that the solution is found by minimizing W̄k(N) over
all values of k. Assuming that w(u, v) can be determined in
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O(1) time for each edge (u, v), solving (30) takes O(N) time.
Therefore, computing all values W̄k(v) requires O(KN2)
operations. Since the last minimization takes only O(K) time,
it follows that the overall time complexity is O(KN2), proving
the claim.

To ensure that the computation of the cost of each edge takes
only O(1) time we compute and store, as in [19], the following
values during a preprocessing step: P (0, n] ,

∑n
i=1 f(a),

m1(0, n] ,
∑n
i=1 af(a) and m2(0, n] ,

∑n
i=1 a

2f(a), for
all 1 ≤ n ≤ N . Then the computation of the expression in
(28) takes a constant amount of operations when B = R or B
is a discrete set with the regular structure imposed by condition
C1. Note that the preprocessing step takes only O(N) time,
therefore it does not increase the asymptotic running time of
the solution algorithm.

In the case of optimal design of noiseless channel scalar
quantizer it was shown that the cost function has a nice mono-
tonicity property which enables a speed up of the dynamic
programming algorithm by a factor of O(N) [19], [20]. The
key factor which makes this property hold is the fact that the
edge weights preserve the so-called Monge property [31]. A
natural question is whether the latter property still holds in
our case as well. We point out that the main difference in the
graph model between our case and the noiseless case resides
in the definition of the weight associated to each edge5. In the
noiseless case, the weight assigned to edge (u, v) is

min
y∈B

∑
a∈C(u,v]

(a− y)2f(a) =

∑
a∈C(u,v]

(a− roundB(ν(u, v)))2f(a),

where

ν(u, v) =

∑
a∈C(u,v] af(a)∑
a∈C(u,v] f(a)

.

The attempt to apply the technique of [20] to show that the
edge weights of G obey the Monge property is hindered by the
fact that the optimal reconstruction ŷ(C(u, v]) defined in (28),
is not necessarily within the boundaries of the set C(u, v].
Fortunately, we are able to get around this difficulty since,
as in the case of a continuous source, the optimal solution to
problem (26) is a nearest neighbour quantizer. This fact implies
that the optimal solution contains only cells C(u, v] for which
the inequalities au < ŷ(C(u, v]) < av+1 hold. Therefore, we
can safely modify the cost of the edges so that to impose
the latter constraint, without sacrificing the optimality of the
solution. This claim is proved next.

Lemma 4. There is an optimal solution to problem (29)
specified by a (k + 1)-tuple of thresholds tk ∈ Tk, for some
1 ≤ k ≤ K, satisfying the following properties.

1) For every i, 1 ≤ i ≤ k, one has blow ≤ ŷ(C(ti−1, ti]) ≤

5Another difference between the two problems is that in the noiseless
case the optimal quantizer does not contain empty cells. Therefore, the
corresponding graph problem is the minimum weight K-edge path problem.
However, the dynamic programming solution to this problem still needs to
compute the minimum weight k-edge path ending in every node v, for every
k, 1 ≤ k ≤ K, as in the noisy channel case.

bhigh, where blow , min (B ∩ [a1, aN ]) and bhigh ,
max (B ∩ [a1, aN ]).

2) For every i, 2 ≤ i ≤ k, one has ati−1 < ŷ(C(ti−1, ti]) and
for every i, 1 ≤ i ≤ k−1, one has ŷ(C(ti−1, ti]) < ati+1.

Remark 3. Notice that, unlike the continuous case, in the
discrete case we cannot conclude that the optimal reconstruc-
tion is within the boundaries of a cell even in an optimal
quantizer. An illustration of this observation is the example
on the previous page. However, the property stated in Lemma
4 is powerful enough for our purpose of proving the Monge
property.

Proof of Lemma 4: To prove the first claim note first
that a1 ≤ ν ≤ aN . It follows that the cost function in (27) is
decreasing for y ∈ (−∞, a1] and increasing for y ∈ [aN ,∞),
thus the minimum is achieved for some y ∈ B ∩ [a1, aN ].
Notice that the latter set is non-empty when B = R or B
satisfies condition C2.

Let us prove now the second claim. Let tk ∈ Tk represent
an optimal solution to problem (29), where k is the smallest
integer with this property. Fix some i, 1 ≤ i < k. Since the
optimal solution is a nearest neighbour quantizer and since all
elements of cell Ci are smaller than all elements of cell Ci+1,
it follows that ŷ(Ci) ≤ ŷ(Ci+1). If ŷ(Ci) and ŷ(Ci+1) were
equal then cells Ci and Ci+1 could be merged into a single cell
without increasing the EED, thus contradicting the choice of
k. Therefore, it follows that ŷ(Ci) < ŷ(Ci+1). Further, the fact
that ati+1 cannot be closer to ŷ(Ci) than to ŷ(Ci+1) implies
that ŷ(Ci) < ati+1. The remaining inequality can be proved
analogously. With this observation the proof is complete.

Let us define now

w′(u, v) ,

min
y∈B∩[au,av+1]

(
c1

∑
a∈C(u,v]

(a− y)2f(a) + c2(y − ν)2
)
,

(31)

for 0 ≤ u < v ≤ N . Note that the set B ∩ [au, av+1] is non-
empty in virtue of condition C2 (which is also satisfied when
B = R). According to the above discussion, in order to solve
(29) it is sufficient to solve

min
1≤k≤K

min
tk∈Tk

k∑
i=1

w′(t′i−1, t
′
i). (32)

Notice that the inner minimization in (32) is equivalent to the
minimum weight k-edge path problem in the WDAG G′ =
(V,E,w′). Now it can be shown using similar arguments as
in the proof of Lemma 4 in [20], that the edge weights of this
graph satisfy the Monge property. This result is stated in the
following lemma, whose proof is deferred to Appendix C.

Lemma 5. The weights of edges of G′ fulfill the Monge
property [31], i.e., for all 0 ≤ u1 ≤ u2 < v1 ≤ v2 ≤ N ,
the following relation holds

w′(u1, v1) + w′(u2, v2) ≤ w′(u1, v2) + w′(u2, v1).

Proposition 3. Problem (29) can be solved in O(KN) run-
ning time.
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Proof: Let us denote by ȳ(u, v) the value of y achieving
the minimum in (31) for every 0 ≤ u < v ≤ N . Then the
following holds

ȳ(u, v) =
ŷ(C(u, v]), if au < ŷ(C(u, v]) < av+1

min (B ∩ [au, av+1]) , if ŷ(C(u, v]) ≤ au
max (B ∩ [au, av+1]) , if ŷ(C(u, v]) ≥ av+1

.

The aforementioned observations imply that, after having com-
puted and stored the values P (0, n], m1(0, n] and m2(0, n],
for 1 ≤ n ≤ N , the computation of each weight w′(u, v) can
still be carried out in O(1) time.

Let us denote now by W̄ ′k(v) the weight of the minimum
weight k-edge path in G′ from the source to vertex v, for
each k, 1 ≤ k ≤ K, and each vertex v ∈ V, v ≥ k. Then the
following recurrence relation holds

W̄ ′k(v) = min
k−1≤u<v

(
W̄ ′k−1(u) + w′(u, v)

)
. (33)

Based on Lemma 5 problem (33) can be solved for fixed k
and all v in O(N) time using the so-called SMAWK algorithm
developed in [32]. This amounts to O(KN) operations over all
values of k. Since problem (32) is equivalent to computing the
minimum of W̄ ′k(v) over all k, 1 ≤ k ≤ K, and v ∈ V, v ≥ k,
the claim follows.

Before ending this section we would like to point out
that condition C1 was imposed in the case of a discrete
reconstruction alphabet B in order to allow for the rounding
operation in (28) to be performed in O(1) time, leading further
to the computation of each edge weight in O(1) time as well.
On the other hand, if B is an arbitrary finite set satisfying
only condition C2, then the rounding operation in (28) can be
performed in O(log |B|) time. The computation of each edge
weight for the graph G′ takes then O(log |B|) time leading
to an overall time complexity of O(KN log |B|) for solving
problem (29).

V. EXPERIMENTAL RESULTS

In this section we present experimental results to illustrate
the suboptimality of the iterative algorithm for certain distri-
butions, as well as its global optimality when the sufficient
conditions for the uniqueness of a local optimum are satisfied.

First we present an example when the iterative algorithm
fails to output the globally optimal solution. For this we con-
sider a pdf defined on the interval [−5, 5] such that f(x) = 2/7
for all x ∈ [−5,−3], f(x) = 0 for all x ∈ [−3, 2] and
f(x) = 1/7 for all x ∈ [2, 5]. The mean of the pdf is thus
ν = −0.7857 and the variance is 14.2874. The channel is a
binary symmetric channel (BSC) with bit error rate (BER) of
0.01, and K = 4. We applied the iterative algorithm with the
following initial partitions:

a) (−5,−4.99,−4.98,−4.97, 5);
b) (−5,−4.5,−4,−3.5, 5)
c) (−5,−2.5, 0, 2.5, 5);
d) (−5, 2.75, 3.5, 4.25, 5).

The output partition and the EED d̄ in each case are
a) (−5,−2.374,−0.786, 1.324, 5); d̄ = 0.9924;

b) (−5,−3.854,−2.07, 1.324, 5), d̄ = 0.9924;
c) (−5,−2.374, 0.855, 3.244, 5); d̄ = 0.9470;
d) (−5,−2.374, 0.855, 3.244, 5); d̄ = 0.9470.

On the other hand, the output of the globally opti-
mal algorithm proposed in Section IV is the partition
(−5,−3.854,−3, 3.244, 5) and d̄ = 0.8743. The discretization
of the pdf was obtained by applying a uniform quantizer with
step size of 0.0001. As it can be seen, the iterative algorithm
does not find the globally optimal solution in either of the four
cases.

Additionally, we have considered a Gaussian distribu-
tion with 0 mean and variance 1, truncated to the interval
[−5, 5] and ran both design algorithms for K = 16 and
BER=0.01, 0.05, 0.1, 0.2. For the globally optimal algorithm
we used a prequantization with a step size of 0.001. Since
the Gaussian distribution satisfies the sufficient conditions
for the uniqueness of a locally optimal solution according
to Corollary 1, we expect that the two algorithms generate
very similar results. Indeed, for all four BER’s the EED
values output by the two algorithms are very close with an
absolute difference smaller than 10−7. Specifically, the EED
is 0.1, 0.322, 0.517, 0.773 in the four cases, respectively. An
interesting observation, however, is that, while the quantizers
output by the iterative algorithm have 16 nonempty cells in
all four cases, the algorithm for the discrete source outputs
a quantizer with 16, 14, 10 and 8 nonempty cells, for the
four BER values, respectively. The reason is that as the BER
increases the probability of the cells that are close to the mean
in the optimal quantizer for the continuous source decreases
and at some point becomes lower than the probability of a
single sample of the discretized source.

VI. CONCLUSION

Existing algorithms for joint source-channel quantizer de-
sign iteratively optimize the encoder, respectively the decoder,
while keeping the other component fixed. They can guarantee
only a locally optimal solution in general and sufficient
conditions for the global optimality of the solution are not
known. In this work we address the design of noisy channel
K-level scalar quantizer under the assumption of random
index assignment. We first find sufficient conditions for the
uniqueness of a local optimum, which thus becomes a global
optimum. Furthermore, we present a globally optimal dynamic
programming algorithm for general discrete distributions. A
monotonicity property is additionally proved which allows for
the acceleration of the solution algorithm to O(KN) running
time, where N is the size of the source alphabet.

APPENDIX A

In this appendix we present the proof of Lemma 1. The
notations and observations made at the beginning of Section
III will be used here.

Proof of Lemma 1: Let V ≤ a ≤ ν ≤ b ≤ W , with
a < b. Consider the function h : [a, b]→ R defined as follows
h(x) , cost(a, b) − cost(a, x) − cost(x, b). Then it can be
easily verified that h is continuous on [a, b] and h(a) = h(b) =
0. Additionally, h is differentiable on (a, b). We would like to
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evaluate the derivative h′(x) for x ∈ (a, b). For this denote
first for V ≤ α < β ≤W and y ∈ R,

F (α, β, y) , c1

∫ β

α

(t− y)2f(t)dt+ c2(y − ν)2.

Clearly, the function F is differentiable in α for α > V , in β
for β < W and in y for y ∈ R, and the following hold

F1(α, β, y) , ∂F
∂α (α, β, y) = −c1(α− y)2f(α),

for V < α < β ≤W, y ∈ R,
F2(α, β, y) , ∂F

∂β (α, β, y) = c1(β − y)2f(β),

for V ≤ α < β < W, y ∈ R.

Additionally, let F3(α, β, y) , ∂F
∂y (α, β, y). Then one has for

all V ≤ a < b ≤W ,

F3(α, β, g(α, β)) = 0.

Now let us compute h′(x)

h′(x) = −∂cost(a, x)

∂x
− ∂cost(x, b)

∂x

= −∂F (a, x, g(a, x))

∂x
− ∂F (x, b, g(x, b))

∂x
= −F2(a, x, g(a, x))− F3(a, x, g(a, x))g2(a, x)−

F1(x, b, g(x, b))− F3(x, b, g(x, b))g1(x, b)

= c1f(x)((g(x, b)− x)2 − (g(a, x)− x)2)

= c1f(x) (g(x, b)− g(a, x)) (g(x, b) + g(a, x)− 2x) .

Next we need to differentiate between the following three
cases: 1) µ(a, b) > ν, 2) µ(a, b) < ν and 3) µ(a, b) = ν.
Case 1. µ(a, b) > ν. Then g(a, b) > ν and a > V . Notice
that

limx↘ah
′(x) = c1f(a)(g(a, b)− ν)(g(a, b) + ν − 2a).

The fact that g(a, b) > ν ≥ a implies that g(a, b)+ν−2a > 0.
Using further the fact that f(a) > 0 and g(a, b) > ν, we obtain
that limx↘ah

′(x) > 0. Since h′(x) is continuous on (a, b) it
further follows that there is some 0 < ε < b − a such that
h′(x) > 0 for all x ∈ (a, a + ε). Aided by the fact that h is
continuous on [a, a+ε] we further obtain that h(x) > h(a) = 0
for all x ∈ (a, a+ ε).
Case 2. µ(a, b) < ν. In this case g(a, b) < ν ≤ b < W . Then

limx↗bh
′(x) = c1f(b)(ν − g(a, b))(ν + g(a, b)− 2b) < 0.

Then there is some 0 < ε < b− a such that h′(x) < 0 for all
x ∈ (b− ε, b). Further, it follows that h(x) > h(b) = 0 for all
x ∈ (b− ε, b).
Case 3. µ(a, b) = ν. Since a < µ(a, b) < b it follows that
a < ν < b. Note that g(a, x)− x is a continuous function of
x for x ∈ (a, b). Since limx↘a(g(a, x) − x) = ν − a > 0 it
follows that there is some 0 < ε < ν−a such that g(a, x) > x
for all x ∈ [a, a + ε]. For x ∈ (a, a + ε] we have µ(x, b) >
µ(a, b) = ν and µ(a, x) < x < ν because µ is increasing
in both arguments. Therefore, it follows that g(x, b) > ν >
g(a, x) > x. Corroborating with f(x) > 0 we further obtain
that h′(x) > 0 for all x ∈ (a, a + ε]. Using the fact that h is
continuous on [a, a + ε] it follows that h(x) > h(a) = 0 for
all x ∈ (a, a+ ε]. Thus, the proof is complete.

APPENDIX B

In this appendix we present the proof of Lemma 3. For this
we need another auxiliary result.

Lemma 6. Assume that relation (18) is true for all V < a <
b < W . Let V < a0 < b0 < W , V < a1 < b1 < W such that
a0 ≤ a1, a0 < g(a0, b0) < b0, a1 < g(a1, b1) < b1. Then the
following hold.

i) If a1−a0 ≤ b1− b0 then b0− g(a0, b0) ≤ b1− g(a1, b1).
Moreover, if b1 > b0 then b0−g(a0, b0) < b1−g(a1, b1).

ii) If a1 − a0 > b1 − b0 and a1 > a0 then g(a0, b0)− a0 >
g(a1, b1)− a1.

Proof: Define the functions a(t) = a0 + (a1 − a0)t and
b(t) = b0 + (b1 − b0)t for all t ∈ [0, 1]. Clearly, a(t) < b(t)
and a(t), b(t) and g(a(t), b(t)) are differentiable and a′(t) ≥ 0
for all t ∈ [0, 1].

Let us prove now claim i). Assume that a1 − a0 ≤ b1 − b0.
Then one has 0 ≤ a′(t) ≤ b′(t) for all t ∈ [0, 1]. Using
(10) and the fact that g(a0, b0) > a0 and g(a1, b1) > a1, it
follows that g1(a0, b0) > 0 and g1(a1, b1) > 0. Now define
t0 ∈ [0, 1] in the following way. If g1(a(t), b(t)) > 0 for
all t ∈ [0, 1] then let t0 = 0. Otherwise, let t0 = sup{t ∈
(0, 1)|g1(a(t), b(t)) ≤ 0}. In the latter case, the continuity
of g1 and the fact that g1(a1, b1) > 0 imply that t0 < 1.
Thus, we have g1(a(t), b(t)) > 0 for all t ∈ (t0, 1], while
g1(a(t0), b(t0)) = 0 when t0 > 0. The inequality a′(t) ≤
b′(t) implies that a′(t)g1(a(t), b(t)) ≤ b′(t)g1(a(t), b(t)) for
all t ∈ [t0, 1]. Using further (18) and the fact that b′(t) ≥ 0 it
follows that

b′(t)− a′(t)g1(a(t), b(t))− b′(t)g2(a(t), b(t)) ≥
b′(t) (1− g1(a(t), b(t))− g2(a(t), b(t)) ≥ 0 (34)

for all t ∈ [t0, 1]. Then

(b1 − g(a1, b1))− (b(t0)− g(a(t0), b(t0))) =∫ 1

t0
(b(t)− g(a(t), b(t)))

′
dt =∫ 1

t0
b′(t)− a′(t)g1(a(t), b(t))−
b′(t)g2(a(t), b(t))dt ≥ 0. (35)

When t0 = 0 the inequality b0 − g(a0, b0) ≤ b1 −
g(a1, b1) follows immediately. When t0 > 0, the fact that
g1(a(t0), b(t0)) = 0 implies that g(a(t0), b(t0)) = a0 in view
of (10) . Then

b(t0)− g(a(t0), b(t0)) = b(t0)− a(t0) =

b0 − a0 + t0(b1 − b0 − a1 + a0) ≥ b0 − a0 > b0 − g(a0, b0).

Using further (35) one obtains that b0 − g(a0, b0) ≤ b1 −
g(a1, b1). Assume now that b1 > b0. Then b′(t) > 0 for
all t ∈ [0, 1] implying that the last inequality in (34) and,
consequently, the inequality in (35) are strict. It further follows
that b0 − g(a0, b0) < b1 − g(a1, b1).

Let us prove now claim ii). Assume that the inequalities
a1 − a0 > b1 − b0 and a1 > a0 hold. These imply that
a′(t) > b′(t) and a′(t) > 0 for all t ∈ [0, 1]. Additionally,
notice that, in view of (11), one has g2(a0, b0) > 0 and
g2(a1, b1) > 0. Define now t1 as follows. If g2(a(t), b(t)) > 0
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for all t ∈ [0, 1] then let t1 = 1. Otherwise, let t1 =
inf{t ∈ (0, 1)|g2(a(t), b(t)) ≤ 0}. The fact that g2(a0, b0) > 0
and the continuity of g2 imply that t1 > 0. It follows that
g2(a(t), b(t)) > 0 for all t ∈ [0, t1), while g2(a(t1), b(t1)) = 0
when t1 < 1. Based on the fact that a′(t) > b′(t) we
further obtain that a′(t)g2(a(t), b(t)) > b′(t)g2(a(t), b(t)) for
all t ∈ [0, t1). Using further (18) and the fact that a′(t) > 0
it follows that

a′(t)g1(a(t), b(t)) + b′(t)g2(a(t), b(t))− a′(t) <
a′(t) (g1(a(t), b(t)) + g2(a(t), b(t))− 1) < 0

for all t ∈ [0, t1). Thus, we further obtain

(g(a(t1), b(t1))− a(t1))− (g(a0, b0)− a0) =∫ t1
0

(g(a(t), b(t)− a(t))
′
dt =∫ t1

0
a′(t)g1(a(t), b(t)) +

b′(t)g2(a(t), b(t))− a′(t)dt < 0. (36)

The claim follows immediately when t1 = 1. If t1 < 1, then
the equality g2(a(t1), b(t1)) = 0 implies that g(a(t1), b(t1)) =
b(t1) in view of (11). Then

g(a(t1), b(t1))− a(t1) = b(t1)− a(t1) =

b1 − a1 + (1− t1)(a1 − a0 − b1 + b0) >

b1 − a1 > g(a1, b1)− a1.

Using further (36) the claim follows completing the proof.
Proof of Lemma 3: T1) Let V < b0 < b1 < W . Define

b(t) = b0 + (b1 − b0)t, for t ∈ [0, 1]. Then one obtains

(b1 − g(V, b1))− (b0 − g(V, b0)) =∫ 1

0
(b(t)− g(V, b(t))′dt =∫ 1

0
b′(t)(1− g2(V, b(t)))dt > 0

since b′(t) > 0 and 1 − g2(V, b(t)) > 0 for all t ∈ [0, 1]
according to the second inequality in (17). Thus, the claim is
proved.
T2) This claim follows immediately from Lemma 6 point

i) by letting a0 = a1 = a.
T3) Let V < a0 < a1 < W . Define a(t) = a0 + (a1− a0)t

for t ∈ [0, 1]. Then one has

(g(a1,W )− a1)− (g(a0,W )− a0) =∫ 1

0
(g(a(t),W )− a(t))′dt =∫ 1

0
a′(t)(g1(a(t),W )− 1))dt < 0

due to a′(t) > 0 and g1(a(t),W ) < 1, for t ∈ [0, 1], proving
the claim.
T4) Let V < a0 < b0 < W , V < a1 < b1 < W , such

that a0 < a1, a0 < g(a0, b0) < b0 and a1 < g(a1, b1) < b1
and g(a0, b0)− a0 < g(a1, b1)− a1. Then Lemma 6 point ii)
implies that 0 < a1−a0 ≤ b1−b0. Further point i) of Lemma
6 leads to the conclusion that b0 − g(a0, b0) < b1 − g(a1, b1),
concluding the proof.

APPENDIX C

In this appendix we present the proof of Lemma 5. Before
proceeding to the proof consider the following notation. For

every 0 ≤ u < v ≤ N , and y ∈ R denote by

Ω(u, v, y) , c1
∑

a∈C(u,v]

(a− y)2f(a) + c2(y − ν)2.

It follows that for 0 ≤ u < v ≤ N , one has

w′(u, v) = Ω(u, v, ȳ(u, v)).

Proof of Lemma 5: Notice first that the cases when u1 =
u2 or v1 = v2 are trivial. Therefore, let us assume that 0 ≤
u1 < u2 < v1 < v2 ≤ N . Further, denote η1 = ȳ(u2, v1) and
η2 = ȳ(u1, v2). The definition of η1 implies that

au2
≤ η1 ≤ av1+1. (37)

Additionally, one has

w′(u1, v2) + w′(u2, v1) = Ω(u1, v2, η2) + Ω(u2, v1, η1).
(38)

To proceed we need to consider two cases.
Case 1. η1 ≤ η2. Relations (37) and the fact that u1 < u2

imply that au1
< η1 ≤ av1+1. Using further the definition of

w′(u1, v1) and of Ω(u1, v1, η1) one obtains that

w′(u1, v1) ≤ Ω(u1, v1, η1). (39)

Further, the fact that η1 ≤ η2 together with (37) imply that
au2 ≤ η2. Corroborating with the definition of η2 it follows
that au2

≤ η2 ≤ av2+1. Therefore, one has

w′(u2, v2) ≤ Ω(u2, v2, η2). (40)

Relations (38-40) imply that, in order to establish the validity
of Lemma 5, it is sufficient to prove the following inequality

Ω(u1, v1, η1) + Ω(u2, v2, η2) ≤ Ω(u1, v2, η2) + Ω(u2, v1, η1).

Upon applying the definition of Ω and canceling the like terms,
the above inequality becomes equivalent to∑

a∈C(u1,v1]

(a− η1)2f(a) +
∑

a∈C(u2,v2]

(a− η2)2f(a) ≤

∑
a∈C(u1,v2]

(a− η2)2f(a) +
∑

a∈C(u2,v1]

(a− η1)2f(a).

After expanding the summations and canceling the like terms,
the above relation becomes∑

a∈C(u1,u2]

(a− η1)2f(a) ≤
∑

a∈C(u1,u2]

(a− η2)2f(a). (41)

Notice that the fact that au2
≤ η1 ≤ η2 and that f(a) > 0

for all a, imply that (a − η1)2f(a) ≤ (a − η2)2f(a) for all
au1 < a ≤ au2 , thus establishing the validity of (41). This
observation completes the proof of Case 1.
Case 2. η1 > η2. The proof for this case is symmetrical.
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