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Abstract

We investigate the complexity of joint source-channel maximum a posteriori (MAP) decoding of

a Markov sequence which is first encoded by a source code, then encoded by a convolutional code,

and sent through a noisy memoryless channel. As established previously the MAP decoding can be

performed by a Viterbi-like algorithm on a trellis whose states are triples of the states of the Markov

source, source coder and convolutional coder. The large size of the product space (in the order of

K2N , where K is the number of source symbols and N is the number of states of the convolutional

coder) appears to prohibit such a scheme. We show that for finite impulse response convolutional codes,

the state space size of joint source-channel decoding can be reduced to O(K2 +N logN), hence the

decoding time becomes O(TK2 + TN logN), where T is the length in bits of the decoded bitstream.

We further prove that an additional complexity reduction can be achieved when K > N , if the logarithm

of the source transition probabilities satisfy the so-called Monge property. This decrease becomes more

significant as the tree structure of the source code is more unbalanced. The reduction factor ranges

between O(K/N) (for a fixed-length source code) and O(K/ logN) (for Golomb-Rice code).
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I. INTRODUCTION

In traditional communications systems for noisy channels the source coder and channel coder

are designed independently. This practice is guided by Shannon’s famous source-channel separa-

tion theorem: Optimum performance can be achieved asymptotically in the code block length and

complexity by carrying out the tasks of compression and error correction separately. However,

in practice, the design of such a perfect separation system has to respect delay and complexity

constraints, thus leading to suboptimality. Moreover, Shannon’s separation theorem no longer

holds in network-based communications.

One way to improve the performance of practical coding systems, which has attracted con-

siderable attention of researchers lately, is joint source-channel decoding. When a suboptimal

design of a source coder fails to completely remove the redundancy of the source, some residual

redundancy will be present at the input of the channel coder ([14]). Joint source-channel decoding

will use this residual source redundancy solely or in conjunction with additional redundancy

provided by a channel coder to correct transmission errors.

The source encoding of a continuous correlated source is usually performed in two steps. First

the source is quantized and then each quantizer output is assigned a source codeword. Due to

the exponential explosion of the quantizer complexity as the sample block size increases, only

modest block size can be used in practice. But for a highly correlated source the block size of

a practical quantization scheme may not be large enough to completely remove the correlation.

Therefore, memory will be present in the quantizer output that may be modeled as a discrete

Markov source.

Many researchers have assumed such a model and investigated joint source-channel decoding

of discrete Markov sequences, which are encoded symbol by symbol, followed or not by channel

coding, and sent through a noisy channel. A popular technique for joint source-channel decoding

in such systems is maximum a posteriori (MAP) Markov sequence estimation. In [11], [1], [12]

MAP Markov sequence decoders were proposed for the case when the source codewords have

fixed-length and no channel code is applied. In [13], [17], [20] the case of variable-length

source code was treated. MAP Markov sequence decoders for systems where the source code
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is followed by a channel code were considered in [4], [10] (convolutional code), and [6] (turbo

code). Iterative decoders for systems where the source coder is followed by an interleaver and

then a convolutional coder were also investigated [7], [8]. End-to-end minimum mean squared

distortion decoders were studied in [18], [19].

This paper reexamines joint source-channel decoding by MAP sequence estimation in the case

where a Markov sequence (MS) is first compressed by a source coder (SC), then protected by a

convolutional coder (CC), and sent through a memoryless noisy channel. The problem has been

studied previously in [10], [7], [4]. The main observation in constructing such a MAP decoder

is that the cascaded chain formed by the MS followed by the SC and the CC (MS→SC→CC)

can be modelled as a finite-state machine whose states are triples of the states of the three

elements in the chain. Thus a trellis can be constructed to perform a Viterbi-like decoding. The

complexity of decoding depends on the state space size. Since the number of all possible triples

is O(K2N), where K is the number of source symbols and N is the number of states of the

CC, the decoding appears to be prohibitively expensive [7]. It was suggested in [4], [10] that

the number of states of the combined state machine can be reduced, but the significance of this

reduction was only assessed on some simple examples.

We focus on the complexity of the joint source-channel MAP sequence decoder in the case of

a finite impulse response (FIR) convolutional code. An FIR convolutional encoder can be realized

in controller canonical form, in which the current state identifies the sequence of m = log2N

previously encoded information bits. Based on this observation, we show that the space size of

the joint source-channel decoder can be reduced to less than K2 + N logN . This leads to a

decoding time complexity of O(TK2+TN logN), where T is the length in bits of the received

bitstream. Additionally, we prove that the decoding space complexity is only O(TK + TN).

Although we concentrate in this paper on evaluating the complexity of the MAP sequence

decoder, we mention that our result on the state space size reduction also applies to other trellis-

based decoding algorithms like symbol-by-symbol MAP decoding or end-to-end minimum mean

squared error decoding.

Moreover, we prove that if the logarithm of the source transition probabilities satisfies the so-

called Monge property, the decoding complexity can be further reduced, if K > N , by applying

a fast matrix search technique [2]. The reduction depends on the tree structure of the source

coder and is larger if the tree is more unbalanced. The reduction factor ranges between O(K/N)
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Fig. 1. The sequential operations of the system.

(for a fixed-length source code) and O(K/ logN) (for Golomb-Rice code).

The paper is structured as follows. The next section formulates the problem. Section 3 presents

a combined finite-state machine (CFSM) of the Markov model, source coder and convolutional

encoder. In Section 4 we show how the state-space size of the CFSM can be reduced and

analytically evaluate the reduction. The following section describes the MAP joint source-channel

decoding algorithm based on the trellis constructed from the reduced CFSM. In Section 6 we

propose an alternative decoder graph and in Section 7 we show how to use the structure of this

graph in conjunction with a fast matrix search technique to accelerate the MAP decoding, if the

logarithm of the source transition probabilities satisfies the so-called Monge property. Section 8

concludes the paper.

II. PROBLEM FORMULATION

We consider a first order Markov source (MS) over an alphabet of K symbols {a1, a2, · · · , aK},

with conditional probabilities P (ai|aj), 1 ≤ i, j ≤ K, and initial probabilities P (ai), 1 ≤ i ≤ K.

Let u = u1u2 · · ·uI be a sequence generated by the MS. The Markov sequence u is coded

by a source code (SC), which can be a fixed or a variable-length code, into the bitstream

v = v1v2 · · · vM , vj ∈ {0, 1}. Further a convolutional encoder (CC) is applied to the sequence

v, generating a new bit sequence x = x1x2 · · · xT , xk ∈ {0, 1}, which is sent through a noisy

memoryless channel. The bit sequence received at the other end is denoted by y = y1y2 · · · yT .

The problem of joint source-channel maximum a posteriori probability (MAP) sequence

decoding is, given the sequence y = y1y2 · · · yT output by the noisy channel, to infer the input

Markov sequence u = u1u2 · · ·uI of maximal a posteriori probability P (u|y). The whole process

is shown in Figure 1.

Since the bitstream x is completely determined by the Markov sequence u and vice versa,

P (y|u) equals the channel transition probability Pe(y|x). Because the channel is memoryless,

we have Pe(y|x) = ΠT
i=1Pe(yi|xi). Since u is generated by a first order MS, we have P (u) =
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P (u1)Π
I
i=2P (ui|ui−1). It follows from Bayes’ Theorem that the MAP sequence decoding problem

is equivalent to finding the Markov sequence u = u1u2 · · ·uI and/or the corresponding bitstream

x = x1x2 · · · xT obtained by cascading the SC and CC, such that the product

P (u1)Π
I
i=2P (ui|ui−1)Π

T
i=1Pe(yi|xi) (1)

is maximized, given the bitstream y = y1y2 · · · yT output by the noisy channel. Note that T is

known at the decoder, while I is known only if a fixed-length SC is applied. Otherwise( i.e., in

the case of a variable-length SC) I is a variable in the optimization.

III. COMBINED FINITE-STATE MACHINE OF MARKOV MODEL, SOURCE CODE AND

CHANNEL CODE

As noted in [10], [7], [4], the generation of the bitstream x via the composite actions of

MS, SC and CC, can be modelled by a stochastic finite-state machine, which we will call the

combined finite-state machine (CFSM).

The MS is conventionally modelled by a finite-state machine whose states are identified with

the alphabet symbols. There is a transition from a state aj to any state ai, which outputs the

symbol ai, with probability P (ai|aj). There is a distinct state a0, the initial state. There are

transitions from a0 to any other state ai, with output ai, and probability P (ai).

The SC applied to the Markov sequence can be a fixed-length code or a variable-length

code which is prefix free. Let ci denote the binary codeword assigned to the source symbol ai,

1 ≤ i ≤ K. Since the code is prefix-free, it has a binary tree representation. The tree has K

leaves and K − 1 internal nodes. Let L1 denote the root and L2, · · · , LK−1 denote the other

internal nodes. For convenience we will refer to the bit sequence which labels the path from the

root to this node as bit sequence Lj . By |Lj| we denote the number of bits in this sequence.

Note that L1 corresponds to the empty sequence, hence |L1| = 0.

The bitstream generated by the MS and the SC (MS→SC) can be described as the output of

a finite-state machine (FSM) in the following way. The states are all pairs (ai, Lj), 0 ≤ i ≤ K,

1 ≤ j ≤ K− 1. The initial state is (a0, L1). Since there is a one-to-one correspondence between

alphabet symbols and codewords, we will identify any state (ai, Lj) with the pair (ci, Lj), with

the convention that c0 is the empty word. Before describing the transitions of this FSM, let us

explain first the meaning of each state. If after a number of transitions the system is in state
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Fig. 2. The source coder tree of Example 1. The filled circles represent the leaves, i.e. the source codewords, and the empty

circles represent the internal nodes, i.e. the prefixes of codewords.

(c1, L1) (c2, L1) (c3, L1) (c1, L2) (c2, L2) (c3, L2)

(c1, L1) 0 1

(c2, L1) 0 1

(c3, L1) 0 1

(c1, L2) 0 1

(c2, L2) 0 1

(c3, L2) 0 1

TABLE I

TRANSITION MATRIX IN THE FSM OF THE MS→SC PROCESS OF EXAMPLE 1. THE ELEMENTS 0 AND 1 MARK VALID

TRANSITIONS WITH OUTPUT 0 AND 1, RESPECTIVELY.

(ci, Lj), then the last completed codeword in the output sequence is ci, which is followed by the

bit sequence Lj . From each state (ci, Lj) there are only two possible transitions, one outputting

the bit 0 and the other outputting bit 1. The transition outputting the bit b either ends at the state

(ci, Lj′) if appending the bit b to the end of Lj generates the bit sequence Lj′ , or at the state

(ci′ , L1) if appending the bit b to the end of Lj generates the codeword ci′ .

Let the convolutional encoder (CC) which is next applied, be a feedforward convolutional en-

coder of rate 1/β, with memory order m, realized in controller canonical form. Our terminology

used in describing the CC is from [9]. The case of higher rate CC will be briefly discussed later.

The CC consists of one shift register of length m. The input sequence enters the left end of

the shift register and the β output sequences are produced by β modulo 2 adders external to the

shift register. The β output sequences are interleaved to produce the channel codeword.

The CC itself can be described by a state transition diagram. The state of the encoder is

defined as its shift register contents. Thus, the total number of states of the CC is N = 2m,
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S1 S2 S3 S4

S1 0/000 1/111

S2 0/011 1/100

S3 0/001 1/110

S4 0/010 1/101

TABLE II

TRANSITION MATRIX OF THE CC OF EXAMPLE 1. THE ENTRIES b/b′1b
′
2b

′
3 MARK VALID TRANSITIONS WITH INPUT b AND

OUTPUT b′1b
′
2b

′
3 .

corresponding to all m-bit sequences. We denote the states by S1, · · ·SN , S1 being the initial

state. For each k, 1 ≤ k ≤ N , let the sequence of m bits bk1b
k
2 · · · bkm be the memory content of

state Sk. Unlike the conventional notation, we assume that bk1 is the rightmost bit in the shift

register and bkm is the leftmost. Because the convolutional encoder is a feedforward encoder in

controller canonical form, the contents of its shift register are its previous m input bits. Hence

the CC is in state bk1b
k
2 · · · bkm at some time t if and only if the input processed at time t − i is

bkm+1−i, for all i, 1 ≤ i ≤ m. After the current information bit b is processed, the new state of the

CC is bk2 · · · bkmb. Thus, there are two transitions starting from any state in the state diagram of

the CC, one with input bit 0, the other with input bit 1. A transition with input bit b is from any

state Sk to any state Sk′ such that bk′1 b
k′
2 · · · bk′m = bk2 · · · bkmb. Every transition outputs a sequence

of β bits according to the generator matrix of the convolutional encoder.

Example 1. Consider a Markov source over a three-symbol alphabet, the SC with codewords

c1 = 0, c2 = 10, c3 = 11, and a rate 1/3 CC with memory order m = 2. The tree representation

of the SC is depicted in Figure 2. The transition matrix of the FSM of the MS→SC process is

given by Table I. Table II shows the transition matrix of the CC. Note that the states of CC are:

S1 = 00, S2 = 01, S3 = 10, S4 = 11.

The states of the combined finite-state machine (CFSM) which describes the overall system of

MS→SC→CC, are all the triples (ci, Lj, Sk), 0 ≤ i ≤ K, 1 ≤ j ≤ K−1, 1 ≤ k ≤ N . The initial

state is (c0, L1, S1). There is a transition from some state (ci, Lj, Sk) to a state (ci′ , Lj′ , Sk′) if

and only if there is a transition with output b ∈ {0, 1} from the state (ci, Lj) to the state (ci′ , Lj′)

in the FSM of MS→SC, and there is a transition with input bit b from the state Sk to state Sk′
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in the state diagram of the CC. Note that in this case the bit b is unique. The output of the

transition from (ci, Lj, Sk) to (ci′ , Lj′ , Sk′) is the output of the transition from Sk to Sk′ in the

state diagram of the CC.

IV. STATE REDUCTION IN CFSM

The total number of states of the CFSM, if constructed mechanically as described in the

preceding section, is clearly (K + 1)(K − 1)N . This seemingly suggests that the joint source-

channel MAP decoding would have a complexity of at least O(K2NT ), where T is the length

of the sequence to be decoded in bits. Indeed, in [7] the authors made remarks about the

prohibitive cost of the joint source-channel MAP decoding. But an observation lending hope for

complexity reduction is that many of the triples (ci, Lj, Sk) can never be reached by any sequence

of transitions starting from the initial state (c0, L1, S1), hence they can be eliminated from the

CFSM. This observation was made in [10] and [4], but it was not evaluated how significant this

reduction can be, except on some simple cases. Next we will answer this question precisely.

A state (ci, Lj, Sk) of the CFSM can be reached through a sequence of transitions from the

initial state if there is a bitstream v1v2 · · · vn, a sequence of transitions from (c0, L1) to (ci, Lj)

which outputs the bitstream v1v2 · · · vn in the finite-state machine of MS→SC, and a sequence

of transitions from S1 to Sk with input v1v2 · · · vn in the CC state diagram. Then ciLj has to

be a suffix of v1v2 · · · vn, and bk1b
k
2 · · · bkm has to be a suffix of v1v2 · · · vn, too. It follows that if

m ≤ |ci| + |Lj| then bk1b
k
2 · · · bkm is a suffix of ciLj , and if m > |ci| + |Lj| then ciLj is a suffix

of bk1b
k
2 · · · bkm. By eliminating all the triples which do not satisfy the above property a reduced

combined finite-state machine (RCFSM) is obtained. Table III presents the transition matrix of

the RCFSM for Example 1.

The decoding complexity is determined by the number of states (ci, Lj, Sk) for i ≥ 1, called

significant states, in the RCFSM. In Table IV the significant states of the RCFSM for Example

1 are listed. Denote by S the set of significant states in RCFSM. To evaluate |S| we partition

S into two subsets CI and CII . CI contains the states with m ≤ |ci| + |Lj|, while CII contains

those with m > |ci| + |Lj|. For each pair (ci, Lj) such that m ≤ |ci| + |Lj| there is only one

state Sk of the convolutional coder such that bk1b
k
2 · · · bkm is a suffix of ciLj . Consequently,

|CI | =
∑

i,j,|ci|+|Lj |≥m

1 ≤ K(K − 1). (2)
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Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q1 = (c1, L1, S1) 000 111

Q2 = (c1, L1, S3) 001 110

Q3 = (c1, L2, S2) 011 100

Q4 = (c2, L1, S3) 001 110

Q5 = (c2, L2, S2) 011 100

Q6 = (c3, L1, S4) 010 101

Q7 = (c3, L2, S4) 010 101

TABLE III

TRANSITION MATRIX FOR THE RCFSM OF EXAMPLE 1. THE THREE-BIT SEQUENCES ARE THE OUTPUTS OF VALID

TRANSITIONS.

S1 S2 S3 S4

(c1, L1) × ×

(c2, L1) ×

(c3, L1) ×

(c1, L2) ×

(c2, L2) ×

(c3, L2) ×

TABLE IV

SIGNIFICANT STATES OF THE RCFSM OF EXAMPLE 1.

Since the states of the CC correspond to all sequences of m bits, for each pair (ci, Lj) such

that m > |ci| + |Lj| there are 2m−|ci|−|Lj | states Sk of the convolutional coder such that ciLj is

a suffix of bk1b
k
2 · · · bkm. Therefore,

|CII | =
∑

i,j,|ci|+|Lj |<m

2m−|ci|−|Lj |

= 2m
∑

i,j,|ci|+|Lj |<m

2−|ci|−|Lj |

≤ 2m
∑

j,|Lj |<m

2−|Lj |
K∑
i=1

2−|ci|. (3)
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According to Kraft’s inequality
∑K

i=1 2
−|ci| ≤ 1, we have

|CII | ≤ 2m
∑

j,|Lj |<m

2−|Lj |. (4)

On the other hand ∑
j,|Lj |<m

2−|Lj | =
m−1∑
l=0

∑
j,|Lj |=l

2−l ≤
m−1∑
l=0

1 = m. (5)

We used above the inequality
∑

j,|Lj |=l 2
−l ≤ 1, which follows from the fact that there are at

most 2l nodes Lj on the l-th level of the source coder tree. Relations (4) and (5) imply that

|CII | ≤ m2m = N log2N. (6)

Finally,

|S| = |CI |+ |CII | ≤ K2 −K +N log2N. (7)

Note that this upper bound is very loose actually. Indeed, the equality in (2) holds only if CII is

empty, and the equality in (6) holds only if CI is empty. Clearly these two conditions cannot hold

simultaneously. The precise count of |S| depends on how balanced the source code tree is. We

consider two extreme cases to illustrate the point: the Golomb-Rice code (the worst ill-balanced

code tree) and the fixed-length code (perfectly balanced code tree). The detailed derivations of

these results are deferred to Appendix.

For the Golomb-Rice code, each codeword ci, for 1 ≤ i ≤ K − 1, is the bit sequence of i− 1

1’s followed by a 0, and cK is the bit sequence of K − 1 1’s. For each j, 2 ≤ j ≤ K − 1, Lj is

the bit sequence of j − 1 1’s. We assume that m ≤ K − 1, which is often the case in practice.

Then the following relation holds

|S| = K2 −K + 2N − 1
2
(log22N + 3 log2N + 4), (8)

which implies that |S| = O(K2 +N).

For a fixed-length source code with K being an integer power of 2, the following statements

are valid:

i) if N ≤ K then |S| = K2 −K;

ii) if K < N ≤ K2/2 then

|S| = K2 +N log2N −N(1 + log2K); (9)

iii) if N > K2/2 then |S| = N log2K.
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(c1,L1,S1)t

(c3,L1,S4)t+1

(c2,L2,S2)t+1

(c2,L1,S3)t+1

(c1,L2,S2)t+1

(c1,L1,S3)t+1

(c1,L1,S1)t+1

(c1,L1,S3)t

(c1,L2,S2)t

(c2,L1,S3)t

(c2,L2,S2)t

(c3,L1,S4)t

(c3,L2,S4)t (c3,L2,S4)t+1

Fig. 3. Decoder graph: two consecutive stages and edges between them; black circles are nodes corresponding to the completion

of a source codeword.

V. DECODING ALGORITHM

Having analyzed the structure of the RCFSM, we are now ready to present a MAP decoding

algorithm and evaluate its time and space complexity.

In order to determine an input Markov sequence u, it suffices to find the corresponding

sequence of transitions of the RCFSM. If the channel output sequence y has T bits, then the

channel input sequence x also has T bits. Hence x is produced after M = T/β transitions in

the RCFSM. The MAP sequence decoding is performed on a so-called decoder graph G on

RCFSM. G is a trellis of M +1 stages, numbered from 0 to M , each stage containing as nodes

the states of the RCFSM, in general. The nodes situated at stage t, 0 ≤ t ≤M , are denoted by

(ci, Lj, Sk)t for all i, j, k such that (ci, Lj, Sk) is a state of the RCFSM.

There are edges (transitions) between any two nodes (ci, Lj, Sk)t and (ci′ , Lj′ , Sk′)t+1 such

that there is a transition between the states (ci, Lj, Sk) and (ci′ , Lj′ , Sk′) in the RCFSM (Figure

3). Such an edge corresponds to the decoding of the subsequence ytβ+1 · · · ytβ+β of y, into the

bitstream b1b2 · · · bβ , which is the output of the transition from (ci, Lj, Sk) to (ci′ , Lj′ , Sk′) in

the RCFSM. The weight of this edge should in principle have two components: one accounting

for the channel error probability and the other for the MS transition probability. However it is

enough to assign a component accounting for the MS probability only if the edge ends at a

complete node, i.e. which corresponds to the completion of a source codeword, or equivalently,

j′ = 1. Therefore, we define the weight of the edge from the node (ci, Lj, Sk)t to the node
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(ci′ , Lj′ , Sk′)t+1 to be logPe(ytβ+1 · · · ytβ+β|b1b2 · · · bβ) + logP (ai′|ai), if j′ = 1, and to be

logPe(ytβ+1 · · · ytβ+β|b1b2 · · · bβ), otherwise. This distinction is justified by the following obser-

vation. Any path connecting two complete nodes, but whose internal nodes are all incomplete,

corresponds to an MS transition. Then the probability of this transition is accounted for in the

weight of the path only through the last edge. Consider the path between two nodes (ci, L1, Sk)t

and (ci′ , Lj′ , Sk′)t+|ci′ | (note that the path connecting these nodes is unique). It corresponds to

the MS transition from state ai to state ai′ . On the other hand, summing the weights of the

component edges obtains the weight of the path to be logP (ai′ |ai) + C, where C depends only

on the channel error probability.

The final nodes of the graph are (ci, L1, Sk)M , for all i ≥ 1, each corresponding to the

completion of a codeword. There is a one-to-one correspondence between a path from the initial

node to some final node and a pair u,x, such that the weight of the path equals the logarithm

of (1). Thus, the problem of joint source-channel MAP sequence decoding is reduced to the

maximum-weight path problem in G.

The MAP sequence decoding algorithm proceeds stage by stage and computes the maximum-

weight path ending in each node of the stage. The number of edges entering each stage is

2|S| because there are exactly two transitions starting from each node of the previous stage.

Therefore, the number of operations at each stage of G, is proportional to |S|. Thus, the total time

requirement equals O(M |S|) = O(MK2+MN logN), or, equivalently, O(MK2+MN logN)

since T = βM .

Let us now analyze the space complexity. Seemingly, for each node of G, the last edge of the

maximum-weight path ending in that node needs to be stored, as required by backtracking of a

typical dynamic programming process. This would imply an O(M |S|) = O(MK2+MN logN)

space complexity. However, by a careful examination of the trellis one can see that only knowing

the complete nodes on a path is sufficient for reconstructing the whole path because the inter-

mediate nodes can be generated by stepping through the (deterministic) convolutional encoder.

Therefore, for each surviving path ending in a complete node, the last visited complete node is

stored. Then the space necessary for joint source-channel MAP decoding becomes O(M |S ′|),

where S ′ is the set of complete states of the RCFSM. The evaluation of |S ′| follows the same

line of thought as in Section IV. For a triple (ci, L1, Sk) of the CFSM to be reachable from

the initial state, either ci has to be a suffix of Sk or vice versa. If |ci| ≥ m, its m-bit suffix
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Fig. 4. Decoder graph G: three consecutive stages and edges between them; black circles and squares are nodes corresponding

to the completion of a source codeword; the squares correspond to codewords of at least m bits, and the circles to the rest.

corresponds to exactly one state Sk of the CC. If |ci| < m, then there are 2m−|ci| CC states Sk

which have ci as a suffix. Using further Kraft’s inequality we obtain that∑
i,|ci|<m

2m−|ci| = N
∑

i,|ci|<m

2−|ci| ≤ N. (10)

It follows that |S ′| ≤ K +N . Thus, the space complexity becomes O(MK +MN) = O(TK +

TN).

Before ending this section we briefly address the case of rate α/β finite input response CC

with α > 1. In this case each state of the CC has to be split into α states. Thus, the CC can

be described by a state diagram with one input bit transitions. By the same arguments as for a

rate 1/β CC, we obtain the reduction of the CFSM’s state space size to O(αK2 + N logN).

This leads to an MAP decoding algorithm of O(αTK2 + TN logN) time complexity, which

represents a drastic improvement over the complexity of O(TK2N) as known currently. A

similar observation as in the case of (β, 1) CC leads to a reduction of the space requirement

from O(αTK2 + TN logN) to O(αTK + TN).

VI. ALTERNATIVE DECODER GRAPH

We will show in Section 7 how the MAP decoding time can be decreased if the logarithm

of the Markov source transition probabilities satisfy the so-called Monge property, which is the
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main contribution of this work. For this we need first to construct an alternative decoder graph

G′ from G. The general idea in obtaining the graph G′ from G is that any sequences of edges

which corresponds to decoding a codeword of length at least m (the memory of the CC), and

which starts from some complete node corresponding to a codeword of length at least m, is

”contracted” into a single edge. By this contraction we do not understand that all the edges in

the original sequence are removed, but only those which are not shared with other non-contracted

sequences. This concept will be made clear in the following paragraphs.

Let Nc denote the set of complete nodes in the graph G which correspond to decoding a source

codeword of at least m bits. As we have seen in Section IV, for each i such that |ci| ≥ m, there

is a unique k such that (ci, L1, Sk) is in the RCFSM, i.e., Sk has to be the m-bit suffix of ci.

We denote this value of k by k(i). Thus, Nc is the set of all nodes (ci, L1, Sk(i))t in the graph

G such that |ci| ≥ m and t ≥ 0.

The construction of G′ from G is as follows. If two nodes in Nc are connected by a path

which does not visit other complete nodes, then this path is contracted into a single edge. The

original path is not necessarily completely removed, but only those edges which are not shared

with other paths connecting consecutive complete nodes at least one of which is not in Nc. To

explain this process better let us consider such a path which is contracted into a single edge.

Let the starting node of the path be (ci, L1, Sk(i))t for some 1 ≤ i ≤ K such that |ci| ≥ m,

and t ≥ 0. Then the ending node must be (ci′ , L1, Sk(i′))t+|ci′ | for some 1 ≤ i′ ≤ K such that

|ci′| ≥ m. Any intermediate node on this path is of the form (ci, Lj, Sk)t+|Lj | where Lj ̸= L1, Lj

is an ascendant of ci′ in the source code tree, and Sk is the m-bit suffix of ciLj . Such a graph

node is also contained in any path connecting (ci, L1, Sk(i))t with some node (ci”, L1, Sk(i”))t+|ci”|

provided that Lj is an ascendant of ci” in the source code tree. If |ci”| < m, then the path from

(ci, L1, Sk(i))t to (ci”, L1, Sk(i”))t+|ci”| is not contracted, consequently the node (ci, Lj, Sk)t+|Lj |

cannot be removed. On the other hand, if each codeword descending from Lj in the source

code tree has at least m bits, then the node (ci, Lj, Sk)t+|Lj | can be removed together with its

incoming and outgoing edges. We illustrate the difference between the two graphs G and G′ on

the example considered in the previous sections. Figures 4 and 5 show the edges between three

consecutive stages in the two graphs respectively.

In conclusion, the new graph G′ is obtained from G by removing all nodes (ci, Lj, Sk)t such

that t ≥ 0, |ci| ≥ m, and Lj is not an ascendant of any codeword cı with |cı| < m in the source
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Fig. 5. New decoder graph G′: three consecutive stages and edges between them (only edges with both ends at these stages are

illustrated); black circles and squares are nodes corresponding to the completion of a source codeword; the squares correspond

to codewords of at least m bits, and the circles to the rest.

code tree. All edges entering or leaving such nodes are removed from G too. Further, we add

an edge from (ci, L1, Sk(i))t to (ci′ , L1, Sk(i′))t+|ci′ |, for any 1 ≤ i, i′ ≤ K such that |ci| ≥ m,

|ci′| ≥ m, and t ≥ 0, and set its weight to be equal to the weight of the old path between the

two nodes (note that the old path between the two nodes was unique).

Clearly, the MAP sequence decoding problem is equivalent to finding the maximum-weight

path in G′. This could be done by advancing sequentially through the stages of the graph G′ and

computing at each stage the maximum-weight path for each node at that stage. However, in order

to reduce the complexity, we organize the computations differently. Namely, we still proceed

sequentially through the stages of the graph G′, but at each stage t, we find the maximum-weight

path for each node at stage t+ 1 andadditionally we process the paths ending at nodes of later

stages (t+ |ci′| with |ci′| ≥ m), but whose last visited node is at stage t.

In order to give a precise description of the algorithm we need a few more notations. For

each node n of the new graph G′, let W (n) denote the weight of the maximum-weight path

from the source to n. For the nodes n ∈ Nc we compute W (n) by considering separately the

paths whose last visited node is in Nc, and the rest of the paths. Let W1(n) and W2(n) denote

the weight of the maximum-weight path in the two situations respectively. Then clearly W (n)

is the maximum of W1(n) and W2(n). For any node n′ ∈ Nc situated at stage t+ |ci′| for some
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t and i′ with |ci′| ≥ m, the value W1(n
′) is computed at stage t because all paths ending in n′

with the last visited node in Nc, have the last visited node situated at stage t. Further, at stage

t + |ci′| − 1, the value W2(n
′) is computed too and compared against W1(n

′) in order to get

W (n).

We denote by Nc(t) (respectively, N̄c(t)) the set of nodes of G′ at stage t which are (respec-

tively, are not) in Nc. Denote an edge from node n to node n′ by (n, n′) and its weight by

w(n, n′). Let E ′ be the set of all edges of G′.

At each stage t the algorithm performs the following computations:

a) Compute W (n′), for all n′ ∈ N̄c(t+ 1), according to

W (n′) = max
n∈Nc(t)∪N̄c(t),(n,n′)∈E′

{W (n) + w(n, n′)}. (11)

b) Compute W2(n
′), for all n′ ∈ Nc(t+ 1), according to

W2(n
′) = max

n∈N̄c(t),(n,n′)∈E′
{W (n) + w(n, n′)}. (12)

c) Compute W1(n
′) for all n′ ∈ Nc(t+ |ci′|) (i.e., for all n′ = (ci′ , L1, Sk(i′))t+|ci′ | for some i′

such that |ci′| ≥ m) using

W1(n
′) = max

n∈Nc(t)
{W (n) + w(n, n′)}. (13)

d) Compute W (n′), for all n′ ∈ Nc(t+ 1), according to

W (n′) = max{W1(n
′),W2(n

′)}. (14)

Note that relation (14) can be applied because the values W1(n
′) have been computed at

previous stages.

VII. ACCELERATED DECODING BY FAST MATRIX SEARCH

We show next how the algorithm outlined in the previous section can be sped up if the

logarithm of the Markov source transition probabilities satisfy the Monge property, i.e.:

logP (ai′1 |ai1) + logP (ai′2 |ai2) ≥

logP (ai′1 |ai2) + logP (ai′2 |ai1)

for all 1 ≤ i1 < i2 < K and 1 ≤ i′1 < i′2 ≤ K, (15)
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It was shown in [20] that if the discrete Markov source is the output of a scalar quantizer

applied to a continuous source1 whose joint pdf f(u, v) of two consecutive samples satisfies

log f(v′, u) + log f(v, u′) ≤ log f(v′, u′) + log f(v, u), (16)

for any real values u < u′ and v < v′, then the condition (15) holds. If the second partial

derivative ∂2(log f)/∂u∂v exists, then (16) holds if and only if ∂2(log f)/∂u∂v ≥ 0 for all real

u, v [3]. This is clearly true when the joint pdf f(·, ·) is Gaussian. Consequently, the Monge

property (15) holds for a scalar quantized Gaussian-Markov source.

To speed up the MAP decoding algorithm we need to carefully organize the computations in

task c). Instead of solving the instances of the maximization problem separately, we structure

these instances into a matrix as follows. Let us assume without restricting the generality, that the

source codewords ci such that |ci| ≥ m, are c1, c2, · · · , cKc , for some Kc ≤ K. Further consider

the Kc ×Kc matrix Mt with elements Mt(i, i
′), 1 ≤ i, i′ ≤ Kc, defined as follows:

Mt(i, i
′) = W (n) + w(n, n′), (17)

where n = (ci, L1, Sk(i))t and n′ = (ci′ , L1, Sk(i′))t+|ci′ |. Then (13) becomes

W1((ci′ , L1, Sk(i′))t+|ci′ |) = max
i,1≤i≤Kc

Mt(i, i
′). (18)

In other words, computing W1((ci′ , L1, Sk(i′))t+|ci′ |) is equivalent to finding the maximum element

of column i′ of the matrix Mt. Hence task c) is transformed to a matrix search problem on Mt.

If the matrix satisfies a property known as total monotonicity, then this problem can be solved

more efficiently [2].

A matrix M is said to be totally monotone [2] if

M(i1, i
′
1) ≤ M(i2, i

′
1) =⇒ M(i1, i

′
2) ≤ M(i2, i

′
2)

for all i1 < i2 and i′1 < i′2. (19)

Our matrix Mt is not totally monotone, in general, but it can be divided into sub-matrices for

which the condition (19) holds if (15) holds. For this, the rows of matrix Mt are partitioned

into subsets such that for all rows i in a given subset, k(i) is the same (i.e., all codewords ci

have the same m-bit suffix).

1Although a quantized Markov chain may not necessarily be a Markov chain, here we assume this to be a good approximation.
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We may assume without loss of generality that the indexing of the codewords c1, c2, · · · , cKc

is such that the codewords with common m-bit suffix have consecutive indeces. Then there are

integers L, 1 ≤ L ≤ N , and 1 = m0 < m1 < · · · < mL = Kc+1, such that for any l, 1 ≤ l ≤ L,

k(i) is the same for all i,ml−1 ≤ i < ml. For each l, 1 ≤ l ≤ L, we define the matrix Mt,l as

the sub-matrix of Mt formed with the rows ml−1,ml−1 + 1, · · · ,ml − 1.

Proposition. If condition (15) holds, then all sub-matrices Mt,l are totally monotone.

Proof. An obvious sufficient condition for the sub-matrix Mt,l to be totally monotone is

Mt(i1, i
′
1) +Mt(i2, i

′
2) ≥ Mt(i2, i

′
1) +Mt(i1, i

′
2)

for all ml−1 ≤ i1 < i2 < ml and 1 ≤ i′1 < i′2 ≤ Kc. (20)

Recall that Mt(i, i
′) = W (n)+w(n, n′), where n = (ci, L1, Sk(i))t and n′ = (ci′ , L1, Sk(i′))t+|ci′ |.

The value w(n, n′) is the weight of the edge from n to n′ of the graph G′, which was defined

as the weight of the path from n to n′ in the graph G. This path has exactly |ci′| edges, and it

corresponds to a sequence of |ci′| transitions in the FSM of MS→SC from the state (ci, L1) to the

state (ci′ , L1), whose output is the bitstream forming the codeword ci′ . Also this path corresponds

to the sequence of transitions of the CC starting from the state Sk(i), and generated by the the input

ci′ . Let b1b2 · · · bβ|ci′ | be the output of this sequence of transitions. Then, the weight of this path,

hence the weight of the edge (n, n′) of G′, is w(n, n′) = logPe(ytβ+1 · · · y(t+|ci′ |)β|b1b2 · · · bβ|ci′ |)+

logP (ai′ |ai). Note that the first term in the above equality depends only on three parameters,

namely t, k(i), and i′. Therefore, we will simply denote it by ω(t, k(i), i′). Then the entry

Mt(i, i
′) can be written as

Mt(i, i
′) = W (n) + ω(t, k(i), i′) + logP (ai′|ai). (21)

By substituting (21) in (20) and making all cancellations (note that since ml−1 ≤ i1 < i2 < ml,

we have k(i1) = k(i2)) we obtain that (20) is equivalent to

logP (ai′1 |ai1) + logP (ai′2 |ai2) ≥

logP (ai′1 |ai2) + logP (ai′2 |ai1)

for all ml−1 ≤ i1 < i2 < ml and 1 ≤ i′1 < i′2 ≤ Kc, (22)

which clearly holds when (15) holds. �

DRAFT



19

The fast matrix search technique proposed by Aggarwal et al. [2] solves the matrix search

problem in O(r1(1+log(r2/r1))) time, if the matrix has r1 rows and r2 columns (r1 ≤ r2), and it

is totally monotone. Consequently, if all matrices Mt,l, 1 ≤ l ≤ L, are totally monotone, solving

the matrix search for all of them can be done in O(
∑L

l=1(ml−ml−1)(1+log(Kc/(ml−ml−1)))) =

O(Kc logKc) time. Further, in order to find the maximum element on each column of Mt, for

each column the maximum over the maxima in the L sub-matrices Mt,l has to be computed,

taking additional O(KcL) time. Thus, according to Proposition, if the source satisfies condition

(15), then the time required to perform the task c) is O(Kc(logKc + L)).

The total number of operations necessary to perform tasks a) and b) and d) is proportional

to |Nc(t)|+ |N̄c(t)|. Clearly, |Nc(t)| = Kc. To evaluate the number of nodes in N̄c(t), note that

such nodes are all quadruples (ci, Lj, Sk)t such that (ci, Lj, Sk) is in the RCFSM, and one of

the following conditions is satisfied:

i) |ci| < m;

ii) |ci| ≥ m, and Lj is a ascendant of some codeword ci′ with |ci′| < m, in the source code

tree.

By the same line of argument as in Section IV, we conclude that the number of nodes satisfying

condition i) is at most (K −Kc)K +N log2N , while the number of nodes satisfying condition

ii) is at most Kc(K − Kc). Consequently, the total number of operations to perform tasks a),

b) and d) is O(K(K −Kc) +N log2N). Adding this cost to the time requirements for task c),

and multiplying the total by the number of stages M (which is proportional to T ), we obtain

the time complexity of the algorithm outlined in the previous section:

O(T (K(K −Kc) +N logN +Kc(L+ logKc))). (23)

Clearly, the improvement in efficiency is greater as K−Kc and L become smaller, which is the

case when the source code tree is more unbalanced. For fixed-length source code with K > N ,

we have Kc = K and L = N . Thus, the decoding time using the fast matrix search technique is

O(T (N logN+KN)). For the Golomb-Rice code with K > log2N we have Kc = K−log2N+1

and L = 2, thus the decoding using the fast matrix search takes O(T (K logK + K logN +

N logN)) time.

It is easy to see that the fast matrix search approach can still be applied if the relation (15)

holds, after a relabeling of the codewords, or more generally, if there are two permutations ϕ
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and ψ on the integers between 1 and Kc, such that

logP (cϕ(i)|cψ(j′)) + logP (cϕ(i′)|cψ(j)) ≤

logP (cϕ(i′)|cψ(j′)) + logP (cϕ(i)|cψ(j))

i < i′, j < j′. (24)

In this case the rows and columns of each matrix Mt,l have to be permuted by using ϕ,

respectively ψ. An O(K2) time algorithm to check if such permutations exist can be found

in [5], [3]. The decoder can first apply this algorithm in order to decide whether to use the fast

matrix search technique or not. The extra cost required by this test does not alter the asymptotic

complexity of the chosen algorithm.

VIII. CONCLUSION

This paper reexamines the complexity of joint source-channel decoding of a Markov sequence

which is first encoded by a source code, then by a finite impulse response convolutional encoder,

and sent through a noisy memoryless channel. It was established previously that the joint source-

channel decoding can be performed by using a Viterbi-like algorithm on a bit-level trellis whose

state space size at each level is O(K2N), where K is the number of Markov symbols, and N is

the number of convolutional encoder states. We show that the state space size can be drastically

reduced to O(K2+N logN). A further reduction can be achieved if the logarithm of the source

transition probabilities satisfies the Monge property. The reduction factor ranges from O(K/N)

(for a fixed-length source code) to O(K/ logN) (for Golomb-Rice code), increasing as the tree

structure of the source code becomes more unbalanced.

IX. APPENDIX

In this appendix we present the derivations of the precise count of the significant states of the

RCFSM in the case of Golomb-Rice code and fixed-length source codes.

For the Golomb-Rice code, each codeword ci, for 1 ≤ i ≤ K − 1, is the bit sequence of

i− 1 1’s followed by a 0, and cK is the bit sequence of K − 1 1’s. For each j, 2 ≤ j ≤ K − 1,

Lj is the bit sequence of j − 1 1’s. We assume that m ≤ K − 1 As we have seen |CI | equals
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the number of ordered pairs (i, j), 1 ≤ i ≤ K, 1 ≤ j ≤ K − 1, which satisfy the inequality

m ≤ |ci|+ |Lj|. Consequently,

|CI | =
K∑
i=1

∑
j,|Lj |≥m−|ci|

1. (25)

Since |ci| = i for i ≤ K − 1, |cK | = K − 1, and |Lj| = j − 1 for all j, we further obtain

|CI | =
K−1∑
i=1

∑
j,j≥m−i+1

1 +
∑

j,j≥m−K+2

1

=
m∑
i=1

K−1∑
j=m−i+1

1 +
K−1∑
i=m+1

K−1∑
j=1

1 +
K−1∑
j=1

1

=
m∑
i=1

(K − 1−m+ i) +
K−1∑
i=m+1

(K − 1) +K − 1

= m(K − 1−m) +
m∑
i=1

i+ (K − 1)(K −m)

= K2 −K − m2 −m

2
. (26)

We mention that the second equality in the series of relations above was obtained by breaking

in two parts the summation over i and by using the observation that when i > m, the inequality

j ≥ m− i+ 1 is satisfied for all j, 1 ≤ j ≤ K − 1. Further, according to (3) we have

|CII | = 2m
∑

i,j,|ci|+|Lj |<m

2−|ci|−|Lj |. (27)

Note that |ci|+ |Lj| < m implies i ≤ m− 1, consequently,

|CII | = 2m
∑

i,j,|ci|+|Lj |<m

2−|ci|−|Lj |

= 2m
m−1∑
i=1

2−i
m−i∑
j=1

2−(j−1)

= 2m
m−1∑
i=1

2−i(2− 2−(m−i−1))

= 2m+1 − 2m− 2. (28)

Relations (26) and (28) imply that

|S| = K2 −K + 2N − 1
2
(log22N + 3 log2N + 4). (29)
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Consider now a fixed-length source code with K being an integer power of 2. Note that the

length of each codeword is log2K. We need to distinguish between three cases.

i) N ≤ K. In this case CII is empty and CI contains a state for each pair ci, Lj . Then

|S| = K2 −K. (30)

ii) K < N ≤ K2/2. In this case we have

|CI | =
∑

i,j,|ci|+|Lj |≥m

1

=
∑

i,j,|Lj |≥m−log2K

1

= K

log2K−1∑
l=m−log2K

∑
j,|Lj |=l

1

= K

log2K−1∑
l=m−log2K

2l

= K(2log2K − 2m−log2K)

= K2 −N. (31)

Further, according to (3) we obtain

|CII | = 2m
∑

i,j,|ci|+|Lj |<m

2−|ci|−|Lj |

= N
∑

i,j,|Lj |<m−log2K

2− log2K−|Lj |

= NK2− log2K

m−log2K−1∑
l=0

∑
j,|Lj |=l

2−l

= N

m−log2K−1∑
l=0

2−l2l

= N(log2N − log2K). (32)

It follows that

|S| = K2 +N log2N −N(1 + log2K). (33)

DRAFT



23

iii) N > K2/2. In this case CI is empty and

|CII | = N
∑m−log2K−1

l=0

∑
j,|Lj |=l 2

−l =

N
∑log2K−1

l=0 2−l2l = N log2K. (34)

Then

|S| = N log2K. (35)
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