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Cross-layer Resource Allocation for Scalable Video
over OFDMA Wireless Networks: Trade-off

between Quality Fairness and Efficiency
Kuan Lin and Sorina Dumitrescu, Senior Member, IEEE

Abstract—This work addresses the trade-off between quality
fairness and system efficiency for scalable video delivery to
multiple users over OFDMA wireless networks. We consider a
cross-layer optimization framework seeking to maximize the sum-
PSNR corresponding to average user rates, subject to relaxed
PSNR-fair constraints. More specifically, a pure quality-fairness
(PF) problem is solved first to determine the maximum PSNR
value obtained by imposing the same PSNR level to all users.
Next the constraints in the PF problem are relaxed by allowing
the relative difference between the PSNR of each video and
the PF PSNR value to be within some range [0, σ]. Thus, the
parameter σ controls the trade-off between quality fairness and
system efficiency.

The PF problem is equivalent to the quality fairness problem
proposed by Cicalo and Tralli, which was solved using a vertical
decomposition approach. We adopt a similar decomposition, but
with a faster solution for the problem at the application layer.
Further, we convert the optimization problem with the relaxed
fairness constraints into a convex problem and solve it using
established techniques.

Our simulation results show that by varying the value of σ,
a wide range, densely populated, of trade-off points between
quality fairness and efficiency can be achieved. Additionally, a
subjective quality assessment reveals that while the maximum
efficiency scheme (ME), i.e., when σ = ∞, may compromise
the quality of the high demanding videos, the PF scheme may
sacrifice the quality of the low demanding videos. On the other
hand, by providing a trade-off between PF and ME, the proposed
scheme has the potential of finding a middle ground where all
users are satisfied.

Index Terms—Cross-layer, orthogonal frequency division mul-
tiple access (OFDMA), resource allocation, scalable video coding,
quality fairness/efficiency trade-off.

I. INTRODUCTION

W ITH the advancement of video compression technology
and the rapid development and deployment of network

infrastructure, recent years have witnessed an unprecedented
growth in demand for video services. According to recent
forecasts [1], video will represent 72% of the total mobile data
traffic by 2019, compared to 55% in 2014. When the broadcast
operators deliver different compressed video programs to
multiple users sharing a resource-limited wireless network, the
design and optimization of the video communication system
should consider two essential service objectives, namely, fair-
ness and efficiency. To achieve fairness, the system should
provide fair service, typically in terms of video quality, to all
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users subscribing to video services with the same quality level.
The second objective, efficiency, is to attain the highest overall
video quality with constraints on the system resources. To
attain the highest efficiency while providing fairness whenever
needed, cross-layer optimization is one of the approaches
that can be exploited [2], [3]. In this paper, we will limit
our discussion of cross-layer approaches to the medium ac-
cess control (MAC) and the application (APP) layers. We
address the above issue and present a MAC-centric cross-
layer optimization framework. That is, according to quality
fairness requirements which are specified by the utilities and
constraints defined at the APP layer, an adaptive resource
allocator (ARA) at the MAC layer optimally distributes the
system resources among users so that the overall video quality
is maximized.

Orthogonal frequency division multiple access (OFDMA) is
one of the key physical layer techniques for the current wire-
less standards such as IEEE 802.16e [4] and 3GPP-Long Term
Evolution (LTE) [5]. It has become the workhorse for wireless
broadband applications due to its ability to provide high-rate
wireless connectivity. In order to fully exploit the temporal,
frequency and multiuser diversities of a OFDMA system, a
highly adaptive resource allocation scheme should be adopted
to jointly allocate the system resources, e.g., subcarriers and
transmission power. By exploiting the channel statistics of
different users, the opportunistic resource allocation scheme
[6] assigns the system resources in favor of the users with
better channel conditions, and thus maximizes the spectral
efficiency. However, such an opportunistic allocation scheme
often sacrifices the transmissions of the cell-edge users ex-
periencing poor channel quality, thereby resulting in an unfair
video quality among users. Moreover, in a system transmitting
videos, the goal is to fully utilize the system resources to
maximize the system efficiency in terms of the overall video
quality rather than spectral efficiency. Therefore, a resource
allocation scheme which maximizes the system efficiency and
maintains quality fairness among users is desired.

To transmit video streams over wireless networks, it is
required that the video source rates can be adapted to meet
different user requirements under the time-varying channel
conditions. This can be achieved by the use of an APP layer
source rate adaptation entity which also improves transmission
stability, avoids buffer overflow, etc. Scalable Video Coding
(SVC) [7] is a highly attractive tool to achieve source rate
adaptation. With SVC, a video sequence is encoded into
a single multi-layer stream. The source rate adaptation is
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achieved by sequentially dropping layers until the target rate
is achieved. Moreover, the rate-distortion (R-D) information
can be predicted during the encoding procedure without re-
encoding the video and provides a one-to-one mapping be-
tween rate and video quality.

The cross-layer optimization for multi-video delivery over
wireless networks has been a very active research area. The
authors of [8] presented a cross-layer multiuser resource al-
location algorithm for video transmission in downlink OFDM
networks where the objective is to minimize the overall video
distortion. The algorithm consists of subcarrier assignment
and power allocation relying on the R-D function. The R-
D function considers a temporal error propagation effect and
relative importance (RI) imposing constraints on individual
user rate and quality of service. However, since the R-D rela-
tionships can be significantly different among different videos,
while RI imposes constraints on the required rate rather than
the required video quality, even a fair service, i.e., with the
same RI value for all users, can lead to large quality variation
among users. To ensure fairness in terms of video quality, the
authors in [9] proposed a content-aware distortion-fair video
delivery scheme for multihop video communications. Instead
of providing bandwidth fairness, it assures max-min distortion-
fair sharing among users. The cross-layer resource allocation
is guided by exploiting the temporal prediction structure of the
video sequences and a frame drop distortion metric based on
the frame importance. The main drawback of the scheme is
that the source rate adaptation is based on a coarse distinction
of the data importance at frame level and could lead to a waste
of bandwidth if the thresholds of dropping frames are not
carefully selected. In [10] a scheduling strategy relying on the
concept of Nash equilibrium, for scalable video transmission
to multiple users over OFDMA systems, is devised. It is
based on a metric named frame significance throughput (FST)
considering the temporal dependencies among frames in a
video sequence. The FST is incorporated into a payoff metric,
which is exploited by the scheduler at the MAC layer to guide
the resource allocation procedure in order to maximize the
Nash product of the received video quality of each user and
achieve quality fairness among users. More recent works have
been proposed for cross-layer video transmission optimization
with the goal of maximizing the minimum video quality
across users and thus providing max-min quality fairness [11],
[12], or of maximizing (respectively, minimizing) the overall
received video quality (distortion) without addressing fairness
[13], [14].

The authors of [3] proposed a distortion-fair cross-layer
optimization framework for scalable video delivery to multiple
users over OFDMA wireless networks. The optimization seeks
to maximize the sum of the ergodic (average) rate assigned to
users while minimizing the distortion difference among the
received videos. The optimization problem is “vertically” de-
composed into two sub-problems at the MAC and APP layers,
respectively. An iterative local approximation (ILA) algorithm
is proposed to obtain the global solution. The globally optimal
solution under the distortion-fairness constraint aims to attain
zero distortion difference between any two users’ received
videos. Thus, the framework proposed in [3] for achieving

quality fairness is also based on the max-min criterion.
However, under such purely fair schemes ( [3], [11], [12]),

a majority of the available resources must be allocated to
the users having poor channel conditions or requiring high-
complexity videos so that they can achieve the same quality
level as other users who are likely to achieve much higher
quality improvement if assigned the same amount of resources.
In other words, achieving pure fairness among users usually
comes at the cost of sacrificing the video quality of a set of
users and decreasing the system efficiency in terms of overall
received video quality. Therefore, there is an inherent conflict
between fairness and efficiency.

The authors of [15] proposed a cross-layer framework for
sending multiple scalable videos over OFDM networks where
trade-offs between quality fairness and system efficiency can
be achieved. The video streams are transmitted across J trans-
mission intervals. The optimization problem is broken down
into J sequential problems, each of which is solved during
a transmission interval to either ensure fairness or improve
efficiency. To ensure fairness, the problem is formulated as
minimizing the maximal end-to-end distortion received among
all users. To improve efficiency, the problem is formulated
as minimizing the overall end-to-end distortion among all
users. Due to the NP-hard nature of the fairness and efficiency
problems, two suboptimal algorithms were proposed to solve
them. Further, the authors applied the fairness algorithm for
the first x transmission intervals to ensure the baseline fairness,
and the efficiency algorithm for the remaining J −x intervals
to improve the overall efficiency. In this way a desired trade-
off between fairness and efficiency can be achieved by varying
the value of x. However, such a transmission interval-based
optimization, without considering the ergodic rate, does not
allow to fully exploit the temporal diversity. In addition, the
framework supports only J + 1 trade-off points, and thus it is
inadequate when a set of denser trade-off points is required.

II. CONTRIBUTION

As pointed out earlier, quality fairness and system efficiency
are conflicting requirements. Focusing entirely only on one of
them might not guarantee satisfaction of all users. For instance,
when the system efficiency is maximized the set of users
with good channel conditions and/or low demanding videos
(referred to as set A of videos) will be assigned more resources
at the expense of sacrificing, possibly drastically, the quality of
the users with poor channel conditions and/or high demanding
videos (set B). At the other extreme is the pure quality-fairness
scenario, which enforces the same level of (objective) quality
to all users. In this scenario, the quality of videos in set B is
increased while the quality of videos in set A is decreased until
they reach the same level. However, it could happen that, while
the perceived visual quality of videos in set B increases, that of
some videos in set A is degraded below a pleasing/acceptable
level. Thus, both the maximum efficiency scenario on one side,
and the pure fairness scenario on the other side, may lead to
unsatisfied users. A natural solution to this problem is to trade
off between the two extremes. Therefore, it is important to
investigate such trade-off schemes.
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TABLE I: Most used notations and acronyms.

Notation Definition Notation Definition
K,K Number, resp. set, of users τ ,p PHY layer time, resp. power, allocation policies
M,M Number, resp. set, of subcarriers S Set of all possible PHY layer allocation policies
F Source rate vector A Set of feasible PHY layer allocation policies
R PHY layer rate vector R PHY layer rate region
Q PSNR Rf Set of rate vectors satisfying the PF constraints
q∗ Optimal PSNR value for pb. (5) σ Parameter controlling the constraints in problem (10)
Rσ Set of rate vectors satisfying (11b) fmin,fmax Lower and upper limits on source rates obtained
bd R Boundary of R from constraints (10b) - (10d)

Abbr. Full name Abbr. Full name
APP Application ARA Adaptive Resource Allocator
BS Base Station ERA Equal-rate Adaptation
GOP Group of Pictures IDR Instantaneous Decoding Refresh
ILA Iterative Local Algorithm MAC Medium Access Control
ME Maximum Efficiency MANE Media-aware Network Element
MS Multimedia Server MGS Medium-grain Quality Scalable Coding
MSE Mean Square Error NALU Network Abstraction Layer Unit
PHY Physical OFDMA Orthogonal Frequency Division Multiple Access
PF Pure Quality-fairness PSNR Peak Signal-to-noise Ratio
R-D Rate-Distortion RTP Real-time Transport Protocol
RS Reed-Solomon SNR Signal-to-noise Ratio
SVC Scalable Video Coding UXP Unequal Erasure Protection
TB Transmission Block

In this paper, we propose a new cross-layer optimization
framework for the transmission of scalable videos to multiple
users in OFDMA wireless networks addressing the trade-off
between quality fairness and system efficiency. The quality is
measured using the PSNR corresponding to average user rates
under average power constraints.

The main idea is to relax the fairness constraints so that to
allow the PSNR of each video to be some distance away from
the common PSNR level corresponding to the pure quality-
fairness (PF) problem. This distance is controlled by using a
parameter σ which bounds from above the relative difference
between the PSNR of each video and the PF PSNR value.
More specifically, the problem is formulated as maximizing the
sum of PSNRs under the relaxed constraints mentioned above.
We will show that, by gradually increasing σ (starting from 0),
a wide-range and dense set of trade-off points can be achieved,
thus overcoming the limitation of the trade-off framework
proposed in [15]. The two extremes of this range of points
correspond to the PF scenario, when σ = 0, respectively, the
maximum efficiency scenario (ME), when σ =∞.

In order to solve the optimization problem we proceed
in two steps. First the PF PSNR value is determined by
maximizing the common PSNR level enforced to all videos.
Note that this optimization criterion is essentially equivalent
to the max-min quality fairness criterion used in prior work
[3], [11], [12], [15]. We solve the PF problem using the same
vertical decomposition approach employed in [3], but with
a faster algorithm for the source adaptation problem at the
APP layer. Further, once the PF PSNR value is found, the
problem with relaxed PSNR-fair constraints is converted to a
convex optimization problem by transforming the constraints
on PSNR into linear constraints in terms of rate. The latter
problem is a general utility-based resource allocation problem

for which a low-complexity algorithm has been proposed to
obtain an almost surely optimal solution [16].

Finally, our simulation results validate the fact that, by grad-
ually increasing σ, a densely populated set of points trading
off between PF and ME, can be obtained. Additionally, with
an appropriate choice of the parameter σ, the disadvantages
of both extreme schemes - PF, respectively, ME - could be
mitigated, leading to the satisfaction of all users.

The remainder of the paper is organized as follows. Section
III describes the system architecture and the models for
transmitting scalable video in OFDMA networks. In Section
IV the PF problem and its solution are discussed. In the
following section the problem with relaxed quality-fairness
constraints is introduced. The problem is further converted
to a convex optimization problem and its solution based on
[16] is reviewed. The practical performance of the proposed
optimization framework is evaluated in Section VI, followed
by a discussion in Section VII. Finally, Section VIII concludes
the paper.

Notation: Vectors and sets are denoted by bold and cal-
ligraphic letters, respectively. xT denotes the transpose and
‖x‖p the p-norm of x. 0 is the all-zero vector and 1 is the
all-one vector. The symbol ∨ means “OR”, ∧ means “AND”,
[x]+ , max(x, 0), [x]+ε , max(x, ε) and Eγ [·] denotes the
expectation with respect to the random process γ. Given two
vectors x = [x1, · · · , xK ]T and x′ = [x′1, · · · , x′K ]T , x � x′

means that xk ≤ x′k, for all 1 ≤ k ≤ K, while x 4 x′ means
that x � x′ and x 6= x′. Table I contains the notations and
abbreviations that are used most often in the paper.

III. SYSTEM DESCRIPTION

In this section we first discuss the architecture and function-
ality of a general multi-user video delivery system. Next we
review a continuous semi-analytical R-D model for quality
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What is Scalable Video Coding? 
Broadly speaking, it is a technique used to encode video sequences such that physically meaningful 
image and video information can be reconstructed by decoding only part of the high-quality video bit-
stream. 
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1. Different portion of the bitstream has 
different importance. 

2. Partition the bitstream into segments of 
diminishing importance and protect 
them with progressively weaker error-
correcting code, e.g., Reed Solomon. 
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Physical Layer Model for wireless Access Network 

Motivation 
When multiple videos are delivered to different users over a broadcast channel with limited capacity, 
unsuitable resource allocation and scheduling strategies, e.g., a spectral-efficiency driven strategy, may 
lead to unacceptable quality difference between the high-complexity and low-complexity videos. 
Therefore, the design of video delivery to multiple users over wireless channel must take into 
consideration both the maximization of overall achievable rates (related to spectral efficiency) and the 
minimization of the quality difference (related fairness) among users. 

RTP Packet 
Loss Rate 

Channel 
Capacity and 

Buffer 
Information 

QoS 
Requirement 

Quality Scalability Temporal Scalability Spatial Scalability 

1. A single-cell time-slotted OFDMA system, serving K user, has total bandwidth MB which is divided 
into M orthogonal subcarriers with bandwidth B. 

2. The ARA allocates the system resources, i.e., subcarriers and powers, to users at each time slot n.  

3. Assumption 1: Each subcarrier can be shared by multiple users over non-overlapping fractions of a 
time slot. 

4. 𝛾𝑘,𝑚 𝑛 = ℎ𝑘,𝑚 𝑛
2
𝜎2 : the normalized SNR of user k on subcarrier m and time slot n. 

5. 𝑤𝑘,𝑚[𝑛] ∈  [0,1] and 𝑝𝑘,𝑚[𝑛]  ≥ 0 are the fraction of a time slot and power, respectively, assigned to 
user k, on subcarrier m and time slot n. 

6. The maximum number of information bits that can be reliably transmitted to user k on subcarrier m is 

 𝑟𝑘,𝑚 𝑤𝑘,𝑚 𝑛 , 𝑝𝑘,𝑚 𝑛 = 𝐵 𝑤𝑘,𝑚 𝑛  𝑙𝑜𝑔2
𝛾𝑘,𝑚 𝑛 𝑝𝑘,𝑚 𝑛
𝑤𝑘,𝑚 𝑛

 

7. Assumption 2: The rate allocated to user k averaged over a discrete time window 𝑊𝐼 can be 
approximated by its ergodic (expected) value with respected to the normalized SNR random 
process 𝜸,  

𝑅𝑘 𝒘, 𝒑 =
1
𝑊𝐼
  𝑟𝑘,𝑚 𝑤𝑘,𝑚[𝑛],𝑝𝑘,𝑚[𝑛]

𝑀

𝑚=1

𝑊𝐼

𝑛=1
≅ 𝔼𝜸  𝑟𝑘,𝑚 𝑤𝑘,𝑚 𝜸 , 𝑝𝑘,𝑚 𝜸

𝑀

𝑚=1
 

Rate-Distortion (R-D) Model for Scalable Video Stream 
1. For each user k, the UEP profiler computes [1] the Application Layer rate 𝐹𝑘 𝑝  and the expected peak 
signal noise ration (PSNR) 𝑃𝑘(𝑝) after error correction, where 𝑝 is a parameter used to ensure fairness. 

2. 𝐹𝑘 𝑝  is a step function on the number of packets allocated to user k. 

3. 𝐹𝑘𝑚𝑖𝑛 and 𝐹𝑘𝑚𝑎𝑥 are the minimum and maximum application layer rate for user k, respectively, under 
current physical channel condition. 

4. 𝑃𝑘𝑚𝑖𝑛 and 𝑃𝑘𝑚𝑎𝑥 are the minimum and maximum PSNR for user k, respectively, under current physical 
channel condition. 
5. Choosing a PSNR value 𝑝, 𝑃𝑘 𝑝  is the minimum achievable PSNR value larger than or equal to 𝑝 and 
𝐹𝑘 𝑝  is the minimum rate to achieve 𝑃𝑘 𝑝 . 

6. The fairness metric △ (𝑃𝑖(𝑝),𝑃𝑗(𝑝)), 𝑖 ≠ 𝑗 should be zero if ideal PSNR fairness among users is 
required. However, the exact zero PSNR-difference cannot be achieved.  

7. Fairness is said to be achieved, i.e., △ 𝑃𝑖 𝑝 ,𝑃𝑗 𝑝 = 0, 𝑖 ≠ 𝑗 if 

 
𝑃𝑖(𝑝) = 𝑃𝑖𝑚𝑎𝑥𝑎𝑛𝑑 𝑃𝑗(𝑝) > 𝑃𝑖(𝑝) 𝑜𝑟 𝑃𝑗(𝑝) = 𝑃𝑗𝑚𝑎𝑥𝑎𝑛𝑑 𝑃𝑖(𝑝) > 𝑃𝑗(𝑝)
𝑃𝑖(𝑝) = 𝑃𝑖𝑚𝑖𝑛𝑎𝑛𝑑 𝑃𝑗(𝑝) < 𝑃𝑖(𝑝) 𝑜𝑟 𝑃𝑗(𝑝) = 𝑃𝑗𝑚𝑖𝑛𝑎𝑛𝑑 𝑃𝑖(𝑝) < 𝑃𝑗 𝑝
𝑃𝑖 𝑙 < 𝑃𝑖(𝑝) ≤ 𝑃𝑖 𝑙 + 1  𝑎𝑛𝑑 𝑃𝑗 𝑡 < 𝑃𝑖(𝑝) ≤ 𝑃𝑗 𝑡 + 1

 

 

1. The set of feasible allocation prolicies, 
    𝒜 = 𝒘 𝜸 , 𝒑 𝜸 :  𝑤𝑘,𝑚 𝜸 ≥ 0, 𝑝𝑘,𝑚 𝜸 ≥ 0 𝑎𝑛𝑑  𝑤𝑘,𝑚 𝜸 ≤ 1,  𝑝𝑘,𝑚 𝜸𝑚∈ℳ𝑘∈𝒦 ≤ 𝑃𝑡𝑘∈𝒦   

where 𝑹 𝒘,𝒑  = 𝑅1 𝒘,𝒑 ,… , 𝑅𝐾 𝒘,𝒑 𝑇 is the ergodic rate vector. 

where 𝑭 𝑝 = 𝐹1 𝑝 ,… , 𝐹𝐾 𝑝 , 𝑭𝑚𝑖𝑛 = [𝐹1𝑚𝑖𝑛,… , 𝐹𝐾𝑚𝑖𝑛] and 𝑭𝑚𝑎𝑥 = [𝐹1𝑚𝑎𝑥,… , 𝐹𝐾𝑚𝑎𝑥]. 

5. Feasible solution set 𝑹 
(1) 𝑹 ∈ ℛ𝑐 = 𝑹 ∈ 𝓡:𝐻𝑭𝑚𝑖𝑛 ≤ 𝑹 ≤ 𝐻𝑭𝑚𝑎𝑥  
(2) 𝑹 ∈ ℱ = 𝝔 ∈ 𝓡: △ (𝐹𝑖−1(𝜚𝑖 𝐻 ),𝐹𝑗−1(𝜚𝑗 𝐻 )) = 0  

The Optimization Problem 

2. The achievable ergodic rate region,  

    𝑅 =  𝝔 ≤ 𝑹 𝒘,𝒑
𝑤,𝑝 ∈𝒜

 

4. The optimization problem: 

The set of boundary 𝜀 = 𝑹 ∈ ℛ: ∀𝝔 ∈ ℛ  s. t. 𝝔 ≼ 𝑹   

Problem Decomposition 
The Application (APP) Layer Sub-problem [2] 

 

𝐻𝑭 ∈ ℛ𝑐
𝐻𝑭′ ∈ ℛ𝑐
𝑹𝑖𝑛𝑡 ∈ 𝜀   

 ℒ 𝐻𝑭,𝐻𝑭′ ∩ 𝜀 = 𝑹𝑖𝑛𝑡

  

where  ℒ 𝐻𝑭,𝐻𝑭′ = 𝐻𝑭 + 𝑡𝐻𝑭′ 𝑡 ∈ [0,1]   

The Medium Access Control (MAC) Layer Sub-problem [2] 

             max
(𝒘,𝒑)∈𝒜

𝑹𝑖𝑛𝑡∗ 1                            

𝑠. 𝑡.   𝑹(𝒘,𝒑) ∈ ℛ                          

𝑹 𝒘, 𝒑 ≥ 𝝓 𝑹𝑖𝑛𝑡∗ 1    

 

𝑹𝑖𝑛𝑡∗ = 𝝓𝜌. The direction is defined by a direction vector 𝝓 = [𝜙1,… ,𝜙𝐾]𝑇≥ 𝟎 and 𝜌 is a positive real 
number. 

        max
(𝒘,𝒑)∈𝒜

𝜌                            

𝑠. 𝑡.   𝑹(𝒘,𝒑) ∈ ℛ                     

𝑹 𝒘,𝒑 ≥ 𝝓𝜌         
 

The Cross-layer Solution 
Main challenge: To solve the APP sub-problem, the information of the boundary 𝜀 of the rate region 𝓡 is 
needed.  

          max
(𝒘,𝒑)∈𝒜

𝝁𝑇 𝑹(𝒘,𝒑) 

𝑠. 𝑡.  𝑹 𝒘,𝒑 ∈ ℛ                

        max
(𝒘,𝒑)∈𝒜

𝜌                            

𝑠. 𝑡.   𝑹(𝒘,𝒑) ∈ ℛ                     

𝑹 𝒘,𝒑 ≥ 𝝓𝜌         
 

Step 1:  The weighted sum average rate (WSAR) problem 

𝑹  is the optimal solution of the WSAR problem with weight vector 𝝁 . 

Step 2:  The tangent space of the rate region ℛ at 𝑹  

𝒯ℛ 𝝁 = 𝝔: 𝝔 − 𝑹 
𝑇𝝁 = 0  

Step 3:  The cross-layer iterative algorithm 

as a local approximation as the boundary 𝜀. 

Fig. 2. An example of two-user optimization  

Fig. 4. An example of the first step of the cross-
layer iterative algorithm for two-user 

optimization  

Fig. 3. The details of the cross-layer iterative 
algorithm 

Simulation Results 

         NP, PSNR 

MPLR 
89 117 156 

PSNR_A PSNR_R PSNR_D PSNR_A PSNR_R PSNR_D PSNR_A PSNR_R PSNR_D 
0.1 31.31098 31.28588 0.0251 32.62034 32.60209 0.01825 34.00919 33.99336 0.01583 
0.2 28.85649 28.72014 0.13635 30.23316 30.16143 0.07173 31.67608 31.61156 0.06452 
0.3 26.56671 26.46059 0.10612 27.73688 27.60018 0.1367 29.18040 29.13706 0.04334 

         NP, PSNR 

MPLR 

140 153 179 

PSNR_A PSNR_R PSNR_D PSNR_A PSNR_R PSNR_D PSNR_A PSNR_R PSNR_D 

0.1 36.90935 36.90788 0.00147 36.92889 36.92750 0.00139 36.94867 36.94764 0.00103 

0.2 35.84702 35.81434 0.03268 36.04527 36.03771 0.0756 36.29804 36.28581 0.01223 

0.3 33.71774 33.66327 0.05447 34.14633 34.12140 0.02493 34.74582 34.68312 0.0627 

TABLE II 

THE EXPECTED PSNR VALUES OF VIDEO SEQUENCE BUS 

TABLE III 

THE EXPECTED PSNR VALUES OF VIDEO SEQUENCE SOCCER 

TABLE I PARAMETERS 

 Number  of Users 2 
Video Sequences  BUS and SOCCER 

Maximum Packet Number (NP) and Packet Length (in symbol)  200 and 1000  
Symbol Length  8 (in bits) 

Mean Packet Loss Rate (MPLR)  0.1, 02 and 0.3 

[1] Dumitrescu, Sorina, Xiaolin Wu, and Zhe Wang. "Efficient algorithms for optimal uneven protection 
of single and multiple scalable code streams against packet erasures." Multimedia, IEEE Transactions 
on 9.7 (2007): 1466-1474 
[2] Cicalo, Sergio, and Velio Tralli. "Distortion-Fair Cross-layer Resource Allocation for Scalable Video 
Transmission in OFDMA Wireless Networks." (2013): 1-1. 
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Fig. 1: Architecture and components of the multi-user video delivery system.

scalable video streams. Then we present the physical layer
model for a OFDMA wireless network.

A. Multi-user Video Delivery System
We consider a general multi-user video delivery system

shown in Fig. 1 where the system components are arranged in
three groups, namely, the multimedia server (MS), the media-
aware network element (MANE), and the wireless network.
The MS encodes a set of video sequences, each of which
is requested by a user, to fully support quality scalability.
Each encoded video stream is then organized into network
abstraction layer units (NALUs), each of which is a packet of
an integer number of bytes. Then, the quality level assigner
evaluates the priority level of each NALU according to its
contribution to the quality of the reconstructed video. Such
priority level information is embedded into the header of the
NALU and will be exploited by the source adaptation entity.
It should be pointed out that the encoding and priority level
assessment are carried out off-line. The pre-encoded video
streams are stored in databases at the MS, whereas the R-D
information will be forwarded to the MANE.

The unequal erasure protection (UXP) profiler periodically
collects the R-D information from the MS, and the estimated
real-time transport protocol (RTP) packet loss rate from the
base station (BS). Then it computes, according to a predefined
protection policy and the available information, the rates
and the expected reconstructed video qualities of the videos
after erasure protection. This information is fed to the R-D
modeling entity and is used for the R-D modeling of the UXP
protected video streams. The source adaptation entity removes,
according to the results of the source adaptation algorithm,
the needless NALUs from each original video stream to form
a valid substream intended for a user. It should be pointed
out that the source adaptation algorithm requires as inputs
the estimated channel capacity and buffer status information
from the BS, and the information about the R-D models at the
MANE. Each outcoming substream is forwarded to the real-
time transport protocol (RTP) packetization entity where the
substream will be protected by a UXP scheme based on Reed-
Solomon (RS) codes. The resulting RS codewords, containing

both data and parity symbols, are arranged into a transmission
block (TB) and interleaved over a number of RTP packets.
Finally, the RTP packets will be sent to the MAC/PHY layers
through the UDP/IP protocol stack. We point out that in this
work we use an adaptation of the algorithm of [17] to compute
the optimal UXP redundancy allocation in R-D sense. For
details we refer the reader to [18].

The adaptive resource allocator (ARA) at the BS adaptively
allocates the system resources among users with the aim
of maximizing the overall average rates while satisfying the
quality requirement provided by the APP layer. The MANE
and the BS exchange information about the channel capacity,
buffer status, RTP packet-loss rate and quality requirement in a
cross-layer style at regular intervals called application periods
(in the order of seconds). It is worth noting that whereas
the processes of R-D modeling, UXP, source adaptation and
RTP packetization at the MANE are executed per application
period, the resource allocation process at the BS is carried out
every time slot (in the order of milliseconds).

B. Rate Distortion Models for the Error-protected Quality
Scalable Video Streams

The SVC standard provides three common scalable modes,
namely, temporal, spatial and quality scalability, which enable
to adapt a video stream in terms of frame rate, frame size and
frame fidelity, respectively. In this paper, we focus on quality
scalable videos with fixed frame rate and size. The SVC stan-
dard provides two ways to achieve quality scalability, namely
coarse-grain quality scalable coding (CGS) and medium-grain
quality scalable coding (MGS). With CGS, the provision of a
video with different qualities is enabled by dropping quality
layers one by one until the target bit rate is achieved. However,
the number of supported bit rates is limited to the number
(up to eight) of CGS quality layers [19]. In comparison to
CGS, MGS allows more extractable rate points (up to 128) by
dividing each quality layer into up to 16 MGS layers, each of
which can be dropped for the purpose of rate adaptation. In
this paper, we will focus on MGS scalability.

Scalable video sequences are commonly arranged into sets
of frames named groups of pictures (GOPs). Each GOP
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begins with an intra-coded (I-frame) or inter-coded (P-frame),
which is followed by a fixed number of B-frames. The frame
interval between any two consecutive I-frames is called an
instantaneous decoding refresh (IDR) period. In this paper, we
will focus on an IDR-based video transmission. We assume
that at the beginning of each application period Ik successive
frames of the video sequence intended for user k, are encoded
to generate an MGS video stream.

The operational R-D point for the corresponding video
stream is obtained by averaging the rate and distortion (i.e.,
mean squared error - MSE), respectively, over all Ik frames.
In this work we convert the distortion to PSNR in order
to measure the video quality, using the relation PSNR =

10 log10

(
2552

MSE

)
. Thus, from each operational R-D point an

operational rate-PSNR point can be computed. The aforemen-
tioned R-D information of the compressed video stream is
further used by the UXP profile to obtain a rate-PSNR point
corresponding to the error protected video stream (i.e., the
TB). We point out that the PSNR is actually the expected
PSNR over all possible packet loss scenarios for the RTP
packets. The set of operational points is discrete since different
rates correspond to different numbers of transmitted packets,
while the size of each RTP packet remains fixed.

In [20] the authors proposed a general continuous semi-
analytical R-D model, which has been verified for SVC quality
scalable videos in [21] and [22], to estimate the relationship
between the rate and distortion at the encoder side. According
to this model the rate of the video for user k is a parametric
function Fk(Q) of the PSNR Q, as follows

Fk(Q) =
θk

255210−Q/10 + αk
+ βk, Q ∈ [Qk,min, Qk,max],

(1)
where Qk,min and Qk,max are the minimum and maximum
PSNR values corresponding to the minimum rate Fk,min and
maximum rate Fk,max, respectively. We emphasize that the
three parameters θk, αk and βk are dependent on the video
content, encoder and RTP packet loss rate. They can be
estimated using curve-fitting methods over a number of em-
pirical rate-PSNR points. According to extensive simulations,
a general curve-fitting algorithm needs at least six empirical
R-D points and a certain number of iterations and function
evaluations to guarantee high accuracy for most of the video
sequences [22].

C. Physical Layer Model for OFDMA Wireless Networks

We consider the downlink of a single-cell OFDMA wireless
network with K users and M orthogonal subcarriers indexed
by the sets K = {1, 2, · · · ,K} and M = {1, 2, · · · ,M},
respectively. We assume a subcarrier bandwidth B and total
average power P̄ . The channel gain between BS and user k,
on subcarrier m at the nth time slot, is denoted by hk,m[n],
and modeled as a stationary and ergodic complex Gaussian
random process (Rayleigh fading). Therefore, the distribution
of hk,m[n] is independent of the time slot index n. In the
subsequent discussion, we drop the time slot index n when
the context is clear, for notational brevity.

The normalized signal-to-noise ratio (SNR), i.e., the SNR
corresponding to unit transmission power, of user k on sub-
carrier m, is given as γk,m = |hk,m|2/σ2, where σ2 is
the variance of the zero-mean additive white Gaussian noise
(AWGN) at the receiver. We let γ = {γk,m,∀ k,m} denote
the set of the SK realizations of the normalized SNR random
processes. Throughout the paper, we assume that the BS has
perfect knowledge of γ, and that γ is fixed per time slot,
but varies across time slots. Based on γ, the ARA at the BS
optimally allocates the available power and subcarriers to all
users per time slot.

Consider for now that per time slot a subcarrier can be
shared by multiple users over nonoverlapping time fractions
of a time slot duration tslot. Let τk,m ≥ 0 and pk,m ≥ 0
denote the nonnegative time fraction and the average power,
respectively, allocated for transmission to user k on subcarrier
m. Since the transmission to user k is only activated for a
fraction of the time slot, the transmission power allocated to
user k, during the active time fraction, is pk,m/τk,m. Taking
into account the adaptive modulation and coding (AMC)
scheme adopted by the PHY layer, the maximum achievable
rate of user k on subcarrier m is given by

rk,m(τk,m, pk,m) =

{
Bτk,mR

(
γk,mpk,m
τk,m

)
τk,m > 0

0 τk,m = 0
, (2)

where R(x) = a1 log2(1 + x/a2), and a1 and a2 are two
parameters named rate adjustment and SNR gap that are
introduced to account for the particular AMC scheme in
use [23]. Since the rate in (2) is a function of τk,m and
pk,m, the ARA seeks to specify the set of allocation policies
τ (γ) = {τk,m(γ),∀ k,m} and p(γ) = {pk,m(γ),∀ k,m} per
channel realization γ. If the optimal τ ∗ and p∗ are found,
the corresponding optimal rates, following from (2), will be
r∗(γ) = {rk,m(τ∗k,m(γ), p∗k,m(γ)),∀ k,m}.

Consider a sufficiently long application period tap over
which it is reasonable to approximate the time-averaged rate,
through ergodicity, by its ensemble average with respect to
the random process γ. Then, the maximum achievable rate
for user k, averaged over an application period, is given by

Rk(τ ,p) =
1

Nslot

Nslot∑
n=1

[ ∑
m∈M

rk,m(τk,m[n], pk,m[n])

]

' Eγ

[ ∑
m∈M

rk,m (τk,m(γ), pk,m(γ))

]
,

where Nslot =
⌊
tap
tslot

⌋
� 1, is the number of time slots within

an application period. Supposing without loss of generality
that the overhead introduced by different network layers is
unity, the average PHY rate is equal to the average source rate,
i.e., Rk(τ ,p) = Fk(Q). According to (1), the relationship
between the PSNR of the video transmitted to user k and the
average PHY rate can be described by Qk = F−1k (Rk(τ ,p)).
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Let us denote by S the set of all possible allocation polices
τ (γ) and p(γ), i.e.,

S , {(τ ,p) | τk,m(γ) ≥ 0, pk,m(γ) ≥ 0,

∀ k,m,
K∑
k=1

τk,m(γ) ≤ 1,∀m},

and A , {(τ ,p) ∈ S | Eγ [
∑
k∈K

∑
m∈M pk,m(γ)] ≤ P̄}.

Let us, further, denote R(τ ,p) , [R1(τ ,p), · · · , RK(τ ,p)]T

the maximum achievable ergodic rate vector and R =
[R1, · · · , RK ]

T an ergodic rate vector. The ergodic rate region
of the OFDMA downlink channel can be defined as

R ,
⋃

(τ ,p)∈A

{R | 0 � R � R(τ ,p)} . (3)

Since the rate rk,m(τk,m, pk,m) in (2) is a jointly concave
function of τk,m and pk,m, the ergodic rate region R in (3) is
a convex set of the rate vectors [16].

IV. PURE QUALITY-FAIRNESS PROBLEM

In order to present our proposed framework for the trade-off
between quality fairness and system efficiency, we need first to
discuss the pure quality-fairness problem. From a pure quality-
fairness perspective, we are interested in all users obtaining the
same quality level represented by some target PSNR value q.
However, since the attainable PSNR range for different users
may be different, the target value q may not be included in
this range for some users. Therefore, the value assigned to
users in the latter category will be the attainable PSNR which
is closest to q. In order to model this requirement we define
the function Q̂k(q) which maps every q ∈ R+ to the closest
achievable PSNR of the kth video, namely

Q̂k(q) ,


Qk,min q ≤ Qk,min
q Qk,min < q < Qk,max

Qk,max q ≥ Qk,max
, (4)

for 1 ≤ k ≤ K and q ∈ R+.
Further, define the set Rf of rate vectors that satisfy the

pure quality-fairness constraints as

Rf , {R | ∃q ≥ 0 such that Rk = Fk(Q̂k(q)),∀k ∈ K}.

Then we formulate the pure quality-fairness problem as the
following constrained PSNR maximization

max
q∈[Qallmin,Qallmax]

q (5a)

s.t. (τ ,p) ∈ A, (5b)
R(τ ,p) ∈ Rf , (5c)

where Qallmin denotes the minimum of Qk,min over all k, and
Qallmaxdenotes the maximum of Qk,min over all k. We will
show that problem (5) is equivalent to the distortion-fair sum-
rate maximization problem in [3]. The authors of [3] define a

distortion difference ∆(Di, Dj) and formulate the problem as

max
(τ ,p)∈S

‖R(τ ,p)‖1 (6a)

s.t. 4(Di, Dj) = 0,∀i, j ∈ K (6b)
Fmin � R(τ ,p) � Fmax (6c)
R(τ ,p) ∈ R, (6d)

where Fmax = [F1,max, · · · , FK,max]T and Fmin =
[F1,min, · · · , FK,min]T , for 1 ≤ k ≤ K. Additionally, the
distortion difference 4(Di, Dj) is defined as:

4(Di, Dj) ,

{
0 (Di, Dj) ∈ D ∨ (Dj , Di) ∈ D,
|Di −Dj | otherwise,

where D , {(Di, Dj) | (Di = Di,max < Dj) ∨ (Di =
Di,min > Dj)}. The PSNR difference 4(Qi, Qj) can be
defined in a similar manner. Notice that the fairness constraints
in (6b) restrict the feasible solutions to the set of rate vectors:

Rcf , {R | 4
(
F−1i (Ri), F

−1
j (Rj)

)
= 0,∀i, j ∈ K},

where F−1k : [Fk,min, Fk,max] → [Qk,min, Qk,max] is the
inverse mapping of Fk(·) defined in (1), for k ∈ K. Then the
following equivalence result holds, whose proof is deferred to
the appendix.

Lemma 1. One has Rf = Rcf . Then it follows that problem
(5) is equivalent to problem (6).

It was proved in [3] that the optimal solution R∗ to
problem (6) is the unique point in Rcf ∩ bd R, where
bd R , {R ∈ R | @r ∈ R with R 4 r}. The authors of
[3] “vertically” decomposed the optimization problem into a
resource allocation problem at the MAC layer and a source
adaptation problem at the APP layer. The optimal solution
was further obtained through the ILA algorithm, which is an
iterative procedure built between the MAC and APP layers.
In virtue of Lemma 1 we can use the same decomposition
approach to solve problem (5). Next we briefly review the
MAC layer and APP layer problems as formulated in [3] and
propose a faster solution for the APP layer problem.

The problem at the MAC layer is

max
r≥0,(τ ,p)∈A

r (8a)

s.t. R(τ ,p) � φr, (8b)

where φ = [φ1, · · · , φK ]T � 0 defines the direction of
the line connecting the origin and the point obtained at the
application layer. Problem (8) is a well-investigated resource
allocation problem [24] that can be solved efficiently given
the information of the directional vector φ. It is shown in [24]
that even the solution of (8) can be obtained through solving
a weighted sum of average rate (WSAR) problem

max
(τ ,p)∈A

wTR(τ ,p),

and the solution resides on the boundary bd R. However,
differently from the WSAR problem, the weight vector w is
not predefined, but rather, it is evaluated in the dual domain
and constrained by φ. Let us denote by R̃ the optimal rate
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and w̃ = [w1, · · · , wK ]T < 0 that are obtained after solving
the problem at the MAC layer. The tangent space to the rate
region R at the point R̃ can then be identified with the null
space of w̃ defined as follows

TR(R̃, w̃) , {R | w̃T (R− R̃) = 0}.

Then the problem solved at the APP layer is the problem
of determining the intersection

TR(R̃, w̃) ∩Rf . (9)

Finally, the ILA algorithm solves iteratively problems (8)
and (9). Its pseudocode is presented in Algorithm 1.

Algorithm 1 ILA algorithm

1: Initialize: i = 0; give a directional vector φ̃
(0)

< 0 and
tolerance ε > 0; set e(0) = 10ε;

2: Solve problem (8) to obtain R̃
(0)

and w̃(0)

3: while e(i) > ε do
4: i = i + 1
5: Find F̃

(i)
such that:

6: F̃
(i) ∈ Rf ∩ TR(R̃

(i−1)
, w̃(i−1))

7: φ̃
(i)

= F̃
(i)
/‖F̃ (i)‖1

8: Solve problem (8) to obtain R̃
(i)

and w̃(i)

9: e(i) = ‖R̃(i) − F̃ (i)‖1
10: end while

In virtue of Lemma 1 and of the optimality result of [3,
Lemma 1] we conclude that, assuming that Fmin ∈ R and
Fmax /∈ R, and starting from an initial R � 0, the ILA
algorithm converges to the unique solution R∗ ∈ Rf ∩ bd R,
of problem (5), i.e., limi→∞ F̃

(i)
= R∗.

Next we discuss the solution to problem (9). We point out
that the algorithm to solve the APP layer problem proposed
in [3] requires K(K − 1)/2 iterations in the worst case.
Each iteration consists of numerically solving an equation
to obtain a candidate distortion value D̃ to be assigned to
a set of videos, followed by at most K rate evaluations.
Since the number of terms needed to evaluate the equation
is O(K), it follows that the time complexity of each iteration
is O(KI), where I denotes the number of inner iterations
needed to determine numerically the value of D̃. This leads
to a worst-case time complexity of O(K3I) for the whole
algorithm. However, the authors of [3] point out that in their
extensive simulations with practical data, K outer iterations
were sufficient, which translates to O(K2I) operations to
solve the APP layer problem.

On the other hand, our formulation of the pure quality-
fairness problem directly shows that Rf is a curve param-
eterized by q, therefore the intersection in (9) can be found by
means of a bisection search over q. For this define the function

Γ(F , R̃, w̃) ,
∑
k∈K

w̃k(Fk − R̃k).

According to (1) and (4), the rate Fk(Q̂k(q)),∀k ∈ K, is
a nondecreasing function of q. Using further the fact that
w̃k ≥ 0 for all k, it follows that the function Γ(F (q), R̃, w̃) =

∑
k∈K w̃k(Fk(Q̂k(q))− R̃k) is also a nondecreasing function

of q. Therefore, we can apply the bisection search method to
find q∗ such that Γ(F (q∗), R̃, w̃) = 0 and obtain the solution
F ∗(q∗) to (9). We summarize the pseudocode of the bisection
search-based source adaptation algorithm in Algorithm 2.

Algorithm 2 Fast algorithm to solve problem (9).

1: if Γ(Fmin, R̃, w̃) > 0 then
2: report infeasibility
3: else if Γ(Fmax, R̃, w̃) ≤ 0 then
4: report infeasibility and set F ∗ = Fmax
5: else
6: Initialize: low = Qallmin; high = Qallmax; set tolerance ebs;
7: while (high− low)/2 > ebs do
8: q∗ = (high + low)/2;
9: for all k ∈ K do

10: if q∗ ≤ Qk,min then
11: Q∗

k = Qk,min; F ∗
k = Fk,min;

12: else if q∗ ≥ Qk,max then
13: Q∗

k = Qk,max; F ∗
k = Fk,max;

14: else
15: Q∗

k = q∗; F ∗
k = Fk(Q∗

k), based on model (1);
16: end if
17: end for
18: if Γ(F ∗(q∗), R̃, w̃) < 0 then
19: low = q∗;
20: else if Γ(F ∗(q∗), R̃, w̃) > 0 then
21: high = q∗;
22: else
23: break
24: end if
25: end while
26: end if

It is easy to see that each iteration takes O(K) time, while
the total number of iterations is O(log

Qallmax−Q
all
min

ebs
), where

ebs is the tolerance value for the optimal q∗. We conclude that
the time complexity of the proposed solution to problem (9) is
O(K log

Qallmax−Q
all
min

ebs
). Further, assuming that the values I and

log
Qallmax−Q

all
min

ebs
are comparable, it follows that the proposed

algorithm is faster by a factor of O(K2) in the worst case,
and by a factor of O(K) in the average case, based on the
experimental average running time reported in [3].

V. PROBLEM WITH RELAXED QUALITY-FAIRNESS
CONSTRAINTS

This section presents the proposed framework for the trade-
off between system efficiency and quality fairness, which is
the main contribution of this work. Our strategy to achieve this
trade-off is to relax the fairness constraints in the PF problem
by allowing the PSNRs of different users to be at some
distance away from the common PSNR value q∗ corresponding
to the optimal PF point (i.e., the solution of problem (5)). The
larger this distance is, the looser the fairness constraints are
and the higher the potential efficiency is. Therefore, we use a
parameter σ to denote the upper bound imposed on the ratio
between this distance and q∗. Consequently, this parameter
will measure the trade-off between fairness and efficiency.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMM.2017.2678198

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

Thus, we formulate the problem with relaxed quality-
fairness constraints as follows

max
(τ ,p)∈A

∑
k∈K

Qk(Rk) (10a)

s.t. |Qk(Rk)− q∗| ≤ q∗σ, ∀k ∈ K0 (10b)
Qk(Rk) = Qk,min,∀k ∈ K1 (10c)
Qk(Rk) = Qk,max,∀k ∈ K2 (10d)
Rk = Rk(τ ,p), (10e)

where K1 = {k ∈ K | q∗(1 + σ) < Qk,min}, K2 = {k ∈ K |
q∗(1− σ) > Qk,max} and K0 = K \ (K1 ∪K2). The equality
constraints in (10c) and (10d) are motivated by the following
considerations. If the target interval [q∗(1−σ), q∗(1+σ)] and
the attainable PSNR range [Qk,min, Qk,max] for user k are
disjoint, then the achievable value closest to q∗ is assigned as
the PSNR of user k.

Notice that the optimal solution to problem (10) guarantees
that the PSNR difference between any two users in the set K0

is within 2σq∗, while all remaining users either have smaller
PSNRs than users in K0, but achieve their individual maximum
quality, or they have higher PSNRs than all users in K0, but
achieve their individual minimum quality. Additionally, when
σ = 0 problem (10) is equivalent to problem (5).

Clearly, problem (10) is not convex, however it can be
converted to a convex one by writing the constraints (10b)-
(10d) in terms of rate. This task is simplified by the fact that
the PSNR functions are strictly monotone in the rate. For this
denote for all k ∈ K0{

fk,min , max {Fk,min, Fk(q∗(1− σ))}
fk,max , min {Fk,max, Fk(q∗(1 + σ))}

.

Further, for all k ∈ K1 let fk,min = fk,max , Fk,min,
and for all k ∈ K2 let fk,min = fk,max , Fk,max.
Finally, denote fmin , [f1,min, · · · , fK,min]T and fmax ,
[f1,max, · · · , fK,max]T . Thus, problem (10) can be cast as

max
(τ ,p)∈A

∑
k∈K

Qk(Rk) (11a)

s.t. fmin � R � fmax (11b)
R ∈ R (11c)

According to constraints (11b) and (11c), any feasible
solution to (11) belongs to the set Rσ = {R ∈ R | fmin �
R � fmax}. Note that Rσ is not empty if and only if
fmin ∈ R. Moreover, the problem has a trivial solution if
fmax ∈ R. Therefore, we will assume that fmin ∈ R and
fmax /∈ R. Since the objective (11) is concave [25] and
increasing, the optimal solution R∗σ must be on the boundary
bd R. Fig. 2 illustrates the relevant regions and the solution
for problems (5) and (11) for an example with two users.

Problem (11) can be reformulated as

�
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Fig. 2: Illustration of the relevant rate regions for problems (5) and
(11) for an example with two users. R∗ is the optimal solution to
problem (5), whereas R∗

σ is the optimal solution to problem (11).

max
(τ ,p)∈S,fmin�R�fmax

∑
k∈K

Qk(Rk)

s.t. Rk ≤ Eγ

[ ∑
m∈M

rk,m (τk,m(γ), pk,m(γ))

]
,∀k ∈ K

Eγ

[∑
k∈K

∑
m∈M

pk,m(γ)

]
≤ P̄ . (12)

Note that problem (12) is a strictly feasible convex opti-
mization problem because of the concavity of the objective
function and of the function rk,m(·). The solution to (12) can
be found using the Lagrangian dual method, as in [16]. We
briefly review here the relevant results from [16].

Let µ be the Lagrangian multiplier vector related to the
constraints on the rates and let λ be the Lagrangian mul-
tiplier related to the average power constraint. Then, the
Lagrangian associated with (12) is given in (13), where
ck,m(λ,µ, τk,m, pk,m) , µkrk,m(τk,m, pk,m) − λpk,m. Fur-
ther, the related Lagrangian dual function is

Θ(λ,µ) = max
(τ ,p)∈S,fmin�R�fmax

L(τ ,p,R, λ,µ),

and the dual problem is minλ>0,µ�0 Θ(λ,µ). For given λ
and µ, Θ(λ,µ) can be derived by solving two decoupled
subproblems across R and (λ,µ), respectively. The first
subproblem is associated with R, i.e.,

max
fmin�R�fmax

Qk(Rk) + µTR, (14)

which is a convex optimization problem, for which efficient
algorithms to find the solution R∗(µ) are available.

The second subproblem is related to (τ ,p) and is given as

max
(τ ,p)∈S

λP̄ + Eγ

[∑
k∈K

∑
m∈M

ck,m(λ,µ, rk,m(γ), pk,m(γ))

]
.

Given λ and µ, the unique solution to (14) is attained when
each subcarrier is exclusively assigned to a single user per
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time slot and the power is allocated per user across subcarriers
following a water-filling principle, i.e.,

τ∗k,m(γ) =

{
1 k = k∗m
0 ∀k 6= k∗m

,∀m,

where k∗m = arg max
k∈K

[µk log2(1 + λk,mp̃
∗
k,m) − λp̃∗k,m] and

p̃∗k,m(γ) =
[
a1Bµk
λ ln 2 −

a2
γk,m

]+
. The corresponding optimal

power allocation is

p∗k,m(γ) =

{
p̃∗k,m(γ) k = k∗m
0 ∀k 6= k∗m

,∀m.

Since (12) is convex and Slater’s condition holds, the duality
gap between the primal and dual problems is zero. Therefore,
replacing λ and µ with the optimal dual variables λ∗ and
µ∗ provides the almost surely optimal resource allocation
policy τ ∗(λ∗,µ∗,γ) and p∗(λ∗,µ∗,γ) and the corresponding
optimal rate vector R∗(µ∗), which is on the boundary of the
rate region R. The optimal λ∗ and µ∗ can be obtained through
the method of stochastic subgradient iterations, i.e.,{

λ[n+ 1] = λ[n] + δ(
∑
m∈M p∗k,m(γ[n])− P̄ )

µk[n+ 1] = µk[n] + δ(R∗k(µ[n])−
∑
m∈M r∗k,m(γ[n])).

(15)
Starting from any initial λ > 0 and µ � 0, the iterations in
(15) converge to the optimal λ∗ and µ∗.

Finally, it should be pointed out that the optimal solution
R∗σ = R∗(µ∗) may not be achievable since the available SVC
encoding schemes support only a discrete set of rate values.
Following the common practice, the optimal discrete solution
is obtained by extracting the largest achievable rate which is
smaller than R∗σ .

VI. NUMERICAL RESULTS

In this section we assess the practical performance of the
proposed optimization framework. We consider a OFDMA
wireless network with K = 6 users and M = 144 subcarriers,
unless otherwise stated, a time slot duration tslot = 0.5 ms
and a total average power P̄ = 1 W. The bandwidth of each
subcarrier is 15 kHz. The Rayleigh fading channels between
the BS and each user are simulated using the ITU Vehicular
Channel A model [26] which has a root mean square delay
spread τrms = 0.37 µs and 50% coherence bandwidth of Bc =
1/(5τrms) ≈ 540 kHz. The average normalized SNRs for all
users are assumed to be 25 dBW. The modulation and coding
scheme adopted at the PHY layer are characterized by a rate
adjustment a1 = 0.905 and an SNR gap a2 = 1.34 [23].

We encode six 160-frame videos, one for each user, with
different spatial-temporal complexities, i.e., Foreman, Ice,

Soccer, Crew, Football and Mobile1, in CIF resolution with a
frame-rate of 30 frames per second. Each sequence is encoded
IDR-period-by-IDR-period by the JSVM reference software
[28] with the GOP size and IDR period set to 8 and 16
frames, respectively. The encoded stream consists of one base
layer and two enhancement layers, and the basis quantization
parameters for encoding the three layers are set to 40, 34 and
28, respectively. Each enhancement layer is further split into
five MGS layers with MGS vector [3 2 4 2 5]. Then, the
post-processing priority level assignment is carried out. The
estimate of the three parameters of model (1) is performed
every IDR period. The duration of the application period is
set to an IDR period, which leads to an application period
window Nslot = 1066.

Moreover, we set the size of an RTP packet to 600 bytes
and simulate an RTP packet loss rate rrtp of 5% as in [21]
and [3]. The maximum number of bytes per RS codeword in
the UXP scheme (i.e., the maximum number of RTP packets)
is set to 255. The minimum number of packets is dependent
on the video content and on rrtp since it has to ensure that
the base layer is transmitted.

To assess the individual received video quality, we use the
PSNR calculated using the luminance MSE, averaged over all
160 frames, if not specified otherwise, i.e.,

PSNR = 10 log10

(
2552

aveMSE

)
. (16)

To measure the system efficiency, we average the PSNRs for
all user received videos, i.e.,

avePSNR = (1/K)
∑
k∈K

PSNRk.

The higher avePSNR is, the higher system efficiency we have.
On the other hand, the quality fairness is evaluated using the
standard deviation of the PSNRs, i.e.,

stdPSNR =

√
(1/K)

∑
k∈K

(PSNRk − avePSNR)2.

Lower stdPSNR corresponds to fairer service.
We will use the acronym σ-F to refer to the resource allo-

cation obtained by solving the problem with relaxed fairness
constraints (10). Recall that the pure-quality fairness scheme
(PF) and the maximum efficiency scheme (ME) are the two
extreme cases of σ-F, corresponding to σ = 0, respectively,
σ = ∞. We will compare the performance of σ-F, for
intermediate values of σ, with the extremes PF2 and ME.

1The video sequences were downloaded from [27].
2It is worth pointing out that the results obtained with PF are expected to

be very close to those obtained using the algorithm of [3].

L(τ ,p,R, λ,µ) =
∑
k∈K

Qk(Rk) + λ

{
P̄ − Eγ

[∑
k∈K

∑
m∈M

pk,m(γ)

]}
+
∑
k∈K

µk

{
Eγ

[ ∑
m∈M

rk,m (τk,m(γ), pk,m(γ))

]
−Rk

}

=
∑
k∈K

Qk(Rk) + µTR+ λP̄ + Eγ

[∑
k∈K

∑
m∈M

ck,m(λ,µ, rk,m(γ), pk,m(γ))

]
. (13)
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Fig. 3: stdPSNR versus avePSNR obtained with σ-F for various
values of σ. The ERA point is also plotted.

We also include the comparison with an equal-rate adaptation
scheme, referred to as ERA, which provides fairness among
users in terms of allocated video rate without violating the
maximum and minimum rate constraints. The ERA problem
can be formulated from problem (5) by replacing the fair-
ness constraints in (5c) with new rate-fair constraints, i.e.,
Rk(τ ,p) = F̂k(f),∀k ∈ K, with the objective of maximizing
f , where f ≥ 0 and F̂k(f) is defined similarly to (4). The
solution to this problem can be obtained by using the ILA
algorithm where the APP layer algorithm aims to find an
optimal rate-fair solution rather than a quality-fair solution.

We emphasize that in our experiments the value of the
expected PSNR (i.e., accounting for all packet loss scenarios)
was generally very close to the PSNR of the transmitted video
(i.e., the value achieved when all packets are received). This
fact suggests that the UXP scheme generally ensures that the
whole transmitted video stream can be correctly recovered
from packet erasures with very high probability. Therefore,
we use the PSNR value of the transmitted video sequence in
our assessment in the sequel.

Fig. 3 illustrates the performance of the σ-F scheme, in
terms of fairness and system efficiency, for various values of
σ, in comparison with ERA. The values of σ range from
0 to 0.3 in increments of 0.01. Additionally, the values
0.32, 0.34, 0.36, 0.38,∞, are considered too. As σ increases,
both avePSNR and stdPSNR increase until reaching the ME
point. These results show that the fairness is traded off grace-
fully against the system efficiency as σ increases, as expected,
due to the increasingly looser fairness constraints in problem
(10). In our setting the ME point is already obtained when σ
is about 0.28, meaning that the relaxed fairness inequalities
do not constrain the solution anymore. It is important to note
that as σ increases from 0 in sufficiently small increments,
a dense set of trade-off points can be obtained covering the
whole range between the PF and ME points. Additionally, it is
worth pointing out the poor performance of ERA in terms of
quality fairness compared to σ-F, since the latter can achieve
(with σ = 0.28) the same avePSNR, but with about 0.8 dB
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Fig. 4: The PSNR of each video obtained with σ-F, for σ =
0.04, 0.08, PF, ME and ERA.

lower standard deviation in PSNR than ERA.
It is interesting to compare our trade-off framework with

that proposed in [15] in terms of flexibility. Examining the
results reported in [15, Fig. 7] we see that there is a big gap
between the pure quality-fairness point and the next trade-
off point (about 2 dB in stdPSNR). Thus, their framework
can achieve only points at some distance away from the pure
quality-fairness point. On the other hand, our σ-F scheme
overcomes this limitation, since it can achieve trade-off points
close to PF. More specifically, our framework ensures trade-off
points densely covering the whole range from PF to ME.

Fig. 4 shows the PSNR of each video corresponding to
the σ-F allocation scheme for σ = 0.04 and σ = 0.08 in
comparison with PF, ME and ERA. We see that in terms
of PSNR difference the results are as expected for the σ-F
scheme including its two extreme cases PF and ME. In other
words, the absolute PSNR difference increases gradually with
σ from the lowest value, achieved with PF, to the highest
value, achieved with ME. Interestingly, for Soccer, Foreman,
Crew and Ice, the PSNR value increases with σ, while for
Mobile and Football it decreases, in the case of Football the
decrease occuring after an initial (almost) stationary phase.
Further, we observe that the PSNR values for ME and ERA
are very close for all videos except for Football and Ice where
we see an about 1 dB difference. Finally, these results suggest
that, while the subjective quality achieved with ME and ERA
for Soccer, Foreman, Crew and Ice may be high, the quality
of Mobile and Football may be too low since the PSNR values
for the latter group are much lower than for the former group.

We point out that the σ-F allocation scheme can also be
applied to the scenario without RTP packet loss, and thus
without the UXP module. Simulation results reported in [18]
for the no packet loss case are similar in spirit to those reported
here.

Next we perform the visual comparison between the pro-
posed σ-F scheme (σ = 0.08) and PF, ME and ERA for
decoded frames in the third IDR. For reference we also include
a bar-graph showing the PSNR values achieved for the third
IDR for the above mentioned five scenarios (Fig. 5). Figure 6
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Fig. 5: The PSNR of the third IDR for each video obtained with σ-F,
for σ = 0.04, 0.08, PF, ME and ERA.

compares reconstructed frames obtained with ME and ERA for
Mobile and Football. We observe that the reconstructions are
very similar. While differences exist they are hardly noticeable.
The same observation holds for Soccer, Foreman, Crew and
Ice. The corresponding reconstructions for Soccer, Foreman,
Crew and Ice can be found in the supplementary document
[29, Fig. 1, 2].

Figures 7 and 8 contain the frame reconstructions for ME,
PF and σ-F, with σ = 0.08, for Soccer and Football (Fig. 7),
respectively, Foreman and Mobile (Fig. 8). We observe that
ME/ERA ensures a good reconstruction quality for Soccer and
Foreman, but unsatisfactory for Football and Mobile, which
contain blurred regions (the football field and the two players
in the center in Football; the numbers in the calendar and
the picture above them in Mobile). The PF scheme sharply
improves the reconstruction for Football and Mobile, but it
visibly deteriorates the reconstruction of Soccer and Foreman.
For instance, in Soccer the number on the soccer player’s shirt
and the person with the dog in the background become blurred.
In Foreman, the details of the face become unclear. On the
other hand, we see that the σ-F scheme ensures a pleasing
reconstruction for all four videos by finding a middle ground
between PF and ME/ERA. A clear degradation in quality from
ME to PF can also be observed in Crew and Ice, while σ-
F visibly improves the quality in comparison with PF. The
reconstructions for Crew and Ice are available in [29]. Thus,
our results show that, while both PF and ME have the ability of
providing a high visual quality to some users, this may come
at the expense of drastically worsening the quality for other
users. The σ-F scheme, on the other hand, gradually decreases
the difference in visual quality between users until possibly a
balancing point is reached where each user has a high enough
perceived quality.

In order to understand this behavior it is instructive to ana-
lyze the rate-PSNR curves of the videos, which are plotted in
Fig. 9. We see from the plots that for Football and Mobile the
PSNR increases much more slowly with the rate than for the
other four videos. This explains why the ERA scheme, which
allocates the same rate to all users leads to high discrepancies

in quality between the reconstructions. A similar effect is
achieved with the ME scheme since it allocates more rate to
videos that ensure higher increase of the PSNR. On the other
hand, the discrepancies in performance exhibited by the PF
scheme, which enforces very close PSNR values for all videos,
may be due to the fact that the ranges of achievable PSNR
values are different. Thus the PSNR values corresponding to
maximum quality (i.e., for the highest rate) in the case of
Soccer, Foreman, Crew and Ice are much higher than for
Mobile and Footbal. This suggests that the correspondence
between the PSNR value and the subjective quality level is
different for the two groups of videos. Interestingly, lower
achievable PSNR values correspond to the more demanding
videos, i.e., Mobile and Football (referred to as group B),
while higher values can be achieved by the videos in the
other group (group A). This suggests that for the same level
of subjective quality, videos in group A should have higher
PSNR values than those in group B. This explains why the
PF scheme cannot ensure the same subjective quality level to
all videos.

The σ-F scheme, on the other hand, allows for the PSNR
values to be selected from a wider region around the common
PF PSNR value. Since the objective of the optimization is to
increase the sum-PSNR within this region, the videos in group
A will likely acquire PSNR values near the upper bound, while
videos in group B will likely acquire PSNR values smaller
than the PF value, but certainly not smaller than the lower
bound. The parameter σ constraints this region ensuring that
the lower bound guarantees a good enough quality for the
videos in group B. On the other hand, the videos in group A
exhibit an increase in quality versus the PF level. Thus, the
σ-F scheme is more attractive than PF. The σ-F scheme is
also more fair than PF in terms of perceived quality since it
decreases the discrepancies in visual quality between users.
Additionally, by gradually increasing σ it may be possible to
reach a balancing point where the degradation of videos in
group B is still small while the increase in quality of videos
in group A is high enough so that all users are fully satisfied.
In our experiments such a value of σ exists, but this might
not happen all the time. Clearly, for such a balancing point
to exist the available sum-rate must be high enough, at least
higher than the sum of the minimum individual video rates
needed for a good enough visual quality.

VII. DISCUSSION

While in our experiments the σ-F scheme has a beneficial
effect in terms of improving the visual quality, a natural
question is whether this effect will persist in more general
scenarios. We think that this behavior can be generalized as
explained next. Consider a scenario where neither PF, nor ME
ensure sufficient visual quality to all users, but the set of videos
can be partitioned into the following groups:
• group A, containing videos for which ME ensures a very

high visual quality, but the quality under PF is too low;
• group B, containing videos for which PF ensures a very

high visual quality, but the quality under ME is too low;
• group C, containing videos for which both ME and PF

ensure very good perceived quality.
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Fig. 6: Visual comparison between ME (left) and ERA (right) for Mobile (top) and Football (bottom).

Since videos in groups B and C have very high quality in
the PF regime, they can afford to lose some rate and still
maintain a pleasing quality. Thus, the σ-F scheme guarantees
good enough quality for groups B and C if σ is sufficiently
small, say σ ≤ σ1 for some σ1.

Assume now that the PSNRs of videos in group A increase
in the σ-F case versus the PF case, and let σ2 be the smallest
σ which brings the perceived quality of these videos at a high
enough level. Thus, if σ2 ≤ σ ≤ σ1, all three groups of users
are satisfied in the σ-F case. On the other hand, if σ2 > σ1
such a balancing σ value does not exist. However, for σ < σ1,
the σ-F scheme still brings some improvement in quality for
videos in group A, thus lowering the users’ dissatisfaction
versus the PF case. In the same time, users in groups B and C
remain fully satisfied. We conclude that the σ-F scheme may
bring some benefit versus the PF scenario even if σ is small.

The above conclusions rely on the assumption that the
PSNRs of videos in group A are guaranteed to increase in the
σ-F case versus the PF case. Next we present some theoretical
results to support this claim.

Let us denote by Fk,σ the rate assigned to user k in
the σ-F scenario, for 0 ≤ σ ≤ ∞, where σ = 0 cor-

responds to PF, and σ = ∞ to ME. Further, let q′k,σ ,
Q′k(Fk,σ), where Q′k(Fk) denotes the derivative of Qk(Fk).
As discussed previously, the ME scheme is equivalent to
σM -F for some large enough σM . For simplicity, let us
assume that Qk(Fk,∞) ∈ (q∗(1 − σM ), q∗(1 + σM )) ⊆
(Qk,min, Qk,max). Then the interval constraining the rate for
user k in problem (11) is [Fk(q∗(1− σ)), Fk(q∗(1 + σ))], for
all 0 < σ < σM . Additionally, denote for each k and σ ≥ 0,
q′k,σ+ , Q′k(Fk(q∗(1−σ))) and q′k,σ− , Q′k(Fk(q∗(1+σ))).
Since the functions Qk(Fk) are strictly concave, it follows
that q′k,σ+ > q′k,0 > q′k,σ− for all k and σ > 0. The following
lemma, proved in the appendix, will be used in the sequel.

Lemma 2. For each 0 < σ < σM there is some value q′σ such
that the following hold for each 1 ≤ k ≤ K.

a) If Fk,σ ∈ (Fk(q∗(1− σ), Fk(q∗(1 + σ))) then q′k,σ = q′σ .
b) If Fk,σ = Fk(q∗(1− σ)) then q′k,σ ≤ q′σ .
c) If Fk,σ = Fk(q∗(1 + σ)) then q′k,σ ≥ q′σ .

Applying Lemma 2 for σM we obtain that q′k,∞ = q′k,σM =
q′σM = q′∞ for all k. We may assume that q′1,0 ≤ q′2,0 ≤ · · · ≤
q′K,0. Further, for each σ ≥ 0 let k1(σ) be the largest k1 for
which q′k,σ+ < q′∞ for all 1 ≤ k ≤ k1, and let k2(σ) denote
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Fig. 7: Visual comparison between ME (first row), PF (second row) and σ-F with σ = 0.08 (third row) for Soccer (left) and Football (right).
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Fig. 8: Visual comparison between ME (first row), PF (second row) and σ-F with σ = 0.08 (third row) for Foreman (left) and Mobile (right).
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Fig. 9: Rate-PNSR curves for the third IDR for all six video
sequences.

the smallest integer such that q′k2(σ) > q′∞ and

K∑
j=k2(σ)

1

q′j,σ−
<

k1(σ)∑
i=1

1

q′i,σ+
. (17)

Additionally, let K(σ) denote the set of integers k such that
q′k,σ− > q′k2(σ). Clearly, K(σ) ⊆ {k2(σ) + 1, · · · ,K}. The
following result is proved in the appendix.

Proposition 1. Let 0 < σ < σM . Then the following hold:
q′σ < q′k2(σ), Qk(Fk,σ) > q∗ for all k ≥ k2(σ), and
Qk(Fk,σ) = q∗(1 + σ) for all k ∈ K(σ).

Remark 1. It is likely that indexes k with high ME PSNR
value also have high q′k,0. Thus, the set {k2(σ), · · · ,K} is
likely the set of the N videos with highest PSNR in the ME
regime, for N = K − k2(σ) + 1. This set can be regarded as
the set A. Thus, according to Proposition 1, it is guaranteed
that all videos in A have the σ-F PSNR higher than in the PF
case. A moment of thought reveals that as σ decreases towards
0, N is nondecreasing, approaching the value K− k2(0) + 1.
Additionally, K − k2(0) + 1 ≥ k1(0) and the set of indexes
{1, · · · , k1(0)} corresponds to videos for which the ME PSNR
is smaller than the PF PSNR. Thus, Proposition 1 guarantees
that, for sufficiently small σ, the number of videos whose PSNR
increases versus the PF case is at least equal to the number
of videos whose ME PSNR is smaller than in the PF case.

VIII. CONCLUSION

In this paper, we tackle the problem of sending scalable
videos to multiple users over OFDMA wireless networks
considering the trade-off between quality fairness and system
efficiency. We propose a cross-layer optimization framework
for maximizing the sum of the PSNR values corresponding
to average user rates subject to relaxed PSNR fair constraints.
The optimization problem is solved in two steps. In the first
step, we solve a pure quality-fairness (PF) problem which
maximizes the common PSNR value enforced to all users. In

the second step, we relax the constraints on quality fairness by
allowing individual PSNRs to be some distance away from the
PF value. This relative distance is controlled by a parameter σ,
which thus governs the trade-off between quality fairness and
efficiency. Our simulation results demonstrate that, by slowly
increasing σ, a rich set of points gracefully trading off quality
fairness for system efficiency, can be obtained. Furthermore,
our experiments show that the maximum efficiency allocation
may degrade the quality of the high demanding videos, while
the PF scheme may drastically reduce the subjective quality
of the low complexity videos. The proposed scheme is able to
overcome the above disadvantages with an appropriate choice
of σ, leading to a high subjective quality for all videos.

APPENDIX A

Proof of Lemma 1: First we will show that Rf ⊆ Rcf .
For this let q ≥ 0. Then we have to show that

∆(Q̂i(q), Q̂j(q)) = 0, (18)

for all i 6= j ∈ K. Let us fix some i 6= j ∈ K. Next we have
to distinguish between the following cases: 1) Qi,min ≤ q ≤
Qi,max and Qj,min ≤ q ≤ Qj,max; 2) Qj,min ≤ q < Qi,min
or Qi,min ≤ q < Qj,min; 3) q < Qi,min and q < Qj,min;
4) Qj,max ≤ q < Qi,max or Qi,max ≤ q < Qj,max; 5)
q > Qi,max and q > Qj,max. In case 1) we have Q̂i(q) =
q = Q̂j(q), thus (18) trivially holds. In case 2) if inequalities
Qj,min ≤ q < Qi,min hold, then we have Q̂i(q) = Qi,min >
q = Q̂j(q), which implies that (18) is true. The other subcase
can be treated similarly. Consider now case 3). Then one has
Q̂i(q) = Qi,min and Q̂j(q) = Qj,min and (18) holds again.
The other cases can be treated analogously.

Let us prove now that Rcf ⊆ Rf . Let R ∈ Rcf and Qk =

F−1k (Rk) for each k ∈ K. We have to show that there is
some q ≥ 0 such that Q̂k(q) = Qk for all k ∈ K. To this
end, consider first the following sets of indexes: I0 , {k ∈
K|Qk,min < Qk < Qk,max}, I1 , {k ∈ K|Qk,min = Qk}
and I2 , {k ∈ K|Qk,max = Qk}.

Consider now the case when I0 is non-empty. The fact that
∆(Qi, Qj) = 0 for all i, j implies that the value Qk for all
k ∈ I0 is the same. Let us choose q as the common value
of Qk for k ∈ I0. It follows that Q̂k(q) = Qk k ∈ I0.
Further, for i ∈ I1, the fact that ∆(Qi, Qk) = 0 for any
k ∈ I0, implies that q ≤ Qi,min, leading to the conclusion
that Q̂i(q) = Qi,min = Qi. Likewise, for j ∈ I2 , the fact
that ∆(Qj , Qk) = 0 for any k ∈ I0, implies that q ≥ Qj,max,
leading to the conclusion that Q̂j(q) = Qj,max = Qj .

Finally, we have to consider the case when I0 is empty. If
I1 6= ∅ we choose q , min{Qk,min|k ∈ I1}. Then clearly,
Q̂k(q) = Qk,min = Qk for any k ∈ I1. For j ∈ I2 , the fact
that ∆(Qj , Qk) = 0 for any k ∈ I1, implies that q ≥ Qj,max,
leading to the conclusion that Q̂j(q) = Qj,max = Qj . On the
other hand, in the case when I1 = ∅ and I2 6= ∅ we choose
q , max{Qk|k ∈ I2} and the conclusion follows. With this
observation the proof is complete.

Proof of Lemma 2: Let us consider two distinct users i
and j such that Fi(q∗(1 − σ)) ≤ Fi,σ < Fi(q

∗(1 + σ)) and
Fj(q

∗(1−σ)) < Fj,σ ≤ Fi(q∗(1+σ)). Let δ > 0 be such that
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Fi,σ + δ ≤ Fi(q∗(1 +σ)) and Fj(q∗(1−σ) ≤ Fj,σ − δ. If the
optimal σ-F rate assignment is changed such that an amount
of δ rate is moved from user j to user i, the sum-PSNR cannot
increase. Therefore,

Qi(Fi,σ + δ) +Qj(Fj,σ − δ) ≤ Qi(Fi,σ) +Qj(Fj,σ),

which implies that

Qi(Fi,σ + δ)−Qi(Fi,σ)

δ
≤ Qj(Fj,σ)−Qj(Fj,σ − δ)

δ
.

Applying the limit as δ → 0, we obtain that q′i,σ ≤ q′j,σ . If
additionally, Fi(q∗(1− σ)) < Fi,σ and Fj,σ < Fi(q

∗(1 + σ)),
then we have q′i,σ ≥ q′j,σ , leading to q′i,σ = q′j,σ . Thus, q′σ is
the common value of q′k,σ for users k falling in Case a). The
rest of the claim follows based on similar arguments.

Proof of Proposition 1: Assume first that q′σ < q′k2(σ)
holds. Then q′σ < q′k for all k ≥ k2(σ), and, in virtue of
Lemma 2 and of the concavity of Qk(Fk) it follows that
Qk(Fk,σ) > q∗, for all k ≥ k2(σ). Moreover, we have
q′k,σ− > q′σ for all k ∈ K(σ). Thus, Lemma 2 implies that
Fk,σ = Fk(q∗(1 + σ)), for k ∈ K(σ). Thus, it only remains
to prove that q′σ < q′k2(σ) holds.

Assume, for the sake of contradiction, that q′σ ≥ q′k2(σ).
Then q′σ ≥ q′i,σ+ for all i ≤ k1(σ), and q′σ > q′j for all j <
k2(σ). Using Lemma 2 it follows that Fi,σ = Fi(q

∗(1 − σ))
for all i ≤ k1(σ) and Fj,σ < Fj(q

∗) for all j < k2(σ). Since
the sum-rate under PF and σ-F is the same, it follows that
k1(σ)∑
i=1

(Fi(q
∗)−Fi(q∗(1−σ)) ≤

K∑
k=k2(σ)

(Fk(q∗(1+σ))−Fk(q∗).

(19)
Since Qk(Fk) is concave it follows that

q′k,σ− ≤
q∗(1 + σ)− q∗

Fk(q∗(1 + σ))− Fk(q∗)
≤ q′k,

which implies that Fk(q∗(1+σ))−Fk(q∗) ≤ q∗σ
q′k,σ−

. Similarly,

we obtain that Fk(q∗) − Fk(q∗(1 − σ)) ≥ q∗σ
q′k,σ+

. Combining
these relations with (19) it follows that

k1(σ)∑
i=1

q∗σ

q′i,σ+
≤

K∑
k=k2(σ)

q∗σ

q′k,σ−
, (20)

which contradicts relation (17), completing the proof.
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