
2013/9/5

1

Logic Design

Chapter 2: Introduction to Logic Circuits

Introduction

• Logic circuits operate on digital signals

• Unlike continuous analog signals that have an
infinite number of possible values, digital
signals are restricted to a few discrete values

• In particular for binary logic circuits, signals
can have only two values: 0 and 1.

Logic Operations Switch networks

x 1 = x 0 =

(a) Two states of a switch

S

x

(b) Symbol for a switch

Switch networks

(a) Simple connection to a battery

S

(b) Using a ground connection as the return path

Battery Light

Power
supply

S

Light

x

x

Switch networks

(a) The logical AND function (series connection)

S

Power
supply

S

S

Power
supply S

(b) The logical OR function (parallel connection)

Light

Light x1 x2

x1

x2

2013/9/5

2

Switch networks

S Light
Power
supply

R

x

Logic Operations

• Don’t confuse the AND symbol “·” and OR symbol
“+” with arithmetic multiplication and addition

There are some differences, for example
Arithmetic addition: 1+1=2

OR operation: 1+1=1

• Based on the context you should recognize if it is
AND/OR or addition/multiplication

• One more thing: sometimes we drop the “·” symbol

a·b is the same as ab

Truth table

Truth table:

X Y XY X + Y X
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

• The most basic representation of a logic function is a truth
table.

• A truth table lists the output of the circuit for every
possible input combination.

• There are 2n rows in a truth table for an n-variable function

Logic Gate
• Binary signals are manipulated using logic gates. These are

electronic devices whose inputs and outputs are interpreted
with only two values, representing logic 0 and logic 1.

Logic Gate

• The bubble on the inverter output denotes “inverting”
behavior

Analysis and Synthesis of a Logic Network

• Combinations of gates form a logic circuit or logic
network

• Analysis: For an existing network determine the
function performed by the network

• Synthesis: Design a network that implements a
desired function

2013/9/5

3

(d) Network that implements g x
1

x
2

+ =

Boolean Algebra

• To design logic circuits and describe their operations we use a
mathematical tool called Boolean algebra (from English
mathematician George Boole in 1800’s)

Boolean algebra operates on two-valued (or logic)
functions.

• Key problem of our study:

A logic function can be implemented in many ways with
logic circuits, what is and how to find the best
implementation?

Boolean Algebra

• To design logic circuits and describe their
operation requires a mathematical tool called
Boolean algebra (from English mathematician
George Boole in 1800’s) that operates on two-
valued functions.

Axioms of Boolean algebra
 The axioms (or postulates) of a mathematical system

are a minimal set of basic definitions that we assume
to be true.

 The first three pairs of axioms state the formal
definitions of the AND (logical multiplication) and
OR (logical addition) operations:
(1a) 0·0 = 0 (1b) 1+1 = 1
(2a) 1·1 = 1 (2b) 0+0 = 0
(3a) 0·1 = 1·0 = 0 (3b) 1+0 = 0+1 = 1

 The next axioms embody the complement notation:
(4a) If X=0, then X’=1(4b) If X=1, then X’=0

2013/9/5

4

Theorems of Boolean algebra
 Theorems are statements, known to be true, that allow us to

manipulate algebraic expressions to have simpler analysis or
more efficient synthesis of the corresponding circuits.

 Theorems involving a single variable:
(5a) X·0 = 0 (5b) X+1 = 1 (Null elements)

(6a) X·1 = X (6b) X+0 = X (Identities)

(7a) X·X = X (7b) X+X = X (Idempotency)

(8a) X·X’ = 0 (8b) X+X’ = 1 (Complements)

(9) (X’)’ = X (Involution)

• These theorems can be proved to be true. Let us prove 6b:
[X=0] 0+0=0 (true, according to 2b)
[X=1] 1+0=1 (true, according to 3b)

Theorems of Boolean algebra
• Theorems involving two or three variables:

(10a) X·Y = Y·X (10b) X+Y = Y+X (Commutativity)

(11a) (X·Y)·Z = X·(Y·Z) (11b) (X+Y)+Z = X+(Y+Z) (Associativity)

(12a) X·Y+X·Z = X·(Y+Z) (12b) (X+Y)·(X+Z) = X+Y·Z
(Distributivity)

(13a) X+X·Y = X (13b) X·(X+Y) = X (Absorption)

(14a) X·Y+X·Y’ = X (14b) (X+Y)·(X+Y’) = X (Combining)

(15a) (X1·X2)’ = X1´+X2´
(15b) (X1+X2)’ = X1´·X2´ DeMorgan’s theorems

(16a) X+X’·Y= X+Y (16b) X·(X’+Y)= X·Y (simplification)

(17a) X·Y+X’·Z+Y·Z = X·Y+X’·Z (Consensus)

(17b) (X+Y)·(X’+Z)·(Y+Z) = (X+Y)·(X’+Z)

Duality
• Theorems were presented in pairs.

• The b version of a theorem is obtained from the a version by
swapping “0” and “1”, and “·” and “+”.

• Principle of Duality: Any theorem or identity in Boolean
algebra remains true if 0 and 1 are swapped and · and + are
swapped throughout.

• Duality doubles the utilities of everything about Boolean
algebra and enriches the manipulation of logic functions.

Consensus theorem

Consensus Theorem:

• XY + XZ + YZ = XY + XZ

Note: Y and Z are associated with X and X, and appear
together in the term that is eliminated.

redundant

() () () () ()x y y z x z x y x z       
By duality:

Boolean Algebra
Differences between Boolean and

ordinary algebra

• Distributive law of + over ·
x+(y·z)=(x+y)·(x+z) is not valid in ordinary algebra

• Boolean algebra does not have additive or
multiplicative inverse so there is no subtraction or
division operations

2013/9/5

5

Boolean Algebra

• Boolean algebra is used for manipulating logical
functions when designing digital hardware.

• However, today most design is done using
Computer-Aided Design (CAD) software that
includes schematic capture, logic simplification and
simulation.

• Other methods include truth tables, Venn diagrams
and Karnaugh Maps.

Venn Diagram

• A graphical tool that can be used for Boolean algebra

• A binary variable s is represented by a contour

• Area within the contour corresponds to s=1

• Area outside the contour corresponds to s=0

• Two variables are represented by two overlapping
circles

Venn Diagram

x y

z

x

x y x y

x x x

(c) Variable x (d)

(e) (f)

(g) (h)

x

x y  x y +

x y z + x y 

y

x

Venn Diagram

Figure 2.13. V erification of the distributive property
x (y + z) = x y + x z

x y

z

x y

z

x y

z

x y

z

x y

z

x y

z

x x y 

x y  x + z x y z +  

(a) (d)

(c) (f)

x z y z + (b) (e)



Precedence of operations

• In the absence of parentheses, operations in a logic
expression must be performed in the order: NOT,
AND, OR.

Example:

Synthesis using AND, OR and NOT

• One way of designing a logic circuit that
implements a truth table is to create a product term
that has a value of 1 for each valuation for which
the output function has to be 1.

• Then we take the logical sum of these product
terms to realize f

2013/9/5

6

21

21212121),(

xxf

xxxxxxxxf





f

(a) Canonical sum-of-products

f

(b) Minimal-cost realization

x 2

x 1

x 1

x 2

Minterm, Maxterm

• Minterm

A product term in which all variables of a function
appear exactly once, uncomplemented or
complemented.

• Maxterm

A sum term in which all variables of a function
appear exactly once, uncomplemented or
complemented.

Minterm, Maxterm
For a Boolean function of n
variables, there are 2n minterms:

m0 .. m2
n

-1

and 2n maxterms:

M0 .. M2
n

-1

Note that: Mi = mi

Minterm, Maxterm Canonical Sum of Products Form
• A Boolean function f(x1,x2,x3) can be expressed

algebraically as a logical sum of minterms:

2013/9/5

7

Canonical Sum of Products Form

• f can be expressed as sum of product terms (SOP)








)6,5,4,1()3,2,1(

)6,5,4,1()3,2,1(

mxxxf

mmmmxxxf

Canonical Product of Sums Form

• The complement of f(x1,x2,x3) can be formed as the
logical sum of all minterms not used in f(x1,x2,x3):

(1, 2, 3) 0 2 3 7

0 2 3 7

0 2 3 7

0 2 3 7

f x x x m m m m

f m m m m

f m m m m

f M M M M



   

   

   
   

This is called the product of sum presentation of f

Conversion Between the Canonical Forms

• It is easy to convert from one canonical form to other
one, simply use the DeMorgan’s theorem.

Example:
F(A,B,C) (1,4,5,6,7)
F' (A,B,C) (0,2,3)
F(A,B,C) (m0m2m3)' m0

' m2
' m3

'  M0M2M3

F(A,B,C) (0,2,3)

Cost of a Logic Circuit

• Cost of a logic circuit: total number of gates
plus total number of inputs to all gates in the
circuit

• The canonical SOP and POS implementations
described before are not necessarily minimum
cost

• We can simplify them to obtain minimum-cost
SOP and POS circuits

Reducing Cost

How can we simplify a logic function?

– There are systematic approached for doing this
(e.g., Karnaugh map) that we will learn later

– The other way is to use theorems and properties of
Boolean algebra and do algebraic manipulations

– Do an example on the board.

Reducing Cost

• The simplified version of SOP is called minimal SOP

• The simplified version of POS is called minimal POS

• We cannot in general predict whether the minimal
SOP expression or minimal POS expression will
result in the lowest cost.

• It is often useful to check both expressions to see
which gives the best result.

2013/9/5

8

Other Logic Operations
• NAND

• NOR

• XOR

• XNOR

NAND
• NAND: a combination of an AND gate followed by an

inverter.

• Symbol for NAND is

• NAND gates have several interesting properties:


NAND
• These three properties show that a NAND gate with both of

its inputs driven by the same signal is equivalent to a NOT
gate

• A NAND gate whose output is complemented is equivalent to
an AND gate, and a NAND gate with complemented inputs
acts as an OR gate.

• Therefore, we can use a NAND gate to implement all three of
the elementary operators (AND,OR,NOT).

• Therefore, ANY Boolean function can be constructed using
only NAND gates.

NAND

NOT Gate

NOR
• NOR: a combination of an OR gate followed by an inverter.

• NOR gates also have several

interesting properties:

NOR
• Just like the NAND gate, any logic function can be

implemented using just NOR gates.

• Both NAND and NOR gates are very valuable as any design
can be realized using either one.

• It is easier to build an IC chip using all NAND or NOR gates
than to combine AND,OR, and NOT gates.

• NAND/NOR gates are typically faster at switching and
cheaper to produce.

2013/9/5

9

NAND and NOR networks
• NAND and NOR can be implemented by simpler electronic

circuits than the AND and OR functions

• Can these gates be used in synthesis of logic circuits?

NAND and NOR networks

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1

x 2

x 1 x 2 x 1 x 2 + = (a)

x 1 x 2 + x 1 x 2 = (b)

NAND and NOR networks

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

NAND and NOR networks

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

Exclusive OR (XOR)
• The eXclusive OR (XOR) function is an important

Boolean function used extensively in logic circuits.

• The XOR function maybe:
– implemented directly as an electronic circuit (truly a gate)

or

– implemented by interconnecting other gate types (used as
a convenient representation)

• The XOR function means:
X OR Y, but NOT BOTH

XOR
• XOR gates assert their output

when exactly one of the inputs

is asserted, hence the name.

• The symbol for this operation is 

A
B

Y

2013/9/5

10

XNOR
• The eXclusive NOR function is the complement of the XOR

function
• The symbol for this operation is , i.e.

1  1 = 1 and 1  0 = 0.

• Why is the XNOR function also known as the equivalence
function?

XOR Implementations
• A SOP implementation

• A NAND implementation

XOR and XNOR

• Uses for the XOR and XNORs gate include:

– Adders/subtractors/multipliers

– Counters/incrementers/decrementers

– Parity generators/checkers

XOR
• XOR identities:

Gates with more than two inputs
• A gate can be extended to have multiple inputs if the binary

operation it represents is commutative and associative.

• AND and OR operations have these two properties

• NAND and NOR are not associative:

Gates with more than two inputs

• We define multiple input NAND and NOR gates as follows:

2013/9/5

11

Gates with more than two inputs

• XOR and XNOR are both commutative and associative

• Definition of XOR should be modified for more than two
inputs

• For more than 2 inputs, XOR is called an odd function: it is
equal to 1 if the input variables have an odd number of 1’s

• Similarly, for more than 2 inputs, XNOR is called an even
function: it is equal to 1 if the input variables have an even
number of 1’s

Learning Objectives
• List the three basic logic operations

• Draw the truth table for the basic logic operations

• Build truth table for an arbitrary number of variables

• Draw schematic for basic logic gates

• Perform analysis on simple logic circuits

• Draw timing diagram for simple logic circuits

