2013/9/5

Logic Design

Chapter 2: Introduction to Logic Circuits

Introduction

* Logic circuits operate on digital signals

« Unlike continuous analog signals that have an
infinite number of possible values, digital
signals are restricted to a few discrete values

« In particular for binary logic circuits, signals
can have only two values: 0 and 1.

Logic Operations

The fundamental logic operations are:

+ AND F=XY
« OR F=X+Y
« NOT F=X'" (complement)

X' and X are used interchangeably!

Switch networks

x=0 x=1

(a) Two states of a switch

X

(b) Symbol for a switch

Switch networks

B -
Battery J-|—_ I_!(_I

(a) Simple connection to a battery

S
Power _J_ I_l_l Liht
supply I X '9

(b) Using a ground connection as the return path

L(x)==x

Switch networks

Power

supply I i

(a) The logical AND function (series connection)

(b) The logical OR function (parallel connection)

2013/9/5

Switch networks

L{z)=1a'
R !
PowerJ:
supply _|__ -s Light

Logic Operations

» Don’t confuse the AND symbol “-” and OR symbol

“+” with arithmetic multiplication and addition
There are some differences, for example
Arithmetic addition: 1+1=2
OR operation: 1+1=1

 Based on the context you should recognize if it is

AND/OR or addition/multiplication

» One more thing: sometimes we drop the “-” symbol

a-b is the same as ab

Truth table

* The most basic representation of a logic function is a truth
table.

 Atruth table lists the output of the circuit for every
possible input combination.

« There are 2" rows in a truth table for an n-variable function

Logic Gate

 Binary signals are manipulated using logic gates. These are
electronic devices whose inputs and outputs are interpreted
with only two values, representing logic 0 and logic 1.

Truth table:
X Y | XY | X+Y | X'
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0
Logic Gate Analysis and Synthesis of a Logic Network

» The bubble on the inverter output denotes “inverting
behavior

X
1]
o
1
1

» Combinations of gates form a logic circuit or logic
network

 Analysis: For an existing network determine the
function performed by the network

« Synthesis: Design a network that implements a
desired function

2013/9/5

(b) Truth table

<) Timing diagram

(d) Network that implements g = >'<1+x2

Boolean Algebra

¢ To design logic circuits and describe their operations we use a
mathematical tool called Boolean algebra (from English
mathematician George Boole in 1800’s)

Boolean algebra operates on two-valued (or logic)
functions.

« Key problem of our study:
A logic function can be implemented in many ways with
logic circuits, what is and how to find the best
implementation?

Boolean Algebra

 To design logic circuits and describe their
operation requires a mathematical tool called
Boolean algebra (from English mathematician
George Boole in 1800’s) that operates on two-
valued functions.

Axioms of Boolean algebra

= The axioms (or postulates) of a mathematical system
are a minimal set of basic definitions that we assume
to be true.

= The first three pairs of axioms state the formal
definitions of the AND (logical multiplication) and
OR (logical addition) operations:
(1a) 0-:0=0 (1b) 1+1=1
(2a) 1-1=1 (2b) 0+0=0
(3a) 0:1=1-0=0 (3b) 1+0=0+1=1

= The next axioms embody the complement notation:
(4a) If X=0, then X’=1(4b) If X=1, then X’=0

2013/9/5

Theorems of Boolean algebra

Theorems are statements, known to be true, that allow us to
manipulate algebraic expressions to have simpler analysis or
more efficient synthesis of the corresponding circuits.
Theorems involving a single variable:

(5a) X-0=0 (5b) X+1=1 (Null elements)
(6a) X-1=X (6b) X+0=X (Identities)
(7a) X-X =X (7b) X+X = X (Idempotency)
(8a) X-X" =0 (8b) X+X* =1 (Complements)
9) Xy =X (Involution)

These theorems can be proved to be true. Let us prove 6b:
[X=0] 0+0=0 (true, according to 2b)
[X=1] 1+0=1 (true, according to 3b)

Theorems of Boolean algebra

+ Theorems involving two or three variables:
(10a) X-Y=Y-X (10b) X+Y = Y+X (Commutativity)
(11a) (X-Y)-Z=X(Y-Z) (11b) (X+Y)+Z = X+(Y+Z) (Associativity)
(12a) X-Y+X-Z=X-(Y+Z) (12b) (X+Y)-(X+Z)=X+Y-Z

(Distributivity)
133) X+X-Y =X (13b) X:(X+Y)=X (Absorption)
14a) X-Y+X-Y' =X (14b) (X+Y)-(X+Y') =X (Combining)

(13a)

(14a)

(15a) (XyX)' =X, +X,”

(15b) (X, +X2) XX, DeMorgan'’s theorems

(16a) X+X'-Y=X+Y (16b) X-(X'+Y)=X-Y (simplification)
(17a) X-Y+X"-Z+Y-Z = X-Y+X"-Z
(7

a) X (Consensus)
b) (X+Y)-(X'+Z)-(Y+Z) = (X+Y)-(X'+Z)

Duality
Theorems were presented in pairs.
The b version of a theorem is obtained from the a version by
swapping “0” and “1”, and “-” and “+”.
Principle of Duality: Any theorem or identity in Boolean

algebra remains true if 0 and 1 are swapped and - and + are
swapped throughout.

Duality doubles the utilities of everything about Boolean
algebra and enriches the manipulation of logic functions.

Consensus theorem
Consensus Theorem:

o XY +XZ+YZ=XY +XZ
?

redundant

Note: Y and Z are associated with X and X, and appear
together in the term that is eliminated.

By duality:

(X+ Y)Y +2)(x+2) = (X+ y)+(x +2)

Boolean Algebra

X+0 =X X-1=X Identity

X+1 =1 X-0=0

X+X =X X-X=X Idempotent Law
X+X =1 X-X =0 Complement
(X)y =X Involution Law
X+Y =Y+X XY = YX Commutativity

X+ (Y+Z) = (X+¥)+Z X(YZ) = (XY)Z
X(Y+Z) = XY +XZ

Associativity

X+YZ = (X+Y)(X+Z) Distributivity

X+XY =X X(X+Y) =X Absorption Law

X+XY =X+Y X(X"+Y) = XY Simplification

(X+Y) = XY (XYY = X'+Y DeMorgan’s Law

XY+ X'Z+YZ X+)X +Z)Y+2Z) Consensus Theorem
XY+ X'Z = (X+Y)X'+2)

Differences between Boolean and
ordinary algebra

* Distributive law of + over -
X+(y-z)=(x+y)-(x+z) is not valid in ordinary algebra

» Boolean algebra does not have additive or
multiplicative inverse so there is no subtraction or
division operations

2013/9/5

Boolean Algebra

» Boolean algebra is used for manipulating logical
functions when designing digital hardware.

» However, today most design is done using
Computer-Aided Design (CAD) software that
includes schematic capture, logic simplification and
simulation.

» Other methods include truth tables, Venn diagrams
and Karnaugh Maps.

Venn Diagram

A graphical tool that can be used for Boolean algebra
A binary variable s is represented by a contour

Area within the contour corresponds to s=1

Avrea outside the contour corresponds to s=0

Two variables are represented by two overlapping
circles

Venn Diagram

o |0

(c) Variable x @ %
© x-y ® x+y

@| '@

@ x-y (M) x.y+z

Venn Diagram

® &

@) x @ x.y

%
83

() y+z (e) x.z

€ |E

© x-(y+2)) x-y+x-z

Figure 2.13. Verification of the distributive property
X (y+z)=x y+x z

Precedence of operations

* In the absence of parentheses, operations in a logic
expression must be performed in the order: NOT,
AND, OR.

Example:
| =mwrws + 120

Synthesis using AND, OR and NOT

» One way of designing a logic circuit that
implements a truth table is to create a product term
that has a value of 1 for each valuation for which
the output function has to be 1.

» Then we take the logical sum of these product
terms to realize f

x| [l w)

—_—— O
—_ O
— O

2013/9/5

F(x,%,) :;1;2+sz + XX,

Xy

X2

f=Xx+X,

71 s f(ll) .t;) (a) Canonical sum-of-products

0 0 1 .

01 1 o E f) —t

1 0 0 2

1 1 1 (b) Minimal-cost realization

Minterm, Maxterm Minterm, Maxterm
For a Boolean function of n
* Minterm variables, there are 2" minterms:

A product term in which all variables of a function
appear exactly once, uncomplemented or
complemented.

e Maxterm

A sum term in which all variables of a function
appear exactly once, uncomplemented or
complemented.

and 2" maxterms:

Note that:

Mo .. Mz

my .. my"y

M;="m;

Minterm, Maxterm

Rowr e, AB L Minterms Maxterms

A+ BrC=M,
At EBv (=M,
A+ B4 = M,

A+ B4 = M,

A+E+ T M,

A+E+ =M,

ABC =y A4 Fe = M,

Canonical Sum of Products Form

* A Boolean function f(x1,x2,x3) can be expressed
algebraically as a logical sum of minterms:

Row
number | @z oz x| fle, ze,)
0 0o 0 0 0
1 0o 0 1 1
2 0 1 0 0
3 0o 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

2013/9/5

Canonical Sum of Products Form

« fcan be expressed as sum of product terms (SOP)

f (x1,x2,x3) = > (m1, m4, m5, m6)
f (x1,x2,x3) = > m(1,4,5,6)

Canonical Product of Sums Form

» The complement of f(x1,x2,x3) can be formed as the
logical sum of all minterms not used in f(x1,x2,x3):

%(xl, x2,%3)=m0+m2+m3+m7

f =m0+ m2+m3+m7
f =mOem2em3em7
f=MQOeM2eM3eM7

This is called the product of sum presentation of f

Conversion Between the Canonical Forms
* It is easy to convert from one canonical form to other

one, simply use the DeMorgan’s theorem.

Example:
F(ABC)=) (L4567

F(ABC)=2(029)
F(A B,C)=(m0+m2+m3) =mym,m, = M;M,M,
F(ABO)=[023

Cost of a Logic Circuit

* Cost of a logic circuit: total number of gates
plus total number of inputs to all gates in the
circuit

 The canonical SOP and POS implementations
described before are not necessarily minimum
cost

» We can simplify them to obtain minimum-cost
SOP and POS circuits

Reducing Cost

How can we simplify a logic function?

— There are systematic approached for doing this
(e.g., Karnaugh map) that we will learn later

— The other way is to use theorems and properties of
Boolean algebra and do algebraic manipulations

— Do an example on the board.

Reducing Cost
» The simplified version of SOP is called minimal SOP

» The simplified version of POS is called minimal POS

» We cannot in general predict whether the minimal
SOP expression or minimal POS expression will
result in the lowest cost.

« It is often useful to check both expressions to see
which gives the best result.

2013/9/5

*+ NOR

¢ XOR

Other Logic Operations

NAND

XNOR

NAND

NAND: a combination of an AND gate followed by an
inverter.

s
B_

Symbol for NAND is T
NAND gates have several interesting properties:

ATA=A
(A1B) = AB
(A1B)=A+B

al - o‘o)
NP a‘o

NAND

These three properties show that a NAND gate with both of

its inputs driven by the same signal is equivalent to a NOT

gate

A NAND gate whose output is complemented is equivalent to

an AND gate, and a NAND gate with complemented inputs
acts as an OR gate.

Therefore, we can use a NAND gate to implement all three of

the elementary operators (AND,OR,NOT).

Therefore, ANY Boolean function can be constructed using

only NAND gates.

NAND

NOR

* NOR: a combination of an OR gate followed by an inverter.

A
B

* NOR gates also have several

s

al al o]l of »
alel 2ol m
o o o a <

interesting properties:

AlA=4A
(A|BY=A+B
A | B'=AB

NOR

Just like the NAND gate, any logic function can be
implemented using just NOR gates.

Both NAND and NOR gates are very valuable as any design
can be realized using either one.

It is easier to build an IC chip using all NAND or NOR gates
than to combine AND,OR, and NOT gates.

NAND/NOR gates are typically faster at switching and
cheaper to produce.

2013/9/5

NAND and NOR networks

* NAND and NOR can be implemented by simpler electronic
circuits than the AND and OR functions

 Can these gates be used in synthesis of logic circuits?

X1
X

.

X1
X

NAND and NOR networks

(@) XX = X1 +X%2

x
*

) X+ % = XX

NAND and NOR networks

X1 X
X X2

&R &
&K & &

NAND and NOR networks

Exclusive OR (XOR)

» The eXclusive OR (XOR) function is an important
Boolean function used extensively in logic circuits.

» The XOR function maybe:

— implemented directly as an electronic circuit (truly a gate)
or

— implemented by interconnecting other gate types (used as
a convenient representation)

* The XOR function means:
X ORY, but NOT BOTH

e XOR gates

XOR

assert their output

when exactly one of the inputs

is asserted,

hence the name.

e The symbol for this operation is ®
Y = A'B+4+ AB’

A
B

o

ol al o o »

= o = o W

ol 2| 2l of <

2013/9/5

XNOR

* The eXclusive NOR function is the complement of the XOR
function

* The symbol for this operation is @, i.e.
1®1=1and1®0=0.

e

Y =A'B'+ AB
* Whyis tge XNOR function also known as the equivalence

function?

N c‘o}
N _l‘ouj
ol e o‘d—<

XOR Implementations

e A SOP implementation X

Xey

¢ A NAND implementation ~ x—

Xey

XOR and XNOR
 Uses for the XOR and XNORs gate include:
— Adders/subtractors/multipliers
— Counters/incrementers/decrementers

— Parity generators/checkers

XOR
¢ XOR identities:
Xas0=X
XgegX=0
XaY=YaX
Xal=X'
XaX =1

Gates with more than two inputs

A gate can be extended to have multiple inputs if the binary
operation it represents is commutative and associative.
AND and OR operations have these two properties

NAND and NOR are not associative:

(ALB)LC#AL(BLC)
(A1B)TC#AT(BTC)

Gates with more than two inputs

« We define multiple input NAND and NOR gates as follows:

A|B|C=(A+B+0C)
A1B1C=(ABC)

10

2013/9/5

Gates with more than two inputs

XOR and XNOR are both commutative and associative

Definition of XOR should be modified for more than two
inputs

For more than 2 inputs, XOR is called an odd function: it is
equal to 1 if the input variables have an odd number of 1’s

Similarly, for more than 2 inputs, XNOR is called an even
function: it is equal to 1 if the input variables have an even
number of 1’s

Learning Objectives

List the three basic logic operations

Draw the truth table for the basic logic operations
Build truth table for an arbitrary number of variables
Draw schematic for basic logic gates

Perform analysis on simple logic circuits

Draw timing diagram for simple logic circuits

11

