
2013/9/26

1

Logic Design

Chapter 4: Optimized Implementation of
Logic Functions

Introduction
• The combining property allows us to replace two minterms

that differ in only one variable with a single product term that
does not include that variable.

• Combining property can be used to reduce the number of
product terms in SOP

• Karnaugh map provides a systematic way of performing this
optimization

x 2

(a) Truth table (b) Karnaugh map

0

1

0 1

m 0 m 2

m 3 m 1

x 1 x 2

0 0

0 1

1 0

1 1

m 0

m 1

m 3

m 2

x 1
x 1 x 2

x 3 00 01 11 10

0

1

(b) Karnaugh map

x 2 x 3

0 0

0 1

1 0

1 1

m 0

m 1

m 3

m 2

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

m 4

m 5

m 7

m 6

x 1

(a) Truth table

m 0

m 1 m 3

m 2 m 6

m 7

m 4

m 5

x 1 x 2
x 3 x 4 00 01 11 10

00

01

11

10

x 2

x 4

x 1

x 3

m 0

m 1 m 5

m 4 m 12

m 13

m 8

m 9

m 3

m 2 m 6

m 7 m 15

m 14

m 11

m 10

K-map
• How to use the K-map to find a minimum cost

implementation?

• Find as few as possible and as large as possible group of
adjacent 1s that cover all cases where the function has a value
of 1

• Large group of 1s: fewer number of variables in the
corresponding product term -> gates with fewer number of
inputs

• Fewer number of groups: less AND gates

• Keep in mind that cost is the number of gates and number of
inputs to the gate

• Size of groups: 1, 2, 4, 8, ….

2013/9/26

2

K-map
• Adjacent cells: cells that differ only in one variable

• Cells in left and right edge of the K-map are adjacent

• Cells in top and bottom edge of the K-map are adjacent

• You can visualize the map as being folded around a cylinder

• Four corners of the map are adjacent to each other and can
form a group

K-map
• How to find out the product term corresponding to a group?

• The product term corresponding to a group must include only
those variables that have the same value (0 or 1) for all the
cells in the group

• Note: if it helps in forming bigger groups a cell can be used
for more than once

• This is fine since mi=mi+mi

x1x2
x3

1 1

0 0

1 1

0 1
f x3 x1x2+=

00 01 11 10

0

1
x 1 x 2

x 3 x 4

1

00 01 11 10

0 0 1

0 0 0 0

1 1 1 0

1 1 0 1

00

01

11

10

x 1 x 2
x 3 x 4

1

00 01 11 10

1 1 0

1 1 1 0

0 0 1 1

0 0 1 1

00

01

11

10

x 1 x 2 x 3 x 4

0

00 01 11 10

0 0 0

0 0 1 1

1 0 0 1

1 0 0 1

00

01

11

10

x 1 x 2 x 3 x 4

0

00 01 11 10

0 0 0

0 0 1 1

1 1 1 1

1 1 1 1

00

01

11

10

f 1 x 2 x 3 x 1 x 3 x 4 + = f 2 x 3 x 1 x 4 + =

f 3 x 2 x 4 x 1 x 3 x 2 x 3 x 4 + + = f 4 x 1 x 3 x 1 x 3 + + =

x 1 x 2

x 2 x 3

or

Five Variable Map

x 1 x 2
x 3 x 4 00 01 11 10

1 1

1 1

1 1

00

01

11

10

x 1 x 2
x 3 x 4 00 01 11 10

1

1 1

1 1

1 1

00

01

11

10

f 1 x 1 x 3 x 1 x 3 x 4 x 1 x 2 x 3 x 5 + + =

x 5 1 = x 5 0 =

Minimization Procedure
• Selection of groups on the K-map may be made more

systematic using implicants.

• Literal: Each appearance of a variable, either
uncomplemented or complemented, in a product term, is
called a literal

• Example: x1x2’x3 has three literals.

• A product term for which a given function is equal to 1 is
called an implicant.

• Example: do the example on board

2013/9/26

3

Minimization Procedure
• If the removal of any literal from an implicant P results in a

product term that is not an implicant of the function, then P is
a prime implicant.

• A collection (set) of implicants that account for all variations
for which a given function is equal to 1 is called a cover of
that function.

• Cost of the function: total number of gates plus total number
of all inputs to all gates

• The cover consisting of prime implicants leads to the lowest-
cost implementation.

Minimization Procedure
• How to determine the minimum-cost subset of prime

implicants that will cover the function?

• If a prime implicant includes a minterm for which f=1 that is
not included in any other prime implicant, then it is called an
essential prime implicant and must be included in the cover

• Do the example on the board

Minimization Procedure
• Process of finding a minimum-cost circuit:

1. Generate all prime implicants for the give function f

2. Find the set of essential prime implicants

3. If the set of essential prime implicants covers all valuations
for which f=1, then this set is the desired cover of f.
Otherwise, determine the nonessential prime implicants that
should be added to form a complete minimum-cost cover

Minimization Procedure
• The choice of nonessential prime implicants to be included in

the cover is governed by the cost considerations

• One approach: arbitrarily select one nonessential prime
implicant and include it in the cover, and determine the rest of
the cover. Determine another cover, assuming that this prime
implicant is not in the cover. Choose the less expensive cover.

• Do an example on board

Minimization of POS Forms
• Find the minimum cost SOP implementation of the

complement of f (look for zeros in the K-map)

• Apply DeMorgan’s theorem to obtain the simplest POS
realization

• Do the example on board

Incompletely specified functions
• Functions with undefined outputs for some input

combinations are called "incompletely specified functions".

• These "don’t care" conditions may be used to advantage to
provide further simplification of the function

• The designer can assume that the function value of don’t care
conditions is 0 or 1 whichever is more useful.

• To indicate don’t-care conditions on the K-map, they are
normally marked as “d”

2013/9/26

4

Incompletely specified functions

x 1 x 2 x 3 x 4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x 2 x 3

x 3 x 4

(a) SOP implementation

4332

432431321

41)15,14,13,12()10,6,5,4,2(),..,(

xxxxf

xxxxxxxxxf

Dmxxf






Incompletely specified functions

x1 x 2 x 3 x 4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x 2 x 3 +  

x 3 x 4 +  

(b) POS implementation

1 4

2 3 3 4 1 2

2 3 3 4

(,..,) (2, 4,5,6,10) (12,13,14,15)

()()()

()()

f x x m D

f x x x x x x

f x x x x

 

   

  

Multilevel Synthesis
• Minimum cost sum-of-products or product-of-sums

realizations have two levels (stages) of gates

• Sum-of-product: first level AND gates connected to a second
level OR gate

• Product-of-sum: first level OR gates connected to a second
level AND gate

• As the number of inputs increases a two-level circuit may
result in fan-in problem

• Whether or not this is an issue depends on the type of
technology used to implement the circuit

75427326541631721),...,,(xxxxxxxxxxxxxxxxxf 

0
0
0
1

0
1
1
1

x 4

x 5

A

B

C

D

x 1

x 6

x 4 f

0
1
1
1

0
0
0
1

x 3

C

D

E

E

f

x 2

x 7

x 5 x 3

0
0
0
1

x 2

x 7

B

0
0
1
0

x 1

x 6

A

Multi-level synthesis
• To solve the fan-in problem f should be expressed in a form

that has more than two levels

• Multi-level logic expression

• Two important techniques for synthesis of multi-level
circuits:

1. Factoring

2. Functional decomposition

2013/9/26

5

Factoring

1 2 7 1 3 6 1 4 5 6 2 3 7 2 4 5 7

1 6 3 4 5 2 7 3 4 5

1 6 2 7 3 4 5

(, ,...,)

() ()

()()

f x x x x x x x x x x x x x x x x x

f x x x x x x x x x x

f x x x x x x x

   

   

  

Factoring

0
0
0
1

0
1
1
1

x 4

x 5

A

B

C

D

x 1

x 6

x 4 f

0
1
1
1

0
0
0
1

x 3

C

D

E

E

f

x 2

x 7

x 5 x 3

0
0
0
1

x 2

x 7

B

0
0
1
0

x 1

x 6

A

Factoring

)(532532641

654321654321

xxxxxxxxxf

xxxxxxxxxxxxf





7 inputs6

Factoring

1 2 3 4 5 6 1 2 3 4 5 6

1 4 6 2 3 5 2 3 5()

f x x x x x x x x x x x x

f x x x x x x x x x

 

 

x 6

x 4

x 1

x 5

x 2

x 3

x 2

x 3

x 5

Functional decomposition
• Complexity of a logic circuit can often be reduced by

decomposing a two-level circuit into sub-circuits where one or
more sub-circuit implements functions that may be used in
several places to construct the final circuit

1 2 3 1 2 3 1 2 4 1 2 4

1 2 1 2 3 1 2 1 2 4

1 2 1 2

1 2 1 2

3 4

() ()

f x x x x x x x x x x x x

f x x x x x x x x x x

g x x x x

g x x x x

f gx gx

   

   

 

 

 

x 1

x 2

x 3

x 4

f
g

x 1

x 2

x 3

x 4

f
g

2013/9/26

6

Functional decomposition

1

x 2

x 3
x 4

f

g

h

x

x 1

x 2

x 3

x 4

f
g

1

x 2

x 3
x 4

f

g

h

x

x 1

x 2

x 3

x 4

f
g

Decoders
• Decoder: decodes encoded information

• A binary decoder is a logic circuit with n inputs and 2n

outputs

• Only one output is asserted at a time (corresponding to one
valuation of inputs)

• Enable: En=0 none of the decoder outputs is asserted

0

w n 1 –

n
inputs

EnEnable

2 n

outputs

y 0

y 2 n 1 –

w

Binary coded decimal (BCD)
• Each digit in a decimal number is represented by its binary

form

• Since there are 10 digits we need 4 bits per digit

Figure 6.25. A BCD-to-7-segment display code converter.

c e

1
0
1
1

1
1
1

w 0 a

1

b

0 1

1
1

1

0
1

1
0
1

0

0

w 1

0
1
1

0

0

w 2

0
0
0

0

1

w 3

0
0
0

0

0

c

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1 0 0 1

1
1
1
1

0
1
1

0

1 1

1
1

1

1
1

0
1
1

1

d

0

1
0

0

1
0

e

1
0
1

1

1

0
1

0

0
1

0
0
0

1

f

1

0
0

1

1
1

g

1
0
1

1

1

1
1

1

0
1

(c) Truth table

(a) Code converter

w 0

a

w 1

b
c
d w 2

w 3
e
f
g

a

g

b f

d

(b) 7-segment display

Multi-level NAND and NOR Circuits

x 2

x 1

x 3

x 4

x 5

x 6
x 7

f

(a) Circuit with AND and OR gates

Multi-level NAND and NOR Circuits

2013/9/26

7

Multi-level NAND and NOR Circuits

x 2

x 1

x 3

x 4

x 5

x 6

x 7

f

(c) NAND-gate circuit

x 2

x 1

x 3

x 4

x 5

x 6 x 7

f

(b) NOR-gate circuit

Analysis of Multi-level Circuits
• In order to derive the function of a multi-level circuit, we have

to trace the circuit either by tracking the inputs and working
towards the outputs or the other way.

• Finding the function of intermediate points is helpful.

Analysis of Multi-level Circuits
x 1

x 2

x 5

x 4

f x 3

P 1

P 4

P 5

P 6 P 8

P 2

P 3

P 9

P 10

P 7 1 1 2 3

2 4

3 3

4 3 2

5 4 3

6 4 5

7 1

8 6

9 1 6

10 7 8

,P x x x

P x

P x

P x P

P x P

P P P

P P

P P

P PP

P P P

  







 








Analysis of Multi-level Circuits

9 10 1 6 7 8

1 2 5 4 5 1 6

1 2 5 3 2 4 3 1 2 5 4 5

1 2 5 3 4 3 4 1 2 5 3 4 4 3

1 3 4 1 3 4 2 3 4 2 3 4 5 3 4 5 3 4

1 2 5 3 4 1 2 5 4 3

()()

()()

()() ()()

f P P PP P P

x x x P P P P

x x x x P x P x x x P P

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x

x x x x x x x x x x

   

    

    

      

      



2013/9/26

8

Analysis of Multi-level Circuits

x 2
x 3

x 1

x 4

x 5

f

P 3

P 1

P 2

P 4
2x 2

x 3

x 1

x 4

x 5

f

P 3

P 1

P 2

P 4
2

1 2 3

2 1 1 1 1

3 3 4 3 4

4 2 3

4 5 4 5 2 3 5

1 1 3 4 5

1 2 3 3 4 5

1 5 2 5 3 5 4 5

()

()

P x x

P x P x P

P x x x x

P P P

f P x P x P P x

x P x x x

x x x x x x

x x x x x x x x



  

  

 

    

   

   

   

