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Logic Design

Chapter 4: Optimized Implementation of 
Logic Functions

Introduction
• The combining property allows us to replace two minterms 

that differ in only one variable with a single product term that 
does not include that variable.

• Combining property can be used to reduce the number of 
product terms in SOP

• Karnaugh map provides a systematic way of performing this 
optimization
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K-map
• How to use the K-map to find a minimum cost 

implementation?

• Find as few as possible and as large as possible group of 
adjacent 1s that cover all cases where the function has a value 
of 1

• Large group of 1s: fewer number of variables in the 
corresponding product term -> gates with fewer number of 
inputs

• Fewer number of groups: less AND gates

• Keep in mind that cost is the number of gates and number of 
inputs to the gate

• Size of groups: 1, 2, 4, 8, ….



2013/9/26

2

K-map
• Adjacent cells: cells that differ only in one variable

• Cells in left and right edge of the K-map are adjacent

• Cells in top and bottom edge of the K-map are adjacent

• You can visualize the map as being folded around a cylinder

• Four corners of the map are adjacent to each other and can 
form a group

K-map
• How to find out the product term corresponding to a group?

• The product term corresponding to a group must include only 
those variables that have the same value (0 or 1) for all the 
cells in the group

• Note: if it helps in forming bigger groups a cell can be used 
for more than once 

• This is fine since mi=mi+mi
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Minimization Procedure
• Selection of groups on the K-map may be made more 

systematic using implicants.

• Literal: Each appearance of a variable, either 
uncomplemented or complemented, in a product term, is 
called a literal

• Example: x1x2’x3 has three literals.

• A product term for which a given function is equal to 1 is 
called an implicant.

• Example: do the example on board
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Minimization Procedure
• If the removal of any literal from an implicant P results in a 

product term that is not an implicant of the function, then P is 
a prime implicant.

• A collection (set) of implicants that account for all variations 
for which a given function is equal to 1 is called a cover of 
that function. 

• Cost of the function: total number of gates plus total number 
of all inputs to all gates

• The cover consisting of prime implicants leads to the lowest-
cost implementation. 

Minimization Procedure
• How to determine the minimum-cost subset of prime 

implicants that will cover the function?

• If a prime implicant includes a minterm for which f=1 that is 
not included in any other prime implicant, then it is called an 
essential prime implicant and must be included in the cover

• Do the example on the board

Minimization Procedure
• Process of finding a minimum-cost circuit: 

1. Generate all prime implicants for the give function f

2. Find the set of essential prime implicants

3. If the set of essential prime implicants covers all valuations 
for which f=1, then this set is the desired cover of f. 
Otherwise, determine the nonessential prime implicants that 
should be added to form a complete minimum-cost cover 

Minimization Procedure
• The choice of nonessential prime implicants to be included in 

the cover is governed by the cost considerations

• One approach: arbitrarily select one nonessential prime 
implicant and include it in the cover, and determine the rest of 
the cover. Determine another cover, assuming that this prime 
implicant is not in the cover. Choose the less expensive cover.

• Do an example on board 

Minimization of POS Forms
• Find the minimum cost SOP implementation of the 

complement of f (look for zeros in the K-map)

• Apply DeMorgan’s theorem to obtain the simplest POS 
realization

• Do the example on board

Incompletely specified functions
• Functions with undefined outputs for some input 

combinations are called "incompletely specified functions".

• These "don’t care" conditions may be used to advantage to 
provide further simplification of the function

• The designer can assume that the function value of don’t care 
conditions is 0 or 1 whichever is more useful. 

• To indicate don’t-care conditions on the K-map, they are 
normally marked as “d”
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Incompletely specified functions
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Multilevel Synthesis
• Minimum cost sum-of-products or product-of-sums 

realizations have two levels (stages) of gates

• Sum-of-product: first level AND gates connected to a second 
level OR gate

• Product-of-sum: first level OR gates connected to a second 
level AND gate

• As the number of inputs increases a two-level circuit may 
result in fan-in problem

• Whether or not this is an issue depends on the type of 
technology used to implement the circuit
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Multi-level synthesis
• To solve the fan-in problem f should be expressed in a form 

that has more than two levels

• Multi-level logic expression

• Two important techniques for synthesis of multi-level 
circuits:

1. Factoring

2. Functional decomposition
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Factoring
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Functional decomposition
• Complexity of a logic circuit can often be reduced by 

decomposing a two-level circuit into sub-circuits where one or 
more sub-circuit implements functions that may be used in 
several places to construct the final circuit 
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Functional decomposition
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Decoders
• Decoder: decodes encoded information

• A binary decoder is a logic circuit with n inputs and 2n

outputs

• Only one output is asserted at a time (corresponding to one 
valuation of inputs)

• Enable: En=0 none of the decoder outputs is asserted
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y 0 
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w 

Binary coded decimal (BCD) 
• Each digit in a decimal number is represented by its binary 

form

• Since there are 10 digits we need 4 bits per digit

Figure 6.25.   A BCD-to-7-segment display code converter.
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Multi-level NAND and NOR Circuits
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(a) Circuit with AND and OR gates 

Multi-level NAND and NOR Circuits
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Multi-level NAND and NOR Circuits
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(b) NOR-gate circuit

Analysis of Multi-level Circuits
• In order to derive the function of a multi-level circuit, we have 

to trace the circuit either by tracking the inputs and working 
towards the outputs or the other way.

• Finding the function of intermediate points is helpful.

Analysis of Multi-level Circuits
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Analysis of Multi-level Circuits
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