2013/10/15

Logic Design

Number Representation and Arithmetic
Circuits

A~A # e
VicMaster
¢ [

Number representation

* In abinary number the right-most bit is called the least-
significant bit (LSB) and the left-most bit is called the most
significant bit (MSB)

» A group of 4 bits is called a nibble

» A group of 8 bits is called a byte

Number representation
* Numbers that are positive only are called unsigned
« Numbers that can be positive or negative are called signed
* Numbers could be integer or real
 Simplest: unsigned integer
e A decimal integer:

D=d,.d, ,..d,d;
V(D)=d,,x10"" +d, ,x10"? +..+d, x10" + d, x10°

Number representation
» Conversion from decimal to binary: successively divide by 2
* In each step the remainder is the next binary digit
 The process continue until the quotient becomes zero

V =b, ,x2" +b, ,x2" % +..+b x 2" +b;x2°
Vip ><2"’2+bn72><2"’3+..+b1x2°+&
2 2

Number representation

e Binary numbers:

B= bnf1bn72-"b1bo
V(B)=b, ,x2" +b, ,x2" %+ ..+b x 2"+ b, x2°

1101
V =1x2° +1x 27 +0x 2! +1x 2° =13
(1101)2 = (13)10

Number representation

Converl. (837} 10

Remainder

857 =2 = 128 1 LSB
428 + 2 = 214 0
214 =2 = W07 0
0W7+2 = 33 1
53+ 2 = 26 1
262 = 13 0
13+2 = 6 1
62 = 3 0
3+2 =1 1

12 = 0 1 MSLE

Result 1s (1101011001}

2013/10/15

Number representation

The most common bases in addition to decimal are:

(binary) {0,1}

(octal) {0,1,... 7}

(hexadecimal) {0,1,2,3,4,5,6,7,8,9,A,B,
C,D,EF}

Reason for using octal and hexadecimal systems: useful
shorthand notation for binary numbers

>

[

Addition of Unsigned Numbers

= XgX3XpX1Xg 01111 (15)49
= Y4¥s¥a¥1Yo 01010 (10) 4
= 5,4535,5:5) 11001 (25)49

Number representation

One octal digit represents three bits

Conversion from binary to octal: starting from the LSB
replace every group of three digits with their corresponding

Conversion from binary to hexadecimal: starting from the
LSB replace every group of four digits with their
corresponding hexadecimal digit

Conversion from octal to binary: substitute each octal digit by
corresponding three bits
Conversion from hexadecimal to binary: substitute each hex
digit by four bits

AN 0 1 10

(a) Truth table

(6) Kamaugh maps.

(c) Gircuit

Figure 5.4. Full-adder.

Addition of Unsigned Numbers

(a) The four possible cases

cary | sum

i
c s
0 0
0 1
0 1
1 0

X
0
o
1
1

(b) Truth table

; Dﬁ
s
i
X —] -
Y — -c
c

(©) Circuit (d) Graphical symbol

Decomposed Full Adder

Cj s s
X S HA c
i
HA _—-’ Ci
% - .

(a) Block diagram
D—-

Civ1

(b) Detailed diagram

2013/10/15

Ripple Carry Adder

Xn-1 Yn-1 X1 N X Yo
C1
Cn FA |[*— Cir1 see FA FA [=—
Sn-1 S1 So
MSB position LSB position

Example

Yo

P=3A: Py Py Py

(b) Efficient design

Ripple Carry Adder
When operands X and Y are applied as inputs to the adder, it
takes some time before output sum S is valid.
Each full-adder has a delay before its s; and c;,, are valid
If this delay is At the complete sum will be valid after a delay
of nAt
Because of the way the carry signal “ripple” through the full-
adder, this circuit is called a ripple-carry adder

Signed Numbers

e One of the bits (usually the left-most bit) is reserved for the
sign of the number.

e Usually a 1 indicates negative and 0 indicates positive.

bo-y by by

T Magnitude
MSsB

() Unsigned number

booy booz by by

| | | ot | | |

-
Sign ’ Magnitude

0 denotes +
1 denotes - MSB

(b) Signed number

Example

Aia e

Xg X7 %o Vs Y7 Yo
s
g So

P=3A: Py Py Py

(a) Naive approach

Signed Numbers

« Extending the 'natural’ binary representation of positive
integers to negative integers can be done in at least 3 different
schemes: sign-magnitude, one's complement and two's
complement.

* Sign-and-magnitude: The most significant bit (MSB) is
reserved to the sign, 0 is positive, 1 is negative. All other bits
are used to store the magnitude in the natural representation.

 Addition and subtraction are complicated.

 There are two representations for zero!

2013/10/15

Signed Numbers

One’s complement Positive integers are like in the natural
representation, negative numbers are obtained by
complementing each bit of the corresponding positive number
(i.e. the absolute value).

There are two representations for zero! Bitwise addition of N
and -N gives -0.

Positive integers still have MSB = 0, and negative integers
have MSB=1.

1’s complement of an n-bit negative number K is obtained by
subtracting its equivalent positive number P from 2"-1

K,=(2n-1)-P

B A

Integers Sign and 2 Complement | 15 Complement
{all systems) N Magnitude N
0000 0 1000 e nmn
oo -1 1001 mn 1o
o010 2 1010 1mo o
oo 3 1011 101 1100
0100 4 1100 1100 1on
o 5 1mm 1non 1010
LARD] —6 o 1010 1001
om 7 mnm 1001 1000
8 1000

Table: Signed Binary Integers (word length n = 4)

Positive i Negative Integers)

Signed Numbers
Two's complement Like one's complement, but negative
numbers are having 1 added after complementation.
Bitwise addition of N and -N gives 0 if you ignore the carry
out of the MSB.
Positive integers still have MSB = 0, and negative integers
have MSB=1. Only one representation for zero!
2’s complement of an n-bit negative number K is obtained by
subtracting its equivalent positive number P from 2"
K,=2"-P

2’s complement signed numbers
B=b,.1b5.--bibg

V = (=b, , x2"") +b, ,x2" % +..+b x2" +b,x2°

Largest negative number: -2n1

Largest positive number: 21 -1

Signed Numbers

Relationship between 2’s complement and 1’s complement
K,=K;+1
A simple way of finding the 2’s complement is to find 1’s
complement and add 1

Rule for finding 2’s complement:

— Given signed number B=b, ;b ,...b;b,

— 2’s complement: K=k ;K ,...K;Ky

— Examine bits of B from right to left, copy all bits of B that are 0 and
the first bit that is 1, then complement the rest of the bits

1’s complement addition

§+5§ 0101 -5) 1010
+(+2) +0010 +(+2) +0010
) 0111 3) 1100
(+5) 0101 -5 1010
+(=2) +1101 +§,2§ +1101
+3 10010) 10111

2013/10/15

Addition and Subtraction Adder and Subtractor Unit
« Addition of 1’s complement numbers might need a correction , y ,
e Time needed to add two 1’s complement numbers may be m ’ ’ Add/sub
twice as long as time needed to add two unsigned numbers M o] l [control

P11 Y YY

Sn-1 S1 So

2’s complement addition Radix-complement schemes
(+5 0101 (-5) 1011 e Complements — general theory
+(+2 +0010 +(+2 +0010 e The r’s complement of an n-digit number N in base r is:
(+7) 0111 (-3) 1101 K=r-N forN=0
(0 for N=0)
e The (r-1)’s complement, K, is defined as:
(+5 0101 (-5) 1011
+ (=2) +1110 +(=2) +1110 K=("-1)-N
(+3) 10011 (=7 11001
» The concept of subtracting a number by adding its radix-
complement is general
2’s complement subtraction Arithmetic Overflow
(+9 0101 0101 . .
—(+2) -0010 +1110 * If n bits are used to represent signed numbers, result must be
(+3 10011 in the range -2 to 2"1-1

If the result does not fit in this range, we say that arithmetic
overflow has happened

(-5) 1011 1011 » We should be able to detect overflow

—(+2) -0010 +1110 - .
% — Tioo1 » The key to determining the overflow is carry-out from MSB
position and carry-out from the sign bit
« If they are the same no overflow has happened.
(+9 0101 0101
- (=2) -1110 +0010 0Ver'ﬂ0W=Cn_1@Cn
(+7) 0111
(-5) 1011 1011
- (-2 -1110 +0010
(=3) 1101

2013/10/15

Arithmetic Overflow

(+7 0111 (=7) 1001
+(+2) +0010 +(+2) +0010
+9 1001 (-5 1011
c, =0 c, =0
=1 c3=0
(+7) 0111 =7 1001
+(=2) +1110 +(2 +1110
(+5) 10101 (-9) 10111
c=1 =1
c3=1 c3=0

Fast Adders

Gt = XY +XC +YiG
Civs =X Y+ (X + V)G

Ca=0;t PG
9i =X%Yi
Pi=XtY;

Gt =0i + PiGia+ PiPiaGio +-oot PiPicg P2 PiGo + PiPisg-- PiPoCo

Performance Issue
Speed of any circuit is limited by the longest delay along the
paths through the circuit
This is called the critical path delay

Critical path for the ripple adder is from input y, through the
XOR gate and through the carry circuit of each stage.

Yn-1 Y1 Yo

e Add /Sub
control

Fast Adders

Stage 1 Stage 0

Figure 5.15. Aripple-carry adder based on expression 5.3.

Fast Adders

(%) Kamaugh maps.

© Cireut

Fast Adders

Figure 5.16. The first two stages of a carry-lookahead adder.

2013/10/15

Fast Adders Fast Adders

In an n-bit carry-look ahead adder the final carry-out signal Cy =0, + Py0s + PrPels + Py PsPsTs + Pa Ps PsPals + Pr Py PsPaPaly +

would be produced after three gate delays 0. D DD B D0, + B Do P Do PP DG + D e Pe P PPy By PG
The total delay in an n-bit carry-look ahead adder is four gate TrersTateas T TrTeTs et T2 so T Fr T T Fe e uromo

delays.

Complexity of an n-bit carry look ahead adder increases Fo = P2 Ps Ps P4 Ps P2 1P

rapidly as n becomes larger Gy =07 + P;Us + P;PsUs + P7 PsPsUy + P7 PsPs Po U3 + P7 PsPs Py P3U, +
We can use a hierarchical approach in designing large adders. P; Ps Ps P4 P3P, 9; + P; Pg Ps P4 P3P, P19

c, =G, + Ryc,

i =G, + Py =G, + BG, + BRc,

Fast Adders Fast Adders
Y3-24 Yil-24 Xis-8 ¥Is-8 Y7-0 -0 X31-24 Y31-24 X15-8 Yi5-8 X7-0 Y7-0
Bkéck | o ewe | Blgck | | Blgck -—— ¢
Gg[Pg Gyl Py Go|Po

S31-24 S15-8 S7-0

7-0 ——————— eees 4

S31-24 S15-8

ﬁ - |

Figure 5.17. A hierarchical carry-lookahead adder with — |
ripple-carry between blocks. Caﬂ |“|\ clﬂ w crl__-|<—

Second-level lookahead s
Fast Adders Technology Considerations
A faster circuit can be designed in which a second-level carry- * So far we assumed gates with any number of inputs can be
look-ahead is performed to produce quickly the carry signals used
between blocks. * Fan-in is limited to a small number
* Instead of producing a carry-out signal from the most « More gates should be used to implement the logic
significant bit of the block, each block produces generate and « Example: max fan-in is four

propagate signals for the entire block
CB = g7 + p7gﬁ + p7 psgs + p7 pﬁ p594 + p7 p6 pS p493 + p7 p6 p5p4 ngz +

P7 Ps Ps P4 P3 P21 + P Ps Ps P4y P3 P2 PiYo + P7 Ps Ps Py P3 P2 P PoCo

Cg =(97 + P79s + P7 P95 + P; P PsTs) +
[P;PsPsPa(9s+ P39, + P3P,0; + P3P, P1Y0)]+
(P2 Ps P P4)(P3 P2 Py Po)Co

2013/10/15

Because fan-in limitation reduces the speed of carry-look-
ahead adder, some devices with low fan-in include dedicated
circuit for implementing fast adders

Example: FPGA

Multiplication of unsigned numbers

Each multiplier bit is examined: if 1, a shifted version of
the multiplicand is added to form the partial product; if
zero nothing is added

Multiplicand M (14) 1110
Multiplier Q (11) x 1011

1110
1110
0000
1110

Product P (154) 10011010

(a) Multiplication by hand

Multiplication
A number is multiplied by 2% by shifting it left by k bit
positions
This is true both for unsigned and signed numbers
Shifting to the right by k bit, is equivalent to dividing by 2k
For unsigned numbers the empty bit positions are filled with
zero

For signed numbers, in order to preserve the sign, the empty
bit positions are filled with the sign bit

Multiplication of unsigned numbers

Multiplicand M (11) 1110
Multiplier Q (14) x 1011

1110
+ 1110

10101
+ 0000

01010
+ 1110

Product P (154) 10011010

(b) Multiplication for implementation in hardware

B=011000=24
B/2=001100=12
B/4=000110=6

B=101000=-24
B/2=110100=-12
B/4=111010=-6

M =m,m,mm,
Q= 059,090

PP0 = pp0; pp0, pp0, pp0,

PPO 0 pp0; ppO, pp0, ppO,
+ m3q1 m2ql mlql qul 0

PP1 ppl, ppl; ppl, ppl, ppl,

2013/10/15

——— I o
U U
Sy n e S e

V 1

(b) A blockin the top row. (¢) A block in the bottom two rows

Multiplicand M 14) 10010
Multiplier Q (+11) x 01011

10010
+ 110010

101011
+ 000000

110101
+ 110010

101100
+ 000000

Product P (~154) 1101100110

(b) Negative multiplicand

Multiplication of Signed Numbers
If multiplier is positive essentially the same scheme as
unsigned numbers can be used
Since shifting the multiplicand to the left results in one of the
operands having n+1 bits, the addition has to be performed
using the second operand represented in n+1 bits
An n bit signed number is represented as an n+1 bit number
by replicating the sign bit
Replication of the sign bit is called sign extension

Fixed point

A fixed point number consists of integer and fraction parts.
 The position of radix point is fixed

B=h, b, ,..bb,b,b,..b,

V(B):nibiXZi

i=—k

Multiplicand M~ (+14) 01110
Multiplier Q (+11) x 01011

01110
+ 001110

010101
+ 000000

001010
+ 001110

010011
+ 000000

Product P (+154) 0010011010

(a) Positive multiplicand

Floating point

Fixed point numbers: limited range

Floating point: numbers are represented by a mantissa and an
exponent: Mantissa x RExponent

Normalized: radix point is the right of fist nonzero digit
Example: 5.234 x 1043

For binary R=2

How mantissa and exponent are represented has been
standardized by IEEE

Single precision (32 bits) and double precision (64 bits)

2013/10/15

32 bits
[« M
—_
SignJ X M]
0 denotesr 8-bit 127 23 bits of mantissa
excess-!
1 denotes- exponent
(a) Single precision
64 bit
[s] E M
_
SignJ .] v]
11-bit excess-1023 52 bits of mantissa
exponent

(c) Double precision

BCD

BCD representation was used in some early computers
Drawback: complexity of circuits that perform arithmetic

operations
BCD addition:

X and Y two BCD digits (each four bits)

S=X+Y

If X +Y <9 the addition is the same as the addition of 2

unsigned binary numbers

If X+Y > 9 the result requires two BDC digits and the four-

bit sum may be incorrect.

 Single precision

— Exponent=E-127 X 0111 7
— Value=(+ or -)1.M x2&-127 +Y +0101 +5
z 1100 12
* Double precision
— Exponent=E-1023 carry —=
— Value=(+ or -)1.M x2E-1023 S=2
X 1000 8
+Y +1001 +9
z 10001 17
carry —=—
s=7
Binary coded decimal (BCD)
X Y

» Each digit in a decimal number is represented by its binary

form
« Since there are 10 digits we need 4 bits per digit

Decimal digit BCD code

0000
0noo1
00L0
0011
0100
0101
0110
0111
1000
1001

ST e W e D

@ o

carry-out

4-bit adder

Detect if
sum >9

Adjust

’

z

10

ASCII code

ASCII code: the most popular code for representing
information in digital systems used for letters numbers and
some control characters.

Control characters: those needed in computer systems to
handle and transfer data, e.g., return character

ACII representation of numbers is not convenient for
arithmetic operations

It is best to covert ASCII numbers to binary for arithmetic
operations

Bt
positions Bit positions 654

3210 WO 0o ol 10t
oW | NUL DLE SPACE 0 O F 3

o0m S0H DG 1 1 A Q & 4
0010 STX DC2 2 B R b o«
oo ETX D3 # 8 C § ¢

o EOT DCs 8 4 D T 4 ¢

o ENG NAK % 5 B U e«
om0 AK SYN k& & F ¥ !

o BEL ETB T 6 W g ow

1 BS CAN (8 H X b x

1001 [T T T

1010 P suB P

1011 YT oEC 4+ K o[ok

1o FoOEs < Lo\ 1

no @GS =M] =)

110 50 RS > N -

un s us /1 O — .+ DEL
NUL - Nall/ldie st Shif in .
SOH St of hesder DLE Data bk sscape

STX St oftext DCLDC4 Device control

ETX Endoften NAK Negative acknowled germers
EOT Eod ol tramsmission SYN Synchronous idie

ENQ Eoquiry ETB End of tranamitted block
ACQ Acowldprmem CAN Cuncel (error in data)
BEL Audbe sigual EM Eod of medinm

BS Back space suB Specil sequence

HT Horisostal tab EsC Excape

P Lise foed s Flle separator

vr Vertical tab s Group sepasator

FF Form feed RS Record separatar

o Cartinge return us Vst mparatar

o Shift cut DEL DeleteTde

Bit positions of code format = [E[S[4[3[2]1]0)

ASCII uses 7-bit, natural size in computer systems is one-byte
(8-bits)
Two common ways on going to 8-bits

— Set the eight bit to 0

— Use the eight-bit to indicate the parity of the other bits

Even parity: the parity bit is given a value such that total
number of 1's is even

Odd parity: the parity bit is given a value such that total
number of 1’s is odd

Even parity generator:) — g4 @ 25 B ... B g
Parity checker: ¢ =p® xg ® x5 @ ... B g

2013/10/15

11

