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Logic Design

Number Representation and Arithmetic 
Circuits

Number representation
• Numbers that are positive only are called unsigned 

• Numbers that can be positive or negative are called signed

• Numbers could be integer or real

• Simplest: unsigned integer

• A decimal integer:
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Number representation
• Binary numbers:

B  bn1bn2...b1b0

V (B)  bn1  2n1  bn2  2n2  .. b1  21  b0  20
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Number representation
• In a binary number the right-most bit is called the least-

significant bit (LSB) and the left-most bit is called the most 
significant bit (MSB)

• A group of 4 bits is called a nibble

• A group of 8 bits is called a byte

Number representation
• Conversion from decimal to binary: successively divide by 2

• In each step the remainder is the next binary digit

• The process continue until the quotient becomes zero
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Number representation
• The most common bases in addition to decimal are:

• base 2 (binary) { 0, 1 } 

• base 8 (octal) { 0, 1, … 7} 

• base 16 (hexadecimal) { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 
C, D, E, F }

• Reason for using octal and hexadecimal systems: useful 
shorthand notation for binary numbers

Number representation
• One octal digit represents three bits

• Conversion from binary to octal: starting from the LSB 
replace every group of three digits with their corresponding 
octal digit 

• Conversion from binary to hexadecimal: starting from the 
LSB replace every group of four digits with their 
corresponding hexadecimal digit 

• Conversion from octal to binary: substitute each octal digit by 
corresponding three bits

• Conversion from hexadecimal to binary: substitute each hex 
digit by four bits
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Sum Carry 

(a) The four possible cases 
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(b) Truth table 
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(c) Circuit (d) Graphical symbol

Addition of Unsigned Numbers

Addition of Unsigned Numbers

X x 4 x 3 x 2 x 1 x 0 = 

Y + y 4 y 3 y 2 y 1 y 0 = 

Generated carries 

S s 4 s 3 s 2 s 1 s 0 = 

15 10

10 10

25 10

0 1 1 1 1 

0 1 0 1 0 

1 1 1 0 

1 1 0 0 1 

Decomposed Full Adder

HA

HAs 
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c i 
x i 
y i 

c i 1 + 

s i 

c i 

x i 
y i 

c i 1 + 

s i 

(a) Block diagram 

(b) Detailed diagram
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Ripple Carry Adder

FA

x n – 1 

c n c n 1 ” 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

MSB position LSB position

Ripple Carry Adder
• When operands X and Y are applied as inputs to the adder, it 

takes some time before output sum S is valid.

• Each full-adder has a delay before its si and ci+1 are valid

• If this delay is t the complete sum will be valid after a delay 
of nt

• Because of the way the carry signal “ripple” through the full-
adder, this circuit is called a ripple-carry adder

Example

7 x 0 y 7 y 0 

x 7 x 0 y 8 y 0 y 7 x 8 

s 0 s 7 

c 7 

0 

s 0 s 8 

c 8 

P 9 P 8 P 0 P 3 A = : 

(a) Naive approach

a 7 A : a 0 

x 

Example

x 1 x 0 y 8 y 0 y 7 x 8 

s 0 s 8 

c 8 

0 0 

a 7 A : 

P 9 P 8 P 0 P 3 A = : 

(b) Efficient design

a 0 

Signed Numbers
• One of the bits (usually the left-most bit) is reserved for the 

sign of the number.

• Usually a 1 indicates negative and 0 indicates positive.
bn 1– b1 b0

Magnitude

MSB

(a) Unsigned number

bn 1– b1 b0

Magnitude
Sign

(b) Signed number

bn 2–

0 denotes
1 denotes

+
– MSB

Signed Numbers
• Extending the 'natural' binary representation of positive 

integers to negative integers can be done in at least 3 different 
schemes:  sign-magnitude, one's complement and two's 
complement.

• Sign-and-magnitude: The most significant bit (MSB) is 
reserved to the sign, 0 is positive, 1 is negative. All other bits 
are used to store the magnitude in the natural representation. 

• Addition and subtraction are complicated. 

• There are two representations for zero!
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Signed Numbers
• One’s complement Positive integers are like in the natural 

representation, negative numbers are obtained by 
complementing each bit of the corresponding positive number 
(i.e. the absolute value). 

• There are two representations for zero! Bitwise addition of N 
and  -N gives -0. 

• Positive integers still have MSB = 0, and negative integers 
have MSB=1.

• 1’s complement of an n-bit negative number K is obtained by 
subtracting its equivalent positive number P from 2n-1

• K1=(2n-1)-P

Signed Numbers
• Two's complement Like one's complement, but negative 

numbers are having 1 added after complementation.

• Bitwise addition of N and  -N gives 0 if you ignore the carry 
out of the MSB.

• Positive integers still have MSB = 0, and negative integers 
have MSB=1. Only one representation for zero!

• 2’s complement of an n-bit negative number K is obtained by 
subtracting its equivalent positive number P from 2n

• K2=2n-P

Signed Numbers
• Relationship between 2’s complement and 1’s complement

• K2=K1+1

• A simple way of finding the 2’s complement is to find 1’s 
complement and add 1

• Rule for finding 2’s complement: 
– Given signed number B=bn-1bn-2…b1b0

– 2’s complement: K=kn-1kn-2…k1k0

– Examine bits of B from right to left, copy all bits of B that are 0 and 
the first bit that is 1, then complement the rest of the bits

Table: Signed Binary Integers (word length  n = 4)

2’s complement signed numbers

0
0

1
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B=bn-1bn-2…b1b0

Largest negative number: -2n-1

Largest positive number: 2n-1 -1

1’s complement addition

++

1 1 0 0

1 0 1 0
0 0 1 0

0 1 1 1

0 1 0 1
0 0 1 0

++

0 1 1 1

1 0 1 0
1 1 0 1

0 0 1 0

0 1 0 1
1 1 0 1

1
1

0 0 1 1

1
1

1 0 0 0

2+( )
5- 

3- 
+

5– 

7– 
+ 2– 

5+( )
2+( )

7+( )

+

5+( )

3+( )

+ 2– 
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Addition and Subtraction
• Addition of 1’s complement numbers might need a correction

• Time needed to add two 1’s complement numbers may be 
twice as long as time needed to add two unsigned numbers

2’s complement addition

++

1 1 0 1

1 0 1 1
0 0 1 0

0 1 1 1

0 1 0 1
0 0 1 0

++

1 0 0 1

1 0 1 1
1 1 1 0

0 0 1 1

0 1 0 1
1 1 1 0

11

ignore ignore

5+( )
2+( )

7+( )

+

5+( )

3+( )

+ 2– 

2+( )
5– 

3– 

+

5– 

7– 

+ 2– 

2’s complement subtraction
–

0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

–
1 0 1 1
0 0 1 0–

1

ignore

+

1 0 0 1

1 0 1 1
1 1 1 0

–
0 1 0 1
1 1 1 0

5+( )

7+( )

– +

0 1 1 1

0 1 0 1
0 0 1 0

5– 

7– 

2+( )

2– 

–
1 0 1 1
1 1 1 0– +

1 1 0 1

1 0 1 1
0 0 1 02– 

5– 

3– 

Adder and Subtractor Unit

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add Sub 
control 

Radix-complement schemes
• Complements – general theory

• The r’s complement of an n-digit number N in base r is:

Kr= rn - N  for N  0

(0 for N=0)

• The (r-1)’s complement, Kr-1 is defined as:

Kr= (rn-1) - N  

• The concept of subtracting a number by adding its radix-
complement is general

Arithmetic Overflow
• If n bits are used to represent signed numbers, result must be 

in the range –2n-1 to 2n-1-1

• If the result does not fit in this range, we say that arithmetic 
overflow has happened

• We should be able to detect overflow

• The key to determining the overflow is carry-out from MSB 
position and carry-out from the sign bit

• If they are the same no overflow has happened.

nn ccoverflow  1
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Arithmetic Overflow

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2– 

11

c4 0=
c3 1=

c4 0=
c3 0=

c4 1=
c3 1=

c4 1=
c3 0=

2+( )
7– 

5– 

+

7– 

9– 

+ 2– 

Performance Issue
• Speed of any circuit is limited by the longest delay along the 

paths through the circuit

• This is called the critical path delay

• Critical path for the ripple adder is from input y, through the 
XOR gate and through the carry circuit of each stage. 

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add Sub 
control 

Fast Adders
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(a) Truth table 

(b) Karnaugh maps 

(c) Circuit 
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(a) Truth table 

(b) Karnaugh maps 

(c) Circuit 
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Fast Adders
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Fast Adders
• In an n-bit carry-look ahead adder the final carry-out signal 

would be produced after three gate delays

• The total delay in an n-bit carry-look ahead adder is four gate 
delays.

• Complexity of an n-bit carry look ahead adder increases 
rapidly as n becomes larger

• We can use a hierarchical approach in designing large adders.

Fast Adders

Fast Adders
• A faster circuit can be designed in which a second-level carry-

look-ahead is performed to produce quickly the carry signals 
between blocks.

• Instead of producing a carry-out signal from the most 
significant bit of the block, each block produces generate and 
propagate signals for the entire block

Fast Adders
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Fast Adders

Block 

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3 
Block 

1 
Block 

0 

Second-level lookahead

c 0 

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3 

s 15 8 –s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

Technology Considerations
• So far we assumed gates with any number of inputs can be 

used

• Fan-in is limited to a small number

• More gates should be used to implement the logic

• Example: max fan-in is four
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• Because fan-in limitation reduces the speed of carry-look-
ahead adder, some devices with low fan-in include dedicated 
circuit for implementing fast adders 

• Example: FPGA

Multiplication
• A number is multiplied by 2k by shifting it left  by k bit 

positions

• This is true both for unsigned and signed numbers

• Shifting to the right by k bit, is equivalent to dividing by 2k

• For unsigned numbers the empty bit positions are filled with 
zero

• For signed numbers, in order to preserve the sign, the empty 
bit positions are filled with the sign bit

• B=011000=24

• B/2=001100=12

• B/4=000110=6

• B=101000=-24

• B/2=110100=-12

• B/4=111010=-6

Multiplication of unsigned numbers



1 1 1 0

1 1 1 0
1 0 1 1

1 1 1 0

0 0 0 0

1 1 1 0

1 0 0 1 1 0 1 0

Multiplicand M
Multiplier Q

Product P

(14)
(11)

(154)

(a) Multiplication by hand

Each multiplier bit is examined: if 1, a shifted version of 
the multiplicand is added to form the partial product; if 
zero nothing is added

Multiplication of unsigned numbers



1 1 1 0

1 1 1 0
1 0 1 1

1 1 1 0

1 0 0 1 1 0 1 0

Multiplicand M
Multiplier Q

Product P

(11)
(14)

(154)

+

1 0 1 0 1

0 0 0 0+

0 1 0 1 0

1 1 1 0+

Partial product 0

Partial product 1

Partial product 2

(b) Multiplication for implementation in hardware

01234

10111213

0123

0123

0123

0123

111111

0

000000

00000

ppppppppppPP

qmqmqmqm

ppppppppPP

ppppppppPP

qqqqQ

mmmmM
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p 7 p 6 p 5 p 4 p 3 p 2 p 1 p 0 

q 2 

q 1 

q 3 

q 0 

m 3 m 2 m 1 m 0 0 

PP1 

PP2 

(a) Structure of the circuit

m k 

q j 

c in

Bit of PPi

FAc out 

(c) A block in the bottom two rows

m k 

q 1 

c inFAc out 

(b) A block in the top row

q 0 

m k 1 + 

Multiplication of Signed Numbers
• If multiplier is positive essentially the same scheme as 

unsigned numbers can be used

• Since shifting the multiplicand to the left results in one of the 
operands having n+1 bits, the addition has to be performed 
using the second operand represented in n+1 bits

• An n bit signed number is represented as an n+1 bit number 
by replicating the sign bit

• Replication of the sign bit is called sign extension

0 0 0 1 1 1 0 

0 1 1 1 0 
0 1 0 1 1 

0 0 1 1 1 0

0 0 1 0 1 0 1
0 0 0 0 0 0

Multiplicand M
Multiplier Q

Product P 

(+14) 
(+11) 

(+154)

+ 

+ 

0 0 0 1 0 1 0 
0 0 1 1 1 0+ 

0 0 1 0 0 1 1 
0 0 0 0 0 0+ 

0 0 1 0 0 1 1 0 1 0 

Partial product 0 

Partial product 1 

Partial product 2 

Partial product 3 

(a) Positive multiplicand 

x



1 1 1 0 0 1 0 

1 0 0 1 0 
0 1 0 1 1 

1 1 0 0 1 0 

1 1 0 1 0 1 1 
0 0 0 0 0 0 

Multiplicand M
Multiplier Q

Product P 

(  14)
(+11) 

(  154) 

+ 

+ 

1 1 1 0 1 0 1 
1 1 0 0 1 0 + 

1 1 0 1 1 0 0 
0 0 0 0 0 0+ 

1 1 0 1 1 0 0 1 1 0 

Partial product 0 

Partial product 1 

Partial product 2 

Partial product 3 

–

–

(b) Negative multiplicand 

Fixed point
• A fixed point number consists of integer and fraction parts.

• The position of radix point is fixed 

B  bn1bn2 ....b1b0.b1b2 ....bk

V (B)  bi  2i

ik

n1



Floating point
• Fixed point numbers: limited range

• Floating point: numbers are represented by a mantissa and an 
exponent:      Mantissa x RExponent

• Normalized: radix point is the right of fist nonzero digit

• Example: 5.234 x 1043

• For binary R=2

• How mantissa and exponent are represented has been 
standardized by IEEE

• Single precision (32 bits) and double precision (64 bits)



2013/10/15

10

Sign

32 bits 

23 bits of mantissa 
excess-127
exponent

8-bit 

52 bits of mantissa 11-bit excess-1023
exponent

64 bits 

Sign

S M 

S M 

(a) Single precision

(c) Double precision

E 

+ 

E 

0 denotes 
–1 denotes 

• Single precision
– Exponent=E-127

– Value=(+ or -)1.M x2E-127

• Double precision
– Exponent=E-1023

– Value=(+ or -)1.M x2E-1023

Binary coded decimal (BCD) 
• Each digit in a decimal number is represented by its binary 

form

• Since there are 10 digits we need 4 bits per digit

BCD
• BCD representation was used in some early computers

• Drawback: complexity of circuits that perform arithmetic 
operations

• BCD addition:

• X and Y two BCD digits (each four bits)

• S=X+Y

• If                         the addition is the same as the addition of 2 
unsigned binary numbers

• If  X+Y > 9 the result requires two BDC digits and the four-
bit sum may be incorrect. 

+

1 1 0 0

0 1 1 1
0 1 0 1+

X
Y

Z

+
7
5

12
0 1 1 0+

1 0 0 1 0carry

+

1 0 0 0 1

1 0 0 0
1 0 0 1+

X
Y

Z

+
8
9

17
0 1 1 0+

1 0 1 1 1carry

S = 2

S = 7

4-bit adder 

Detect if 

MUX 

4-bit adder 

sum 9 > 

6 0 

X Y 

Z 

c out 

c in
carry-out 

Adjust

S 

0 
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ASCII code
• ASCII code: the most popular code for representing 

information in digital systems used for letters numbers and 
some control characters.

• Control characters: those needed in computer systems to 
handle and transfer data, e.g., return character

• ACII representation of numbers is not convenient for 
arithmetic operations

• It is best to covert ASCII numbers to binary for arithmetic 
operations

ASCII code
• ASCII uses 7-bit, natural size in computer systems is one-byte 

(8-bits)

• Two common ways on going to 8-bits
– Set the eight bit to 0

– Use the eight-bit to indicate the parity of the other bits

• Even parity: the parity bit is given a value such that total 
number of 1’s is even  

• Odd parity: the parity bit is given a value such that total 
number of 1’s is odd

• Even parity generator:

• Parity checker:    


