

Figure 8.1. The general form of a sequential circuit.

• To ensure that only one transition from one state to another takes place during one clock cycle, flip-flops are edge-triggered

- Outputs are generated by another combinational circuit and are function of present state of the flip-flops and the inputs
- Outputs do not necessarily have to depend directly on the inputs
- Moore type: the output depends only on the state of the circuit
- Mealy type: outputs depend on both the state and the inputs
- Sequential circuits are also called finite state machines (FSM)

Design Example

- First step in designing a FSM: determine how many states are needed and which transitions are possible from one state to another
- · No set procedure for this task
- A good way is select a starting state (a state that the circuit enters when the power is turned on or a reset signal is applied)
- Starting state A
- As long as w is 0, the circuit should remain in A
- When w becomes 1, the machine should move to a different state (B)

Pro	esent tate	Next w = 0	Next state w = 0 $w = 1$		
	A B C	A A A	B C C	0 0 1	
	B C	A A	C C	0 1	

Design Example

- We need to design a combinational circuit with inputs w, y1 and y2 such that for all valuations of these signals Y1 and Y2 will cause the machine to move to the next state
- We create a truth table by assigning specific valuation of variables y1 and y2 to each state

	Present	Next s	tate	
	state	w = 0	w = 1	Output
	y 2y 1	Y 2 Y 1	^Y ₂ ^Y ₁	2
А	00	00	01	0
в	01	00	10	0
С	10	00	10	1
	11	dd	dd	d

Figure 8.6. State-assigned table for the sequential circuit in Figure 8.4.

Design Example

- Choice of flip-flop:
- Most straightforward choice is to use D flip-flops because the values of Y1 and Y2 are simply clocked into the flip-flops to become the new values of y1 and y2

Bus controller

- An example: consider a system that has three registers, R1, R2 and R3. We want to swap the content of R1 and R2
- Steps:
 - Copy R2 to R3
 - Copy R1 to R2
 - Transfer R3 to R1

Present	Next state		Outputs							
state	w = 0	w = 1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done	
А	А	в	0	0	0	0	0	0	0	
В	С	С	0	0	1	0	0	1	0	
С	D	D	1	0	0	1	0	0	0	
D	Α	Α	0	1	0	0	1	0	1	

	Present	Next	state				Outputs			
	state	w = 0	w = 1				output	·		
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
A	00	00	01	0	0	0	0	0	0	0
В	01	10	10	0	0	1	0	0	1	0
С	10	11	11	1	0	0	1	0	0	0
D	11	00	0.0	0	1	0	0	1	0	1

			On	e-ho	t co	ding	5			
	Present	Next	state							
	state	w = 0	w = 1			(Output	8		
	$y_4 y_3 y_2 y_1$	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
Α	0 001	0001	0010	0	0	0	0	0	0	0
В	0 010	0100	0100	0	0	1	0	0	1	0
С	0 100	1000	1000	1	0	0	1	0	0	0
D	1 000	0001	0001	0	1	0	0	1	0	1

Moore-type serial adder

- Since in both states G and H, it is possible to generate two outputs depending on the input, a Moore-type FSM will need more than two states
- G0 and G1: carry is 0 sum is 0 or 1
- H0 andH1: carry is 1 sum is 0 or 1

Present	N	lextsta	ite		Output	
state	<i>ab</i> =00	01	10	11	S	
G ₀	G ₀	G_1	G_1	H_0	0	
G1	G ₀	G_1	G_1	${\rm H}_0$	1	
H ₀	G1	H_0	H_0	H_1	0	
H ₁	G1	H_0	H ₀	H_1	1	

Present	Ν	lextst	ate		
state	ab=00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		$Y_2 Y_1$	1		S
00	0.0	01	01	10	0
01	0.0	01	01	10	1
10	01	10	10	11	
$b + ay_2$ $\oplus b \oplus$	State-as: $_2 + by_2$	signe 2	d tab	le for	Figure

- 1	state		w =	0		p inpine	w =	1		Count
	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	Z2Z1Z0
A	000	000	0d	0d	0d	001	0d	0d	1 d	000
В	001	001	0d	0d	d0	010	0d	1d	d1	001
C	010	010	D0	d0	0d	011	0d	d0	1d	010
2	100	100	d0	00	00	100		01	11	
F	101	101	d0	0d	d0	110	d0	1d	dl	100
Ġ	110	110	d0	d0	0d	111	d0	d0	1d	110
H	111	111	d0	d0	d0	000	d1	d1	d1	111

