Lab #3 Programmable Logic

Objective:

To introduce basic concepts of ROM devices and their application. To demonstrate the use of a
commercial PLD design package for schematic and VHDL entry. To introduce the design process for
combinational logic in a CPLD device.

Preparation:

- Read the following pages from the textbook:

pp- 833-862 of Appendix B (Tutorial 1)
pp- 863-877 of Appendix C (Tutorial 2)
pp- 899-904 of Appendix E in the textbook.

If you can install the Quartus Il software (from the CD in the textbook) on your own machine, this can give
you a significant head start as you work through the tutorial material above.

- Familiarize yourself with the logical characteristics of the devices below.
- Read the following experiment and study the circuits as shown.
- Bring your textbook to the lab!

Devices used:

2732A EPROM
MAX3000 EPM3032ALC44-10 CPLD

Experiment:

Programmable logic device (PLD) is the terminology used to represent a variety of single-chip devices
that can be electronically configured to implement digital logic systems. These include read-only-
memory (ROM) devices of several forms such as EPROM and EEPROM (Flash) memory. The first PLDs
were known as programmable logic arrays (PLA), programmable array logic (PAL) and programmable
logic sequencers (PLS). In recent years, generic array logic (GAL), complex PLDs (CPLD) and field-
programmable gate arrays (FPGA) are more likely to be used. We will use an EPROM and a CPLD for
this lab.

ROM

Read-only-memory is available in several forms including factory-programmed devices (not erasable)
and those that are user-programmable and erasable (EPROM and EEPROM or FLASH memory). The
most frequent use of ROM is for the non-volatile storage of microprocessor code (firmware) such as the
BIOS routines in your PC or in the electronic controllers found in automotive engines and so on.
However there are many other applications that use a ROM as a "look-up table" (LUT) for
implementation of combinational circuits such as arithmetic functions (eg. trigonometric operations,
square roots), code conversions (eg. binary to BCD), function generators, character generators for CRT
displays, memory address decoding and digital image processing. The ROM we will use here is a 2732A
EPROM (erasable with UV light) that is organized as 4K x 8 memory locations. It has 12 address lines
(212 = 4K) and 8 data lines.

1. ZM% 72% (LUT)

A ROM can be viewed as a look-up table for which the input is applied to the address lines and the
output is taken from the data lines. By programming the ROM with a truth table, any combinational
logic function can be implemented. Connect the 2732A as shown below. The /OE (tri-state control)
and /CE lines must both be low for output data to appear on the data lines (Oo-O7). Notice that the pre-
programmed data is retained without power to the device. Connect the toggle switches exactly as
shown to facilitate changes.

2732A
EPROM
toggle / A11
switch 1 A10
Ao
As
A7
| Oo- 07 —P LEDs
toggle Ao- As
switches 7
OE CE
toggle J
switches

The 2732A devices provided in this lab contain a binary to BCD conversion LUT. A binary number is
applied to the address inputs and the equivalent BCD number is read at the output. Since we have 8
output lines we can store 100 BCD numbers ranging from 00 to 99 for which we need 7 bits (Ao-As).
The first 100 locations from address 0000 0000 0000 to 0000 0110 0011 of the EPROM are used for the
look-up table that converts binary to BCD. Verify the operation of the device and the binary to BCD
conversion. Note that only 100 locations of the total capacity of the EPROM have been used. That s,
only 100/4096 or less than 3% !

2. Measure /4 CCess 72/}@6

If the /CE and /OE lines are tied LO, then one definition of access time tacc for memory is the delay
from the application of an address input to the appearance of stable data on the outputs. Configure
your circuit as shown below and observe the output from pin O; on the 'scope. Using this waveform,

estimate the actual access time tacc for this particular device. Explain what you observe.

2732A
EPROM

O—,fb As - A1
11— A
O———As
00— A2
> At
0o— Ao

O1 » 'scope

CLPL Ds

Programmable logic devices vary in complexity. PALs and GALs are frequently used for implementing
random logic (replacing standard TTL packages), memory address decoding, bus interfacing, etc. Those
that contain registered outputs can be used to implement state machines such as counters. The more
complex devices (CPLD’s and FPGA's) can replace large amounts of logic and can even be used to
implement special purpose microprocessors.

The design of the logic to be programmed into these devices is almost invariably achieved with the use
of a computer-aided design (CAD) package containing software development "tools". These tools are
used for editing a design, optimizing and reducing the logic, simulation and testing and finally fitting the
design to the target PLD. Some CAD packages can even choose the "best" PLD based on the user's
design requirements. Designs may be initially entered in the form of a logic diagram using a graphic
editor (this is called "schematic capture") or by using a text-based description of the hardware to be
implemented. The latter is known as a “hardware description language” (HDL) and many vendors
provide their own HDL development software tools (usually these are not compatible with one
another!). Examples are Lattice Synario, Xilinx Foundation and Altera Quartus II.

Recognizing the importance of platform and architecture independence, the IEEE has developed a
standard based on a widely used HDL known as VHDL. Virtually all commercially available CAD
software supports the VHDL standard. That means we can design our circuits without worrying about
which computer and operating system we are using or even which devices will ultimately be used for
implementing our circuits!

Hardware design thus becomes an exercise in software development. The CAD software we will use
here is a commercial software product called Quartus II available from Altera (a student version of this
is on the CD with your textbook) which will compile VHDL and schematic designs for a variety of Altera
CPLD's. The CPLD device we will use here is the EPM3032ALC44-10.

In this lab, we will design some simple combinational logic using both schematics and VHDL code.
3. {7&/@ J/w (’/L‘%

To begin, log in to the Windows NT workstation using the course Username and Password (the same as
the web site). Double click the Quartus II 4.1 shortcut on the desktop to start the CAD environment.
Create a separate folder for your own work on the Z: drive using your student number to ensure that
the folder name is unique. Create a project in this folder following the directions in Tutorial 1 (page
830) of the textbook. Of course, use your own directory and names.

4.5, oﬁWw C%ftz/&

With Tutorial 1 (section B.3.1) in the text book as a guide, enter the circuit for a 2-to-4 line decoder
with LO-true outputs and a single HI-true enable (Enb) using the graphic editor. The circuit to be
designed should be equivalent to:

¥’ Quartus II - ¥:/lab3check/lab3check - lab3check - [lab3vhdl.bdf]

=@File Edit View Project Assignments Processing Tools Window Help

[ozE (@5 Be|o o |k |fashec S 2@% | T[r 2k |00
Al x| —f
Entity Macrocells | Pir IE
£ Compilation Hierarchy A
e 2 |ab3vhdl 4 1| | o
O
1
"1
=1
=1
< | |l 16t
Hieralchy I—FE'] Files] & Design Unils] Q
—F
Module Progress 7 | Time ®
Full Compilation 00:00:11 &4
- Analysis & Synthesis 00:00:02 A
- Fitter 00:00:01 >
- Assembler 00:00:01 =
Timing Analyzer 00:00:04) | 42
O
O
N
™

: Started post-fitting delay annotation

: Delay annotation completed successfully
: Longest tpd from source pin s0 to destination pin y3 is 10.000 ns

: Shortest tpd from source pin enb to destination pin 0 is 10.000 ns
: Quartus |l Timing Analyzer was successful. 0 errors, 0 warnings
(&2 Info: Quartus 1| Full Compilation was successful. 0 erors, 0 wamings

Processing

|Message: 0of 54 il ﬂ |Location1

LI Locate I

For Help, press F1

iffstart I |J] & |J IQQuavtus 1I - ¥:/lab3ch...

222, 63 owm ® [1@ [[[
| BB TL szarm

5. 5&4&1‘ L‘é éy(}o&

Choose MAX3000A as the “Family” and select EPM3032ALC44-10 from the “Available devices” list
(see Tutorial 2, section C.1.1, page 860). The device name is also written on the device.

6. CM and Simulate

Compile your circuit as described in section B.3.2, pg 840. When your compilation completes error-
free, you may simulate the logic of your design. For this example, the waveform editor (see section
B.3.3) should be used to provide 8 combinations of inputs of s0, s1 and enb as well as the 4 outputs y0,
y1, y2, y3. Do not proceed until you fully understand the output of the functional simulation.

7. Program the MAX 3000 CPLD

This is described in Tutorial 3 section D.2 (pages 895-897). We are not using the Altera UP-1 board, but
the procedure is identical for the EPM3032ALC44-10 chip.

8. V% te 0& /rjrmﬁ

Click on the "fitter report" icon in the compiler window and scroll down to see the pin assignments that
were made for your chip. You will learn later how to specify these yourself; for now just accept what
the compiler chooses. Turn off the power to the prototyping board and wire your circuit according

to the pinout in the fitter report. Carefully check your wiring connections before turning on the power,
then test your circuit with toggle switches and LEDs to verify the truth table.

You have just generated your first custom logic device !!

Make sure you are convinced that the operation of the chip matches the
functional simulation performed in part 6 of this lab.

o. VHD/L [éf%

Now, proceed in the Tutorial to section B.4 (page 846) and implement the same decoder circuit using
VHDL code as shown below. Enter the VHDL code using the text editor. Compile and simulate, then
implement and test in the MAX 3000 chip.

Note that the entity name (lab3vhdl in this example) needn’t match the name of your project - butitis a
good practice - and that the filename extension for VHDL text files must be vhd.

LIBRARY ieee ;
USE ieee.std_logic_1164.ALL ;

ENTITY lab3vhdl IS

PORT(
s0, s1, enb :IN STD_LOGIC;
y0, y1,y2,y3 : OUT STD_LOGIC);
END lab3vhdl;

ARCHITECTURE decoder OF lab3vhdl IS
BEGIN

y0 <= not(not s0 and not s1 and enb);
y1 <= not(s0 and not s1 and enb);

y2 <= not(not s0 and s1 and enb);

y3 <= not(s0 and s1 and enb);

END decoder;

1(% o 412& time !

Once familiarity is gained with this entire design process, it can be achieved rather quickly. To gain
additional practice, you may alter the decoder circuit to include additional enables, change the outputs
to HI-true etc. Alternatively, you may repeat the entire design process for a 4:1 MUX using either the
schematic entry or VHDL (or both if you have time). Program the chip and test.

Caution:

Always make sure there are no wires connected to the MAX3000 chip when
programming, and always turn power off before adding wires to the chip, or
disconnecting wires from the chip.

