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Joint Source-Channel Decoding

In practice, due to the constraint of system complexity, the

compression algorithm is almost always suboptimal in the sense that

it fails to remove all the redundancy from the source.

This residue redundancy makes it possible for the decoder to detect

and correct channel errors, even in the absence of channel code.

Consider a Markov source sequence {Xi} compressed by Huffman

code that only approaches the self-entropy H(Xi). The residue

redundancy H(Xi+1|Xi) = H(Xi, Xi+1)−H(Xi) can be use to

combat channel noise.

MAP decoding is to estimate the channel input that maximizes the a

posterior probability of the channel output. In other words, the

decoder examines all the possible channel input sequences and finds

the one with the maximal a posterior probability.
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Channel Model

• Binary symmetric channel (BSC) of crossover probability pc.

• input b = b1b2 · · · bk ∈ {0, 1}k.

• output b′ = b′1b
′
2 · · · b′k ∈ {0, 1}k

• probability of receiving b′ when b is sent:

Pe(b
′|b) =

k∏
i=1

Pe(b
′
i|bi) (1)

= ph(b
′,b)

c · (1− pc)k−h(b
′,b),

where h(b′,b) is the Hamming distance between the two binary

sequences b′ and b.
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Markov Sequence Coded by a VLC

• VLC codebook: C = {c1, c2, . . . , cN}.

• first order Markov source with conditional probabilities P (cj |ck),

1 ≤ j, k ≤ N .

• for an arbitrary sequence x = x1x2 · · ·xI ∈ CI , we have:

P (x) = P (x1)

I∏
i=2

P (xi|xi−1). (2)

• The Markov sequence is coded by VLC C.
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Markov Sequence Sent through the BSC

• the Markov sequence x = x1x2 · · ·xI ∈ CI is sent through the

BSC.

• channel output: y = y1y2 · · · yM ∈ {0, 1}M , where M equals the

number of bits of the VLC-coded input sequence.

• a unique parsing of y exists s.t. the parsed i-th word is the output

corresponding to the i-th codeword in the input sequence:

ym0+1..ym1
, ym1+1..ym2

, ..., ymI−1+1..ymI
, (3)

where m0 = 0 and mi −mi−1 = |xi| for all 1 ≤ i ≤ I. Let

subsequence ymi−1+1..ymi
be y(mi−1,mi], then

Pe(y|x) =
I∏
i=1

Pe(y(mi−1,mi]|xi). (4)
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Objective of MAP Decoding

• given an output ternary sequence produced by the BSC channel,

y = y1y2 · · · yM ∈ {0, 1}M

infer the channel input sequence

x = x1x2 · · ·xI ∈ CI

such that |x| = M and the a posteriori probability P (x|y) is

maximized.
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Bayes’ Theorem:

P (x|y) =
P (x)Pe(y|x)

P (y)
.

Since P (y) is fixed

P (x)Pe(y|x) = P (x1)Pe(y(m0,m1]|x1) ·
I∏
i=2

P (xi|xi−1)Pe(y(mi−1,mi]|xi)

Optimization Problem:

x̂ = arg max
x∈C∗,|x|=|y|

{(logP (x1) + logPe(y(m0,m1]|x1)

+
∑I
i=2(logP (xi|xi−1) + logPe(y(mi−1,mi]|xi))}.
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Graph Representation

• weighted directed acyclic graph G with NM + 1 vertices,

M = |y|.

• a unique starting node s,

• other vertices grouped into M layers.

• each layer corresponds to a bit location in the received sequence

y.

• the nodes at the M -th (last) layer are so-called final nodes.

Denote by F the set of all final nodes.

• nmi labels the i-th node at layer m, 1 ≤ i ≤ N , which corresponds

to codeword ci parsed out of y at the mth bit of y.

• From nmj to n
m+|ci|
i , 1 ≤ m ≤M − |ci|, 1 ≤ i, j ≤ N , there is an

edge corresponding to decoding y(m,m+ |ci|] as codeword ci,
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given that the previously decoded codeword is cj .

• The weight of this edge is logP (ci|cj)+ logPe(y(m,m+ |ci|]|ci).

• Generally, for a node nmi , there are N incoming edges, one from

each of the N nodes on layer m− |ci|; there are N outgoing edges

emitted from nmi , one to each of the nodes n
m+|cj |
j , 1 ≤ j ≤ N .

• Any input sequence x of |y| bits, can be mapped to a distinct

path from s to F such that the weight of the path equals the

value of the objective function in x. Moreover, this mapping is

one-to-one.

• The problem of MAP decoding is thus converted to finding the

single-source longest path in the weighted directed acyclic graph

G, from s to F .
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Computing the Longest Path in G

• Let ω(m, i) be the weight of the longest path from s to the node

nmi , then

ω(m, i) = max
1≤j≤N

{ω(m− |ci|, j) + logP (ci|cj) +

logPe(y(m− |ci|,m]|ci)} (5)

for all 1 ≤ i ≤ N and |ci| ≤ m ≤M ,

• with initial values

ω(|ci|, i) = logP (ci) + logPe(y(0, |ci|]|ci) (6)

and ω(m, i) = −∞ if m < |ci|, 1 ≤ i ≤ N .

• The MAP decoding is determined by

ω̃(M) = max
1≤i≤N

ω(M, i). (7)
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Dynamic Programming solution

• At each stage m, 1 ≤ m ≤M , weights ω(m, i) are computed for

1 ≤ i ≤ N , using (5).

• logP (ci|cj) and logPe(y(m− |ci|,m]|ci) in (5) can be

precomputed and stored in look-up tables so that they will be

available to DP process in O(1) time.

• The search in (5) takes O(N) time for fixed m and i. Each stage

is completed in O(N2) time and all the M stages in O(N2M)

time. The step of (7) clearly takes O(N) time. Therefore, the

time complexity of this algorithm is O(N2M).
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Complexity Reduction by Matrix Search

• Organize the computations in a different way: at each stage m

compute the weights ω(m+ |ci|, i) for all i, 1 ≤ i ≤ N :

ω(m+ |ci|, i) = max
1≤j≤N

{ω(m, j) + logP (ci|cj) +

logPe(y(m,m+ |ci|]|ci)}, (8)

for all 1 ≤ i ≤ N and 1 ≤ m ≤M − |ci|.

• For each 1 ≤ m ≤M −maxi,1≤i≤N |ci|, consider the matrix Gm

of dimension N ×N , with elements Gm(i, j)

Gm(i, j) = ω(m, j) + logP (ci|cj) +

logPe(y(m,m+ |ci|]|ci). (9)
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• Then relation (8) is equivalent to

ω(m+ |ci|, i) = max
1≤j≤N

Gm(i, j). (10)

• Computing all ω(m+ |ci|, i) for given m and all 1 ≤ i ≤ N , is

equivalent to finding all row maxima of the matrix Gm.

• Straightforward solution: O(N2) time.

• If the matrix Gm is so-called totally monotone then the problem

of row maxima can be solved in O(N) time by a fast matrix

search technique introduced by Aggarwal et al. in 1987

(Algorithm SMAWK).
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Total monotonicity

• The matrix Gm is said to be totally monotone with respect to

row maxima if the following relation holds:

Gm(i, j) ≤ Gm(i, j′)⇒ Gm(i′, j) ≤ Gm(i′, j′),

i < i′, j < j′. (11)

• If all the matrices Gm are totally monotone, then the MAP

decoding problem can be solved in O(NM) time.
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Algorithm SMAWK

• If a k × n matrix A with k ≤ n, is totally monotone then the

column index j(i) corresponding to the maximum entry of row i,

increases with i.

• If the maxima of all even rows are known, then the maxima of

remaining odd rows can be computed in O(n) time since for each

odd row 2i+ 1 the search is restricted to the interval between

j(2i) and j(2i+ 2) and
∑

1≤i<k/2(j(2i+ 2)− j(2i)) = O(n).

• The elegant technique introduced by Aggarwal et al. in 1987

(SMAWK) can delete n− k columns containing no row maxima

of a k × n totally monotone matrix with k < n, in O(n) time.

• The size of the matrix search problem can be reduced from k × n
to k × k in O(n) time. Then the k × k problem is reduced to

k/2× k/2 in O(k) time. The size of the new problem is further
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reduced to k/4× k/4 in O(k/2) time and so on.

• Let T (k) be the time for solving the k × k problem and ck be the

cost of the size reduction from k × k to k/2× k/2, then the

following recurrence holds: T (k) = T (k/2) + ck, which clearly

implies T (k) = O(k).

• The solution of the k × n problem is obtained in O(n) time.
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Condition for total monotonicity

A sufficient condition for total monotonicity) is the Monge condition:

Gm(i, j′) +Gm(i′, j) ≤ Gm(i′, j′) +Gm(i, j),

i < i′, j < j′. (12)

which is equivalent to

logP (ci|cj′) + logP (ci′ |cj) ≤ logP (ci′ |cj′) +

logP (ci|cj), i < i′, j < j′. (13)

This condition does not depend either on the channel statistics or on

the output sequence, but only on the source statistics. Therefore, the

decoder can check if the condition holds before deciding whether to

use the fast matrix search algorithm or the standard dynamic

programming algorithm for MAP decoding.

Checking the Monge condition takes only O(N2) time. Indeed, in
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order for (13) to hold, we only need the inequality

logP (ci|cj+1) + logP (ci+1|cj) ≤
logP (ci+1|cj+1) + logP (ci|cj) (14)

to be valid for each pair i, j, 1 ≤ i, j ≤ N .

The fast matrix search approach can still be applied if there are two

permutations φ and ψ on the integers between 1 and N , such that

logP (cφ(i)|cψ(j′)) + logP (cφ(i′)|cψ(j)) ≤
logP (cφ(i′)|cψ(j′)) + logP (cφ(i)|cψ(j)),

i < i′, j < j′.

In this case the rows and columns of each matrix Gm have to be

permuted by using φ, respectively ψ.

O(N2) time suffices to check if such permutations exist [Burkard et
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al. 1996].
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Markov Sources Satisfying the Monge Condition

Assume that the codewords ci are the output of a scalar quantizer

applied to a continuous Markov source.

Monge condition (13) is equivalent to

P (ci|cj′)P (ci′ |cj) ≤ P (ci′ |cj′)P (ci|cj)

i < i′, j < j′. (15)

Multiplying both sides by P (cj)P (cj′), we have

P (cj′ , ci)P (cj , ci′) ≤ P (cj′ , ci′)P (cj , ci)

i < i′, j < j′. (16)

For each i, 1 ≤ i ≤ N , let Si denote the quantization cell (interval)

represented by the codeword ci. Assume that for all i < i′ we have

u < v for all u ∈ Si and all v ∈ Si′ .
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Relation (16) is equivalent to∫
Sj′

∫
Si
f(v′, u)dudv′

∫
Sj

∫
Si′
f(v, u′)du′dv ≤∫

Sj′

∫
Si′
f(v′, u′)du′dv′

∫
Sj

∫
Si
f(v, u)dudv, (17)

further equivalent to∫
Sj′

∫
Si

∫
Sj

∫
Si′
f(v′, u)f(v, u′)du′dvdudv′ ≤∫

Sj′

∫
Si

∫
Sj

∫
Si′
f(v′, u′)f(v, u)du′dvdudv′. (18)

A sufficient condition for (18)

f(v′, u)f(v, u′) ≤ f(v′, u′)f(v, u), (19)

or equivalently

log f(v′, u) + log f(v, u′) ≤
log f(v′, u′) + log f(v, u), (20)
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for any real values u < u′ and v < v′.

If the second partial derivative ∂2(log f)/∂u∂v exists, then (20) holds

iff ∂2(log f)/∂u∂v ≥ 0 [Burkard et al. 1996].

Clearly ∂2(log f)/∂u∂v ≥ 0 holds when the joint pdf f(·, ·) is

Gaussian.
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MAP Decoding with Length Constraint

• Assume that the number K of symbols of the input Markov

sequence is known (transmitted reliably as side information).

• The objective of MAP decoding with length constraint is to find

the Markov sequence x of exactly K symbols, of maximal a

posterior probability P (x|y).

• The problem is equivalent to the maximum-weight K-link path

in the graph G.

• Dynamic programming solution: O(N2M2) time complexity

[Park, Miller’98].
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Technique Based on Parameterized Search

• For any real number τ , define a new weighted directed acyclic

graph G(τ) that is derived from the same sets of nodes and edges

as G. The weight of an edge e in G(τ) is the sum of the weight of

e in G and τ .

• The following results were proved in [Aggarwal, Schieber, and

Tokuyama’94].

• Lemma 1: If for some real τ , the maximum-weight path in G(τ)

has k edges, then this path is the maximum-weight k-link path in

G.

• Lemma 2: Denote by k(τ) the number of edges in the

maximum-weight path in G(τ). Then k(τ) is non-decreasing as τ

increases.
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Length-constrained MAP Decoding

• Find the maximum-weight path in G(τ) in conjunction with a

binary search on τ until k(τ) = K.

• No guarantee that a real value τ exists to satisfy k(τ) = K. But

in this case the algorithm will converge quickly to such a τ that

k(τ) = K + α, where α is an integer whose absolute value is very

small.

• To reduce the computational complexity, we limit the number of

iterations in the binary search to be L, then the overall time

complexity is O(LMN2).
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Complexity Reduction by Matrix Search

The fast matrix search technique can be applied to find the longest

path in G(τ) too.

The correspondent of matrix Gm is now the matrix Gm,τ :

Gm,τ (i, j) = ωτ (m, j) + logP (ci|cj) +

logPe(y(m,m+ |ci|]|ci) + τ, (21)

where ωτ (m, j) denotes the weight of the longest path from s to the

node nmj in G(τ).

If the Monge condition:

Gm,τ (i, j′) +Gm,τ (i′, j) ≤ Gm,τ (i′, j′) +Gm,τ (i, j),

i < i′, j < j′, (22)

holds for all m, then the longest path in Gτ can be found in O(NM)
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time, leading to an O(LMN) time algorithm for length-constrained

MAP decoding.

The Monge condition (22) is equivalent to

logP (ci|cj′) + logP (ci′ |cj) ≤

logP (ci′ |cj′) + logP (ci|cj)

i < i′, j < j′, (23)

i.e., the same condition as for MAP decoding without length

constraint.

ECE 703 2014 X. Wu



McMaster University Page 29

Experimental Results

• Measurement

– Symbol-by-symbol difference (PSNR)

– Alignment with minimum Edit distance

– Example

I : 121020010-2

Î : -2110001022

Ĩ: d--ss----i-

– Î is adjusted to Ĩ = · · · sisdsj · · · ;
∗ si and sj agree with I symbol-by-symbol;

∗ sd differs from I in all of its symbols.

• Mean error propagation length ēl;

• Number of error propagation en.
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Experiment Configuration

• A zero-mean, unit-variance, first-order Gaussian-Markov process

of correlation coeficient 0.9;

• Uniform scalar quantizer with 9 code cells;

• Sequences of different lengths K = 50, 100, 500 generated by the

source model;

• Variable length encoded at average rate of about 3 bits per

sample;

• Binary symmetric channel of various crossover probabilities.

• Averages of 1000 simulation;

• Comparison algorithms

– M. Park and D. J. Miller - Approximate algorithm in [7];

– Z. Wang and X. Wu - MAP without length constraint in [11].
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Probability of Finding the Optimal Solution
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Mean Error Propagation Length
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Number of Error Propagations
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