Graph Algorithms

e Scts and sequences can only model limited relations between objects, e.g. ordering,
overlapping, etc.

e Graphs can model more involved relationships, e.g. road and rail networks

e Graph: G = (V, E), V : set of vertices, E : set of edges

— Directed graph: an edge is an ordered pair of vertices, (v1, vs)

— Undirected graph; an edge is an unordered pair of vertices {vy, vy}

Graph representation

Adjacency matrix
Directed graph

V ={1,2,3,4}
E={(1,2),(1,3),(1,4),(2,3),(3,4),(4,2)}

=0 DO
o O O O
— O O = Do
O O = = W
S = O = e

Undirected graph

vV ={1,2,3,4}
E={{1,2},{1,3},{1,4},{2,3},{2,4}, {3, 4}}

1 234 1 234
10111 10111
21011 o 2 011
31101 3 0 1
41110 4 0

Advantage: O(1) time to check connection.
Disadvantages:
— Space is O(|V|?) instead of O(|E])

— Finding who a vertex (node) is connected to requires O(|V'|) operations

Adjacency List

Example:
1 |23~ 3139 4 N
2 | L3I\
3 | AN
4 | 2N
Example:

Advantages:

— easy to access all vertices connected to one vertex
— space is O(|E| + |V|)

Disadvantage:

— testing connection in worst case is O(|V|)

— space: |V header, 2| E| list nodes = O(|V| + | E|). There might be |V|* edges
(|E] = |V|*) but probably not.

Another representation

Adjacency list with arrays

g A w N R
N jor [~]

[[Joo [& foo [|

o O B~ W ON P

\
\
>

e For node ¢, use headerlt] and header|i + 1] — 1 as the indices in the list array.

If header(it] > header|i + 1] — 1 vertex ¢ is not connected to any node.
e same advantage as adjacency list but save space
e binary search is possible to determine the connection: O(log|V'|)

e problem: difficult to update the structure

Traversal of a graph

Depth First and Breadth First

Depth First (most useful)
var visited|l ...|V|]: boolean «— false

Proc DFS(v);
(Given a graph G'= (V, E) and a vertex v, visit each vertex reachable from v)

visited|v| «— true
perform prework on vertex v
For each vertex w adjacent to v do
if not visited|w] then
DFS(w)
perform postwork on edge (v, w)
(sometimes we perform postwork on all edges out of v)

— given a vertex v, we need to know all vertices connected to v
— stack space = |V| — 1

Complexity

1) With adjacency list
visited each vertex once
visited each edge twice; once from v to w, once from w to v.

O(|V] +[E])

2) With adjacency matrix

visited each vertex once
for each vertex, visit all vertices connected to this vertex needs O(|V']) steps

O(IVF)

Note: In graph, O(|E|) is better than O(|V]?) in most cases.

1) DFS numbering
Initially DF'S num =1
Use DF'S with following prework
prework
v.DFS = DFS num;
DFS num = DFS num+1;

2) DFS tree
Use DFS with following postwork
postwork:

add edge (v,w) to T

Examples

A
B
E
F
B 2
E 3

\/

\/

\/

\/

\/

F 6

\/

:cN
- E - c N
~[B - D N
- E - F N
D[+ F N
- EN

Topological Sorting

Task scheduling

e A set of tasks. Some tasks depend on other tasks

e Task a depends on task b means that task a cannot be started until task b is
finished

e We want to find a schedule for tasks consistent with dependencies

Example: * — y: y cannot start until x is completed.

B/E
A/ \C
\D/

ABCED ABCDE ABECD
are all schedule for tasks {A, B,C, D, E'}.

This graph must be acyclic!

10

The problem

Given a directed acyclic graph G = (V, E') with n vertices, label the vertices from 1
to n such that, if v is labelled k. then all vertices that can be reached from v by a
directed path are labelled with labels > k.

In other words, label vertices from 1 to n such that for any edge (v, w) the label of
v is less than the label of w.

Lemma. A directed acyclic graph always contains a vertex with in-degree 0.
Proof. 1f all vertices have positive in-degrees, starting from any vertex v, traverse
the graph "backward”. We never have to stop. But we only have a finite number of
vertices!

Consequently, there must be a cycle in the graph — a contradiction! (pigeonhole
principle).

11

Algorithm:

By induction:
find one vertex with in-degree 0. Label this vertex 1, and delete all edges from this
vertex to other vertices.

Now the new graph is also acyclic and is of size n — 1. By induction we know how
to label it.

Implementation.

1. Initialize in-degree of all vertices
2. Put all vertices with 0 in-degree into a queue or stack
[«— 0
3. dequeue v; [«— [+ 1; v.label «— ;
for all edge (v, w)

decrease in-degree of w by 1

if degree of w is now 0 enqueue w
until queue is empty

Time: O(|E| + |V])

12

(mck.-, 17/18

i i

Y (waic.h } 9/10
12/15 | pant:;_ } (shoes) 13/14

| 1/8

(a) 6/7 ﬁ:aelt
2/5
(b) (undw.rshc;ﬁ}— { pants J)—)-thes) (wau.h) Ish;n; :
17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

13

Single-Source Shortest-Paths

e Weighted graph
G = (V, F) directed graph with weights associated with the edges
e The weight of an edge (u,v) is w(u, v).

The weight of a path p =< vy, vy, - - - v > is the summation of the weights of its

edges
k

w(p) = Z w(v;_1, ;).

i=1
e We define the shortest-path weight from u to v by

5(u,v) = {

min{w(p) : p is a path from v to v}
oo if there is no path from u to v

14

e The shortest path from u to v is defined as any path p from u to v with weight
w(p) = 0(u,v).

e The problem: Given the directed graph G = (V, E) and a vertex s, find the
shortest paths from s to all other vertices.

e For undirected graphs, change edge {u, v} with weight w to a pair of edges (u, v)
and (v, u) both with weight w.

Example:

e Negative weight cycle

In some instances of the single-source shortest-paths problem, there may be edges
with negative weights.

T If there is no negative cycle, the shortest path weight (s, v) is still well defined.

T If there is negative cycle reachable from s, then the shortest path weight from s
to any vertex on the cycle is not well defined.

T A lesser path can always be found by following the proposed ”shortest path”
and then traverse the negative weight cycle.

e Cycles in shortest path?

T A shortest path cannot contain a negative cycle.
Shortest path weight is not well defined.

T A shortest path cannot contain a positive cycle.
Removing the positive cycle will produce a path with lesser weight.

T How about 0-weight cycle?
We can remove all 0-weight cycles and produce a shortest path without cycle.

e We can assume that shortest paths we are looking for contain no cycle.

Therefore any shortest path contains at most |V| — 1 edges.

16

For each vertex v, we maintain two attributes, w|v| and d|v].

e d[v] is an upper bound on the weight of a shortest path from source s to v.
T During the execution of a shortest-path algorithm, d[v] may be larger than the
shortest-path weight.
T At the termination of a shortest-path algorithm, d|v] is the shortest-path weight
from s to v.
e 7|v] is used to represent the shortest paths.
T During the execution of a shortest-path algorithm, 7[] need not indicate shortest
paths.

T wlv] is the last edge of a path from s to v during the execution of a
shortest-path algorithm.

T At the termination of a shortest-path algorithm, 7[v]| represent the last edge of a
shortest path from s to v.

T Since sub-path of a shortest path is itself shortest path, therefore
< v,], w[w[v]],- -+, s > is the shortest path from s to v in reverse order.

17

e Initialization

[nitialize Single Source(G, s)

1 For each vertex v € V[G] do
2 dv] = o0;

3 m|v| = nil;

4 d[s| =0;

e Relaxation

Relax(u, v, w)

1 if dlv] > d[u] + w(u,v) then
2 dp] = dlu] + wlu, v);
3 mv] = u;

Relax(u, v, w) tests if we can improve the shortest path to v found so far by going
through w.

If so, we update d|v] and 7[v].

18

e Fach algorithm for single-source shortest-path will begin by calling
[nitialize Single Source(G, s).

e And then Relax(u, v, w) will be repeatedly applied to edges.

e The algorithms differ in how many times they relax each edge and the order in
which they relax edges.

19

The Bellman-Ford Algorithm

Bellman-Ford algorithm solves the single-source shortest-path problem in general
case where graph may contains cycles and edge weights may be negative.

e If there is no negative cycle, the algorithm will compute the shortest-paths and
their weights.

e [f there is negative cycle, the algorithm will report no solution exists.

e The idea is to repeatedly use the following procedure to progressively decrease an
estimate d|v] of the weight of shortest path from s to v.

Relax All(G, s)
1 For each edge (u,v) € FE do

2 Relax(u, v, w);

20

Lemma: Let p =< s =wy,v1,--- ,v; = v > be a path from s to v of length k and
weight w(p), then after k£ applications of Relax All(G, s), d[v] < w(p).

Proof:
Prove by induction on £.

o k=1.
In this case, p =< s,v > and w(p) = w(s,v). After Relax(s, v, w) is applied,
dlv] < dls] +w(s,v) = w(s,v) = w(p).

o k> 1.

T Let p1 =< vg,v1, -+ ,vp_1 >, then p; is a path of length £ — 1.
T Therefore after k — 1 applications of Relax All(G, s), we have dvg_1] < w(p1).

T After another application of Relax All(G, s),
dlv] < dlvg_1] + w(ve_1, v;) < w(pr) + w(ve_1,v5) = w(p).

]

Since shortest paths have lengths less than |V|, what we need to do is to apply
Relax All(G, s) |[V| — 1 times.

21

Bellman Ford(G, w, s)
1 Initialize SingleSource(G, s)

2 fori:=1to|V|—1do

3 for each edge (u,v) € F do
4 Relax(u, v, w);

5 for each edge (u,v) € F do

6 if d[v] > du] + w(u,v) then
7 return False;

8 return True;

22

Lines 5-7 test if the graph contains negative cycle reachable from s.

e [f there is no such cycle, then there is no edge (u,v) € E such that
d[v] > dlu| + w(u, v) since otherwise d|v] is not the shortest-path weight from s to
v.

e [f there is such a cycle c =< vy, v1, -+ - , vp. > where vy = v} and
Zle w(v;_1,v;) < 0.
T Suppose that (for the purpose of contradiction) for each edge (u,v) € F,
dlv] < du] + w(u,v).
T Then dlv;] < dlv;1] + w(v;_q,v;) for 1 < i < k.
T And >0 dv] < S0 dlvi] + 3 w(vi, v),
t Therefore S°F w(v;_1,v;) > 0
e Time complexity: O(|V'||E|).

23

Acyclic Graph

— Suppose that graph G has no cycle.
— We first use topological sorting to order the vertices of G.
e If s has label k, then for any vertex v with label < k, there is NO PATH from s
to v, so d[v] = oo.
e We then consider each vertex with label > k in the order of k+1,k+2,--- ||V

e Consider a vertex v in the above order (with label > k).
We want to compute d|v] and 7[v].
We need only consider those vertices u such that (u,v) is an edge in G.

For each (u,v) € E|G] do
Relax(u, v, w)

e This is correct since for any (u,v) € F, label for u is less the label for v.
o Complexity: O(|V |+ |E|)

24

Non-Negative Weights

e General graph with no negative weight edge.
e Graph now is not acyclic. Therefore there is no topological order.

e What is the main idea from acyclic case?
When we consider shortest path from s to v, the topological order enables us
to ignore all vertices after v.

e Could we define an order for general graphs to do similar things?

e For general graphs,
Order the vertices by the weights of their shortest paths from s.

Unlike topological order, we do not know this order before we find shortest paths.

25

e We will find the order during the process of finding shortest paths.

e Can we first find the closest vertex w;?

Yes! wy is the vertex satisfying following:
w(s, wy) = min, w(s, v)
Why?

Consider the shortest path from s to wj.

[t must consist of only two vertices s and w.
Otherwise if

S— V1 — UV — ~++ — VU — U

is the shortest path from s to wy, then d[vi] = w(s,v1) < d(s,wy) = djw]

— elther wy 1s not closest — contradiction!
— or d(s,wy) = d(s,v1), we can choose v1 to be the closest vertex.

— therefore we can determine d|w;] and find wy this way.

26

e Can we find the second closest vertex ws?

YES! The only paths we need to consider are the edges from s (except (s, w;)) and
paths of two edges, the first one being (s, w;), and the second one being from w;.

— Why? Again, consider a shortest path from s to ws

S — U1 (%) s —> VU — W9

— Consider the first vertex (from s to ws) that is not s and wy.
— It is either vy or v9 (and in this case v; = wy).
— Therefore we choose the minimum of
w(s,v) (v # wy) or dlwq] +w(wy,v) (vF#s).
— this give us wy and d|ws).

27

Induction

Induction hypothesis:
Give graph G and a vertex s, we know the k — 1 vertices that are closest to s and
we know the weights of the shortest paths to them.

Base case: done!

Inductive Step: We want to find the kth (wy) closest vertex and the weight of
shortest path to it.

Let the k — 1 closest vertices be wy, wo, ..., wr_1.

Let Vo1 = {s,wy,wsq, ..., wp_1}

The shortest path from s to w; can go only through vertices in Vj._1.

(If it goes through a vertex not in Vj_q, this vertex is closer than wy)

Therefore wy, is the vertex satistying the following:

wy € Vi—1 and the shortest path from s to wy through V;_4 is less or equal to the
shortest path from s to any other vertex v & V;_; through V;._;.

28

For v € Vi, let
dlv] = min (d[u] + w(u,v)).

ueV_

d|v] is the shortest path from s to v through Vj_;.

Therefore wy. 18 a vertex such that

wy & Vi1 and d[wy] = min {d[v]}.
vEVE—1

e Adding w;. does not change the weights of the shortest paths from s to u,
u € Vj._q, since u is closer than wy,

e The Algorithm is complete now.

We should consider how to implement it efhiciently.

The main computation is for d[v] for v & V;_;.

29

e We do not have to compute all d|v] for each V.

Most of d|v] for Vj. are equal to d[v] for Vi_;.
We only need to update a few d[v] when we add wy.

e When we add wy.
For v, such that v ¢ V), and (wg, v) is an edge.
dv] = min{d[v], d[wi|+ w(wy,v)}

(Note: this is the same as Relax(wg, v, w).)

Consider a shortest path from s to v through V.
If the last edge is (w;, v), ¢ < k, then there is no change to d|v].
If the last edge is (wg, v) then d[v] = dlwy| + w(wy, v).

V

o

Blue: Vi1

Green: Vi

30

What data structure should we use?

Heap is a good choice!
e We can keep d[v] in a min heap. Then we can find wy in O(1) time.
e After we find wy, we update d|[v].

— Delete wy, from heap.

— For each v in the heap such that (wg, v) is an edge, change its key from d|v] to
min{d[v], dwg] + w(wy, v)} (Relax(wy, v, w)).

e We need to use the heap with element locations (see notes for heap)!

31

Dijkstra’s Algorithm

The above analysis gives us the Dijkstra’s algorithm.

Dijkstra(G, w, s)

for each (u,v) € E do
Relax(u, v, w);

Update v in Q);

1 Initialize_Single_Source(G, s);
2 S:=10;

3 Q=VI[G];

4 while @ # 0 do

5 u = FExtract_Min(Q);
6 S :=SU{u};

7

8

9

32

Time Complexity

With a binary heap:

V| delete min operations: O(|V]log(|V]))
| E| update operations: O(|E|log(|V]))
TOTAL O((|V| + | E) log(|V']))

With a Fibonacci heap:

[V'| delete min operations: O(|V|log(|V']))
| E)| update operations: O(|E|)

TOTAL O(|V]log(|V|) + | E|)

Without a heap:

|V'| delete min operations: O(|V'||V])
| E| update operations: O(|E|)
TOTAL O(|V|* + |E|) = O(|V]?)

(Compare with acyclic case O(|V| + |E|))
(Compare with Bellman-Ford algorithm O(|V||E|))

33

Minimum Spanning Trees

e Consider an undirected weighted graph G = (V, E).

e A spanning tree of G is a connected subgraph that contains all vertices and no
cycles.

e Minimum spanning tree of GG: a spanning tree 1" of G such that the sum of the
weights of edges in 1" is minimum.

e Applications:

— computer networks (e.g. broadcast path)
— there is a cost for sending a message on the link.
— broadcast a message to all computers in the network from an arbitrary computer

— want to minimize the cost

34

The Problem

Given an undirected connected weighted graph G = (V, E), find a spanning tree T'
of G' of minimum cost.

Idea.
Extend tree: always choose to extend tree by adding cheapest edge.

For simplicity, we assume all costs (weights) are distinct!

Base case: Let r be an arbitrarily chosen root vertex. The minimum-cost edge
incident to r must be in the minimum spanning tree (MST)

T Suppose this edge is {r, s}
tif {r, s} is not in MST, add {r, s} to MST
T Now we have a cycle

T Delete the MST edge incident to r from the cycle. We have a new tree.

T the cost of this new tree is less than the cost of MST. Contradiction!

35

Induction hypothesis

Given a connected graph G = (V, E), we know how to find a subgraph T of G with
k edges, such that T' is a tree and 1’ is a subgraph of the MST of G.

Extend T

T Find the cheapest edge from a vertex in T' to a vertex not in T'. Let it be {u, v},
such that u € T"'and v € T'.

T Add {u,v} to T.

T Claim: We now have a tree with k 4 1 edges which is a subgraph of the MST of G.
e Again add {u, v} to the MST
e Consider the path from u to v in MST
e There must be an edge e = {uy,v1} in this path such that uy € T and vy € T
e Delete edge e
e Since weight(e) > weight({u, v}), the new tree has a cost less than the MST

e Contradiction

36

Implementation

e Similar to the implementation of single-source shortest-path algorithm
e Choose an arbitrary vetex as the root

e For each iteration we need to find the minimum cost edge connecting 1" to vertices
outside of 7"

e We again use a heap.
For each vertex w not in I, we use the minimum-cost of the costs of the edges
going into w from a vertex in 7" as the key:.

e For each iteration we delete min from the heap. Suppose u is the new vertex.

Update the keys for vertex v not in T by cost of edge {u, v}.

e Time: |V| delete min: O(|V]log(|V]))
| E| update operations: O(|E|log(|V]))
Total: O(([V] + |E|) log(|V]))

e This is called PRIMS algorithm

37

Prim’s Algorithm

The above analysis gives us the Prim’s algorithm.

MST Prim(G, w, r)

1 for each u € V|G| do

2 key|u] := oo;

3 m|u] := NIL;

4 keylr] = 0;

5 Q:=V|G];

6 while @ # 0 do

7 u = Extract Min(Q);

8 for each v € Adjlu| do

9 if v € @ and w(u,v) < key|v] then
10 m[v] = u;

11 keylv] .= w(u,v);
12 update keylv] in @

38

Kruskal’s MST

Idea: Choose cheapest edge in a graph.

Algorithm:
put all edges in a heap, put each vertex in a set by itself;
while not found a MST yet do begin
delete min edge, {u, v}, from the heap;
if 4 and v are not in the same set
mark {u, v} as tree edge;
union sets containing u and v;
if © and v are in the same set
do nothing;
end

O((|V| 4+ |E|)log(|V])) for heap operation.
O(|E|log™(|V|) for union-find operation.
Total: O((|V|+ |E|)log(|V])) time.

39

All-Pair Shortest-Paths Problem

e The problem: Given a weighted graph G' = (V, F), find the shortest paths between
all pairs of vertices.

e We can call single-source shortest-paths algorithm |V/| times

T If there is no negative cycle.
Complexity: O(|V|?|E|)
T If there is no negative weight edge.
Complexity: O(|[V|*log([V]) + V| E]) or O([V|([V] + | E]) log(]V]))

If G is not dense, this is a good solution.

e We consider to use induction to design a direct solution.

40

e We can use induction on the vertices.
e We know the shortest paths between a set of k vertices (Vj).
e We want to add a new vertex u

e We can find the shortest path from u to all the vertices in V.

shortest-path(u, w) =
MiNyev, (uv)epiW (U, v)+shortest-path(v, w) } (*)

Shortest-path(w, u) can be computed similarly!
We update shortest-path(wy, ws), wy, wy € Vi

shortest-path(wy, wy) = min{shortest-path(wy, u)+ shortest-path(u, ws),
shortest-path(wy, wy)} (*)

Time: (**) can be done in |V|?
(*) can be done in |V|?

Total: O(|V[%).

41

A better solution

— Idea: Number of vertices is fixed.

Induction puts restrictions on the type of paths allowed

— We label vertices from 1 to |V

A path from u to w is called a k-path if, except for v and w, the highest-labelled
vertex on the path is labelled by k.

A O-path is an edge

— Induction hypothesis:

We know the lengths of the shortest paths between all pairs of vertices such that
only k-paths, for some £ < m are considered.

— Base case: m =0

only direct edges can be considered

42

Inductive step

(extend m — 1 to m)

We consider all k-paths such that & < m.
The only new paths are m-paths.

Let the vertex with label m be v,,.

Consider a shortest m-path between u and v.

This m-path must include v,, only once!

Therefore this m-path is a shortest k-path (for some k& < m — 1) between u and vy,
appended by a shortest j-path (for some 7 < m — 1) from v,, to v.

By induction we already know the length of the k-path and the j-path!

We update shortest-path (u, v) by:

min{shortest-path(u, v,,) + shortest-path(v,,, v), shortest-path(u, v)}

43

This leads to a very simple program! (Floyd-Warshall algorithm)

for x :=1to |V]| do { base case }
for y :=1to |V] do
if (x,y) € F, then
dlz,y] == w(z,y);
else

dlz,y] = oo;

for x :==1to |V| do
dlx,x] = 0;

for m :=1to |V| do { the induction sequence }
for x :==1to |V| do
for y :=1to |V] do
if dlx, m] + d[m,y| < d[z,y] then
dlx,y] .= d[x, m] + dlm, y]

Time: O(|V|*). Again, if the graph is sparse, then O(|V|*log(|V]) + |V||E|) is a
better solution when there is no negative weight.

44

If we need to find the shortest paths not just the weights. Let ¢[i, j] be highest
numbered vertex on the shortest path from 7 to j.

for x :=1to |V| do { base case }
for y :=1to |V] do
if (z,y) € E, then
dlz,y] = w(z,y); Pz, y| =
else

dlz,y] = oo; @[z,y] :=Nil;

for x :==1to |V| do
dlz,z| =0; ¢|x,z| =Nil;
for m :=1to |V| do { the induction sequence }
for x ;=1 to |V do
for y :=1to |V| do
if d[xz, m]+ dlm,y] < d[z,y] then
dlz,y] := dlx, m| + d[m, y];
oz, y] = m;

Time: O(|V]%)

45

If we need to find the shortest paths not just the weights. Let x[é, j] be the
predecessor of 7 on the shortest path from ¢ to j.

for x :=1to |V|do { base case }
for y :=1to |V] do
if (z,y) € E, then
dlz,y] = w(z,y); 7lz,y] =z
else

dle,y] = oc; mx,y) =Nil

for x :==1to |V| do
dlz,z| =0; 7|z, z| =Nil
for m :=1to |V| do { the induction sequence }
for x :=1 to |V do
for y :=1to |V| do
if [z, m]+ d[m,y] < d[z,y] then
d[z,y] := dlx, m| + d[m, y];
mlz,y) = mlm, y);

Time: O(|V]%)

46

Example: Figure 25.1.

47

48

(NIL 1 1 NIL 1\
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 NIL 4 NIL NIL
\ NIL NIL NIL 5 NIL

(NIL 1 1 NIL 1 \
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 1 4 NIL 1

\ NIL NIL NIL 5 NIL

)

(NIL 1 1 2
NIL NIL NIL 2
NIL 3 NIL 2

1
2
2
4 1 4 NIL 1

\ NIL NIL NIL. 5 NIL

0 3 —1
(30—4
74 0
2 —1 =5
\8 5 1
0 1 -3
/30—4
74 0
2 —1 =5
\8 5 1

I -1
5 3
0 —2

I -1
5 3
0 =2

49

(NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 3 4 NIL 1
\ NIL NIL NIL 5 NIL /

4 3 NIL
4 3 4 NIL 1
\ 4 4 4 5 NIL

50

(NIL I 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 NIL 4 NIL NIL

(NIL I 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL
4 1 4 NIL 1

(NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2

4 1 4 NIL 1
[

)

\ NIL NIL NIL 5 NIL

)

\ NIL NIL NIL 5 NIL /

)

\ NIL NIL NIL 5 NIL

0 3 —1
30 —4
74 0
2 —1 =5

\8 5 1
01 -3
30 —4
74 0
2 —1 =5

I —1
5 3
0 —2

I -1
5 3
0 —2

o1

(NIL 11 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 3 4 NIL 1
\ NIL NIL NIL 5 NIL /

/NIL 1 4 2 1 \
4 NIL 4 2 1
4 3 NIL 2 1
4 3 NIL 1

\ 4 1

If we need to find the shortest paths and shortest cycles, let «[i, j| be the
predecessor of 7 on the shortest path from ¢ to j.

for x :=1to |V|do { base case }
for y :=1to |V] do
if (z,y) € E, then
dlz,y] = w(z,y); 7lz,y] =z
else

dlx,y| == o0o; m|x,y| =Nil;
for m :=1to |V]| do { the induction sequence }
for x :==1to |V| do
for y :=1to |V] do
if dlx, m] + d[m,y| < d[z,y] then
dlx,y] := dlx, m| + d[m, y];
mlz,y] = 7lm, yl;

Time: O(|V]%)

52

(003800—4\ (NIL1 1N1L1\
0 00 0o 1 7 NIL NIL NIL 2 2
D=1 0 4 00 0o oo M9 = | NIL 3 NIL NIL NIL
2 00 —5 00 00 4 NIL 4 NIL NIL
\ 00 00 00 6 oo \ NIL NIL NIL 5 NIL
(003800—4\ (N1L1 1N1L1\
0 00 0o 1 7 NIL NIL NIL 2 2
DW= 00 4 00 oo o MM = | NIL 3 NIL NIL NIL
2 5 —5 00 —2 4 1 4 NIL 1
\ 00 00 00 6 oo \ NIL NIL NIL 5 NIL
(00384—4\ (NIL1121\
0 00 oo 1 7 NIL NIL NIL 2 2
DP = 0 4 00 5 11 M» =] NIL 3 NIL 2 2
2 5 —56 —2 4 1 4 2 1
\ > 00 % 6 o0 \ NIL NIL NIL 5 NIL /

53

1
L
2
1
NIL /

2
2
2
2
O

=22 4=
Z 2 e
Z. s
—_ — — —
—_ <
Z Z Z s
N— -
|
=
~ N
T2 8
<t — 0O O O
LO
0 B8 | 8
™ @+ R
g8 8 8™ &
N— -

~ N
<t o @\
I
<t — 0O O ©
— < L0
I I R
—
304_5
O M - AN oo
~ -
I
=

~ N
= = ——
1O N N O O
<t < < < <
D M Mmoo
<t < < < <
~ I
I
D
=
~ N
<+ — N
I RGN
AN — 1O O O
o™ <t LO
[I R
—
104_5
<t o™ D~ O OO
~ -
I
D

o4

