Maximum Flow




Flow Network

e The following figure shows an example of a flow network:
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e A flow network G = (V, F) is a directed graph. Each edge (u,v) € F has a
nonnegative capacity c(u,v) > 0. c(u,v) is possibly not equal to ¢(v,u). By
convention, we say c(u,v) = 0if (u,v) ¢ F.

e There is one source vertex and one sink vertex in a flow network. We denote
them by s and ¢, respectively.




e We want to find a “flow” with maximum value that flows from the source to the
target.

e Maximum Flow is a very practical problem.

e Many computational problems can be reduced to a Maximum Flow problem.




A Flow

e For any vertex v, we assume that there is a path from s to v and a path from v to t.

e A flow in G is a function f : V x V — R that specifies the direct flow value
between every two nodes.

@ 12/12
11/16

10

8/13 4/4

V\

11/14 >@

e f should satisty the following three properties before it can be called as a flow.

e Capacity constraint: For all u,v € V., f(u,v) < ¢(u,v).
e Skew symmetry: For all u,v € V| f(u,v) = —f(v, u).
e Flow conservation: For all u € V — {s,t}, > ., f(u,v) =0.
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If (u,v) ¢ F and (v,u) ¢ E, then c(u,v) = c(v,u) = 0.
By capacity constraint, f(u,v) < 0 and f(v,u) <0

By skey symmetry, f(u,v) > 0 and f(v,u) > 0.

Therefore f(u,v) = f(v,u) = 0.

[f there is no edge between u and v, then there is no flow between u and v.




e The value of the flow f, denoted by | f|, is defined by
fl=2 flsv).

e | f] is the total flow out of the source.

Lemma 1.

fl=) flut).

ueV

That 1s, the flow out of the source is equal to the flow into the sink.

Proof.
(1) D ouer 2 ver flu,v) = 0. (Skew symmetry)

(2) 2uev—isin 2ovey flu,v) = 0. (Flow conservation)
(3> Zue{s,t} ZUEV f(u7 U) = 0.
(4) Zvev fls,v) == Zvev f(t,v) = ZUEV flv,t).




Idea of the Ford-Fulkerson method

e The Ford-Fulkerson method is the standard method for solving a maximum-flow
problem.

e The idea of the method is “iterative improvement”. We start with an arbitrary
flow. Then we check whether an improvement is possible.

e Suppose we start with an empty flow. The improvement is a path from the source
to the sink.

e What if the current flow is not empty?”




Residual network

e We need to examine the “residual capacity” for each edge.

e We check whether there is a path s — ¢ such that all edges on the path have a
positive “residual capacity”.

e If so, we increase the flow. If not, we have got a maximal solution.

e Given a flow network GG. Let f be a flow. The residual capacity of (u,v) is given
by €5(t,0) = e(u, v) — f(u,v).

e The residual network induced by f is Gy = (V, Ey), where
Er={(u,v) e VxV:cplu,v) >0}

e If there is a path from s to ¢ in the residual network, then there is room to improve
the current flow.




A flow in a flow network and its residual network.
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e Note that if both (u,v) and (v, u) are not in the original flow network G, neither
(u,v) nor (v, u) can appear in the residual network. Therefore, |Ef| < 2|E|.

o Let f/ be a flow in the residual network G . We can define a new flow (f + f/) in
G, as follows

(f + ), v) = fu,v) + f'(u,v).
Lemma 2. f + ' is a flow in G.

Proof.

We need to verify the three constraints:

(1) Capacity constraint: (f + f/)(u,v) < c¢(u,v).
(2) Skew symmetry: (f + f')(u,v) = —=(f + f')(v,u).

3) Flow conservation: For all u € V' — {s, ¢}, f+ f(u,v)=0.
veV
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Lemma 3. The value of the new flow f + [’ is equal to total values of f and
floLes [+ 1=+ 111

e Proof.
f+ =D (f+f)s0)

veV

= > (f(s,0) + f'(s,0))
veV

= > fls,0)+ > fl(s,0))
veV veV

= |fI+1f]
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Augmenting path

e Given a flow network G = (V, E) and a flow f in (G, an augmenting path is a
simple path from s to ¢ in the residual graph G/.

e An augmenting path admits some additional positive flow for each edge on the
path.

e The residual capacity of an augmenting path p is defined as
cr(p) = min{cs(u,v) : (u,v)is in p}

e c¢(p) is the maximum amount of additional flow we can increase through path p.

Lemma 4. Let G = (V, F) be a flow network, let f be a flow in G, and let p be
an augmenting path in Gy¢. Define a function f, : V XV — R by

esp) if (u,v) is on p,
fp(ua U) — _Cf<p) Zf (Uv U) 1S on P,
0 otherwise.

Then, f, is a flow in Gy with value |f,| = c;(p) > 0.
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A flow in a flow network and its residual network.
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A new flow from the augmenting path and its residual network.
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The basic Ford-Fulkerson algorithm

e Ford-Fulkerson(G s t)
1. for each edge (u,v) € E
2. flu,v] <0, flv,u] < 0.
3. while there exists a path p from s to ¢ in the residual network Gy
cf(p) «— min{cs(u,v) : (u,v) is in p}.
for each edge (u,v) in p
Fluy ] — flu,v] + es(p)
f[’U, u] — _f[ua U]

O O

e The path p from s to ¢ in the residual network G'r is called the augmenting path.

e The augmenting path p defines a flow in Gy. By adding this flow f, to the current
flow f, we get a better flow f + f, with value |f|+ |f,|.

e Figure 26.6 on p.726-627 of the textbook shows an example.
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Is the solution optimal?

e We have found an intuitive algorithm to provide a maximal flow. But is this flow
mazimum’

e Although we cannot increase the current flow by augmenting paths, is it possible
that we find a completely different flow which has a better value?

e [t turns out that the solution found by the Ford-Fulkerson algorithm is the
maximuin one.

e But we want to prove it.
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Working with flows

e Let f be a flow. The flow from one set of vertices, X, to another set Y, is defined
by f(X,Y) =2 cx Zer f(@,y).

o
Lemma 5. Let G = (V, E) be a flow network and let f be a flow on G, then;
(1) For all X CV, f(X,X)=0.
(2) For all X, Y CV, f(X,Y)=—f(Y
(3) For oll XY, Z CV with X NY =
f(Z,XUY)=f(Z,X)+ f(£,Y).

e Proof.

, X ).
0, (XUY.Z)= f(X,Z)+ (Y, Z) and
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Cuts of low networks

e A cut (5,T) in the flow network G = (V| E) is a partition of V into S and
T=V —Ssuchthat se Sandt e T.

e The net flow across the cut (S,7T) is defined to be

f<S>T> :ZZ]C<U7U>'

uesS veT

e The capacity of the cut (S, T) is defined to be

c(S,T) = Z Z c(u,v).

ueS veTl

e Obviously, f(5,7T) < ¢(S,T).
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Lemma 6. Let f be a flow in flow network G. Let (S,T) be any cut of G. Then
the net flow across (S,T) is f(S,T) = |f].

Proof.
By flow conservation, we have f(S — {s},V) =0.
Also, f(S,V) = f(S5,5)+ f(S,T) = f(S,T).

Therefore, f(Sv T) — f(Sa V) — f(S - {5}7 V> + f({S}, V) — f<{3}7 V) — |f‘
L]

e Therefore, the maximum flow is bounded by the capacity of the “minimum” cut.
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Theorem 1. If f is a flow in a flow network G = (V, E) with source s and sink t,
then the following conditions are equivalent:

1. f 1s a maximum flow in G.

2. The residual network Gy contains no augmenting paths.

Proof. (1) = (2): Obvious, because the existence of augmenting paths means a better
flow exists.

(2) = (1): Gy has no path from s to t. Let S be all the vertices that can be reached
from s, and T'=V — S. Then (S5, T) is a cut.

For each u € S and v € T, f(u,v) = c(u,v). Therefore, f(S,T) = c(S,T). But we

know that f*(S,T) < ¢(S,T) for any flow f*. Hence we conclude that f is the
maximuin.

Exercise: Read the proof of Theorem 26.6 at p.723 of the textbook. The proot
there is essentially the same but in a different form.

Corollary 1. The Ford-Fulkerson algorithm gives the maximum flow of a flow
network.
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Complexity

e Assuming that the capacities are integers.

e Fvery augmenting path will increase the flow by at least 1. So, the while loop will
be repeated O(|f*]) time, where f* is the maximum flow.

e The time complexity is O(|E| x [ f*|).

e Figure 26.7 on p.728 of textbook shows a worst case example.
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Edmonds-Karp algorithm

e The Edmonds-Karp algorithm is almost the same as the Ford-Fulkerson algorithm.

e The difference is that we find the shortest path (in terms of number of edges) from
s to t in the residual graph, and use the shortest path as the augmenting path.

e The worst case running time is reduced to O(|V| x |E|?).

e Proof is omitted. See p.729 of text book if you are interested to know.
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Applications

e The maximum-bipartite-matching problem.

Example: m boys and n girls are attending a dance party. Some of them can be
matched. Find a solution so that you have maximum number of matches.

e The multiple-source max-flow problem.

Example: A supermarket has several vendors for the same merchandise. It wants
to transport the maximum number of merchandise to the market through its own
transportation network.

e The multiple-sink max-flow problem.

Example: A factory wants to send the maximum number of products to several
countries through its own transportation network.

e The multiple-source multiple-sink max-flow problem.
e Maximum bipartite matching.

e Many other applications.
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