
The Union-Find Problem

The Problem: Given a set X of n elements x1, x2, . . . , xn. We would like to
maintain a collection of disjoint subsets (groups) of X .

Initially, the collection is empty.
There are three operations on the elements and the subsets.

Make set(i): makes xi a subset and assigns a name for the subset.
Find(i): returns the name of the subset that contains xi.
Union(i, j): combines subsets that contain xi and xj, say Si and Sj, into a new
subset with a unique name. (Any name distinct from other names will do.)

The goal: Design a data structure that will support any sequence of these three
operations as efficient as possible.

Note: We assume the types for elements are subrange type. Therefore we can use
elements name to index into array (e.g. integer 1, . . . , n)
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A simple (naive) solution

Store the name of the subset containing the i’th element xi in A[i].

• Make set(i): we just set A[i] to i.

• Find(i): we just look at A[i] and find out the name for the subset.

• Union(i, j): (Assume the name of the resulting subset is Si’s name) Change the
subset name for all elements in Sj.

Example:
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Time: n union operations may need O(n2) time.
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An improved implementation

• Each set is represented by a linked list.

• The first node in each list serves as its set’s representative.

• Each node of the list contains a set member, a pointer to the next node, and a
pointer back to the representative.

• Each list maintains a pointer, head, to the first node and a pointer, tail, to the last
node.

• Make set(i) and Find(i) are easy to implement.

• For the Union(i,j), we will append the smaller list onto the longer list and update
representative pointers of the smaller list.

Time: with a sequence of m operations, n of which are Make set operations, it
takes O(m + n log n) time.

Why: how many times a pointer to its representative can be changed?
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Example:
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Another implementation

• Instead of making Find operation simple, we make Union operation simple.

• Each set is a tree and each node in a tree is a record: one field for element name,
one field for a pointer (parent pointer) to another node.

† Find(i): from entry i, follow parent pointer until we find a node with a nil pointer
(root). Return the name in that node.

† Union(i, j): we change the pointer of the root of set Sj to pointing to the root of
set Si, or vice-versa.
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Example:
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We can consider the whole structure as a forest.
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Efficient Union-Find

• Idea: balance and collapse the trees.

• Balancing: when union operation is performed, the root pointer of the smaller tree
is set to point to the root of larger tree.

† Rather than explicitly keeping the size of the subtree rooted at each node, we
use another approach.

† For each node, we maintain a rank that is an upper bound on the height of
that node.

† In union by rank, the root with smaller rank is made to point to the root with
larger rank during an Union operation.

− If two roots have equal ranks, we arbitrarily choose one of the roots as the the
parent, increase its rank by 1, and reset the other root.

− With Make set(), the rank is set to 0.
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• (1) If union by rank is used, then for any node, its height is bounded by its rank.

• (2) If union by rank is used, then for any node i, its rank is bounded by
log(size(i)).

Proof: (of (1)) Induction on the number of Make set and Union operations.

Base case: the first operation must be Make set, and (1) is true since we have one
node with height 0 and rank 0.
Induction step: consider an Union(i, j) operation and let ri and rj be the roots of
the trees containing i and j. We assume that height(ri) ≤ rank[ri] and
height(rj) ≤ rank[rj].

† If rank[ri] > rank[rj], height(union(i, j))
= max{height(ri), height(rj) + 1}
≤ rank[ri] = rank[root(union(i, j))].

† If rank[ri] < rank[rj], height(union(i, j))
= max{height(ri) + 1, height(rj)}
≤ rank[rj] = rank[root(union(i, j))].

† If rank[ri] = rank[rj], height(union(i, j))
≤ max{height(ri) + 1, height(rj) + 1}
≤ rank[ri] + 1 = rank[root(union(i, j))]. ¤
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Proof: (of (2)) Induction on the number of Make set and Union operations.
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• With balancing (union by rank), for a sequence of m operations, n of which are
Make set operations, the height of any tree is less than or equal to log n, since we
only have n elements.

• Any find operation is at most O(log n)

• Any sequence of m ≥ n operations will be bounded by O(m log n).

Union: constant time.

Find: O(log n) time.
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Path compression (collapse the tree)

In the operation of Find(i), do following:

first pass: follow parent pointer to find the root
second pass: follow parent pointer and change each of the pointers in the path to
point to root.

t2

t3

t1

i

t2t1 t3

iFind(i)

With path compression alone, for a sequence of m operations, n of which are
Make set operations, the time complexity is O(m log n).
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Theorem. If both balancing and path comparisons are used, then the total
number of steps in the worst case for any sequence of m ≥ n operations, n of which
are Make set operations, is O(m log∗ n).

Proof: Omitted.

log∗(1) = 0, log∗(2) = 1.
log∗(n) = 1 + log∗(⌈log2 n⌉), n ≥ 2.

log∗(2) = 1, 2 = 2
log∗(22) = 2, 22 = 4

log∗(22
2

) = 3, 22
2

= 24 = 16

log∗(22
2
2

) = 4, 22
2
2

= 216 = 65536

log∗(22
2
2
2

) = 5, 22
2
2
2

= 265536

The number of atoms in the observable universe is estimated to be about 1080 which
is MUCH SMALLER than 265536!!

In practice, above union-find algorithm is linear time.
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An implementation of efficient union-find data structure.

Make-set(x)
parent[x] = x; rank[x] = 0;

Union(x, y)
Link(Find-set(x), Find-set(y));

Link(x, y)
if (rank[x] > rank[y])

parent[y] = x;
else if (rank[x] < rank[y])

parent[x] = y;
else if (x 6= y)

parent[y] = x; rank[x] = rank[x] + 1;

Find-set(x)
if x 6= parent[x]

parent[x] = Find-set(parent[x])
return(parent[x])
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