
The Union-Find Problem

The Problem: Given a set X of n elements x1, x2, . . . , xn. We would like to
maintain a collection of disjoint subsets (groups) of X .

Initially, the collection is empty.
There are three operations on the elements and the subsets.

Make set(i): makes xi a subset and assigns a name for the subset.
Find(i): returns the name of the subset that contains xi.
Union(i, j): combines subsets that contain xi and xj, say Si and Sj, into a new
subset with a unique name. (Any name distinct from other names will do.)

The goal: Design a data structure that will support any sequence of these three
operations as efficient as possible.

Note: We assume the types for elements are subrange type. Therefore we can use
elements name to index into array (e.g. integer 1, . . . , n)

1



A simple (naive) solution

Store the name of the subset containing the i’th element xi in A[i].

• Make set(i): we just set A[i] to i.

• Find(i): we just look at A[i] and find out the name for the subset.

• Union(i, j): (Assume the name of the resulting subset is Si’s name) Change the
subset name for all elements in Sj.

Example:

1

743

7431

51

1

75431

76

1

2 765431

5Find(6)

Union(3, 1)

Union(1, 5)

Union(5, 6)

Union(1, 2)

Make_set(1 ... 7)

3333

1

5431

Time: n union operations may need O(n2) time.

2



An improved implementation

• Each set is represented by a linked list.

• The first node in each list serves as its set’s representative.

• Each node of the list contains a set member, a pointer to the next node, and a
pointer back to the representative.

• Each list maintains a pointer, head, to the first node and a pointer, tail, to the last
node.

• Make set(i) and Find(i) are easy to implement.

• For the Union(i,j), we will append the smaller list onto the longer list and update
representative pointers of the smaller list.

Time: with a sequence of m operations, n of which are Make set operations, it
takes O(m + n log n) time.

Why: how many times a pointer to its representative can be changed?

3



Example:

tail

head

tail

head

tail

head

4276351

427

6351

4



Another implementation

• Instead of making Find operation simple, we make Union operation simple.

• Each set is a tree and each node in a tree is a record: one field for element name,
one field for a pointer (parent pointer) to another node.

† Find(i): from entry i, follow parent pointer until we find a node with a nil pointer
(root). Return the name in that node.

† Union(i, j): we change the pointer of the root of set Sj to pointing to the root of
set Si, or vice-versa.

5



Example:

6 72

1 3 4 5 6 71

1 3 4 5 71 5

5

1 3 4 7

5Make_set(1 ... 7)

Union(1, 2)

Union(5, 6)

Find(6)

Union(1, 5)

Union(3, 1)

1 3 4

1

71 5

5

1 3 4 71 1

3 4 73

5

1 1 5

5

1 1 5

5

1

3 4 73

1 3 4 5 6 72

1 3 4 5 6 71

1 3 4

6



We can consider the whole structure as a forest.

7654321

5

Union(1, 5)

Union(3, 1)

Union(5, 6)

Union(1, 2)

Make_set(1 ... 7)

Find(6)

1

743

6

52

1

73 4

6

52

1

62

1 3 4 5 7

76543

2

7



Efficient Union-Find

• Idea: balance and collapse the trees.

• Balancing: when union operation is performed, the root pointer of the smaller tree
is set to point to the root of larger tree.

† Rather than explicitly keeping the size of the subtree rooted at each node, we
use another approach.

† For each node, we maintain a rank that is an upper bound on the height of
that node.

† In union by rank, the root with smaller rank is made to point to the root with
larger rank during an Union operation.

− If two roots have equal ranks, we arbitrarily choose one of the roots as the the
parent, increase its rank by 1, and reset the other root.

− With Make set(), the rank is set to 0.

8



• (1) If union by rank is used, then for any node, its height is bounded by its rank.

• (2) If union by rank is used, then for any node i, its rank is bounded by
log(size(i)).

Proof: (of (1)) Induction on the number of Make set and Union operations.

Base case: the first operation must be Make set, and (1) is true since we have one
node with height 0 and rank 0.
Induction step: consider an Union(i, j) operation and let ri and rj be the roots of
the trees containing i and j. We assume that height(ri) ≤ rank[ri] and
height(rj) ≤ rank[rj].

† If rank[ri] > rank[rj], height(union(i, j))
= max{height(ri), height(rj) + 1}
≤ rank[ri] = rank[root(union(i, j))].

† If rank[ri] < rank[rj], height(union(i, j))
= max{height(ri) + 1, height(rj)}
≤ rank[rj] = rank[root(union(i, j))].

† If rank[ri] = rank[rj], height(union(i, j))
≤ max{height(ri) + 1, height(rj) + 1}
≤ rank[ri] + 1 = rank[root(union(i, j))]. ¤

9



Proof: (of (2)) Induction on the number of Make set and Union operations.

10



• With balancing (union by rank), for a sequence of m operations, n of which are
Make set operations, the height of any tree is less than or equal to log n, since we
only have n elements.

• Any find operation is at most O(log n)

• Any sequence of m ≥ n operations will be bounded by O(m log n).

Union: constant time.

Find: O(log n) time.

11



Path compression (collapse the tree)

In the operation of Find(i), do following:

first pass: follow parent pointer to find the root
second pass: follow parent pointer and change each of the pointers in the path to
point to root.

t2

t3

t1

i

t2t1 t3

iFind(i)

With path compression alone, for a sequence of m operations, n of which are
Make set operations, the time complexity is O(m log n).

12



Theorem. If both balancing and path comparisons are used, then the total
number of steps in the worst case for any sequence of m ≥ n operations, n of which
are Make set operations, is O(m log∗ n).

Proof: Omitted.

log∗(1) = 0, log∗(2) = 1.
log∗(n) = 1 + log∗(⌈log2 n⌉), n ≥ 2.

log∗(2) = 1, 2 = 2
log∗(22) = 2, 22 = 4

log∗(22
2

) = 3, 22
2

= 24 = 16

log∗(22
2
2

) = 4, 22
2
2

= 216 = 65536

log∗(22
2
2
2

) = 5, 22
2
2
2

= 265536

The number of atoms in the observable universe is estimated to be about 1080 which
is MUCH SMALLER than 265536!!

In practice, above union-find algorithm is linear time.

13



An implementation of efficient union-find data structure.

Make-set(x)
parent[x] = x; rank[x] = 0;

Union(x, y)
Link(Find-set(x), Find-set(y));

Link(x, y)
if (rank[x] > rank[y])

parent[y] = x;
else if (rank[x] < rank[y])

parent[x] = y;
else if (x 6= y)

parent[y] = x; rank[x] = rank[x] + 1;

Find-set(x)
if x 6= parent[x]

parent[x] = Find-set(parent[x])
return(parent[x])

14


