
Lossless/Near-lossless
Compression of Still and

Moving Images

Part 2. Entropy coding

Xiaolin Wu
Polytechnic University

Brooklyn, NY

4/11/2006 2

Variable length codes (VLC)

Map more frequently occurring symbols to shorter
codewords

abracadabra
fixed length a - 000 b - 001 c - 010 d - 011 r - 100
variable length a - 0 b - 10 c - 110 d - 1110 r - 1111

For instantaneous and unique decodability we
need prefix condition, i.e. no codeword is prefix of
another

Non-prefix code 0 01 011 0111
Prefix code 0 10 110 111

4/11/2006 3

Optimality of prefix codes

Optimal data compression achievable by any
VLC can always be achieved by a prefix code
A prefix code can be represented by a labeled
binary tree as follows

An optimal prefix code is always represented by
a full binary tree

0 1

0 1

100 1

Prefix code
{0, 100, 101, 110, 111}

4/11/2006 4

•.

Huffman codes

Developed in 1952 by D.A. Huffman.
Let source alphabet be s1, s2,…,sN with
probability of occurrence p1, p2, …, pN

Step 1 Sort symbols in decreasing order or probability
Step 2 Merge two symbols with lowest probabilities,
say, sN-1 and sN. Replace (sN-1,sN) pair by HN-1 (the
probability is pN-1 + pN). Now new set of symbols has
N-1 members s1, s2, …., HN-1.
Step 3 Repeat Step 2 until all symbols merged.

4/11/2006 5

Huffman codes (contd.)

Process viewed as construction of a binary
tree. On completion, all symbols si will be leaf
nodes. Codeword for si obtained by traversing
tree from root to the leaf node corresponding to
si.

Average code length 2.2

4/11/2006 6

Properties of Huffman codes

Optimum code for a given data set requires two
passes.
Code construction complexity O(N logN).
Fast lookup table based implementation.
Requires at least one bit per symbol.
Average codeword length is within one bit of
zero-order entropy (Tighter bounds are known).
Susceptible to bit errors.

4/11/2006 7

Huffman codes - Blocking
symbols to improve efficiency

p(w) = 0.8, p(b) = 0.2 Entropy = 0.72
Bit-rate = 1.0 Efficiency = 72%
p(ww) = 0.64, p(wb)=p(bw)=0.16, p(bb) = 0.04
Bit-rate = 0.80 Efficiency = 90%
Blocking three symbols we get alphabet of size 8 and
average bit-rate 0.75 efficiency 95%
Problem - alphabet size and consequently Huffman
table size grows exponentially with number of symbols
blocked.

4/11/2006 8

Run-length codes

Encode runs of symbols rather than symbols
themselves

bbbaaadddddcfffffffaaaaaddddd
encoded as 3b3a4d1c7f5a5d
Especially suitable for binary alphabet

001111111000000011011111100000
encoded as 2,7,7,2,1,6,5
Run lengths can be further encoded using a VLC

4/11/2006 9

Arithmetic Coding

We have seen that alphabet extension i.e. blocking
symbols prior to coding can lead to coding efficiency
How about treating entire sequence as one symbol!
Not practical with Huffman coding
Arithmetic coding allows you to do precisely this
Basic idea - map data sequences to sub-intervals in
(0,1) with lengths equal to probability of corresponding
sequence.
To encode a given sequence transmit any number
within the sub-interval

4/11/2006 10

Arithmetic coding - mapping
sequences to sub-intervals

a b c

0.0 0.5 0.75 1.0

0 10 11

aa ab ac

0.0 0.25 0.375 0.5

00 010 011

aaa aab aac

0.0 0.125 0.375 0.25

000 0010 0011

4/11/2006 11

Final range is [0.0713336, 0.0713360). Transmit any number within range,
e.g. 0.0713348389… 16 bits. (Huffman coder needs 18bits. Fixed coder: 21bits).

Message is lluure?
(we use ? As message
terminator)

Arithmetic coding - encoding
example

Initial partition of (0,1)
interval

4/11/2006 12

Symbol probabilities Modified decoder table

Arithmetic coding - decoding
example

1. We find i = 6 such that cumprob6 <= (value-lo)/range <cumprob5
Thus first decoded symbol is l.

2. Update: hi = 0.25, lo = 0.05, range = 0.2
3. To decode next symbol we find i = 6 such that cumprob6 <= (value
- 0.05)/0.2 < cumprob5 thus next decoded symbol is l.
5. Update hi = 0.10, lo = 0.06, range = 0.04.
6. Repeat above steps till decoded symbol is ? Terminate decoding.

lo = 0, hi = 1, range = 1.

4/11/2006 13

Arithmetic coding -
implementation issues

Incremental output at encoder and decoder
From example discussed earlier, note that after
encoding u, subinterval range [0.07, 0.074). So, can
output 07.
After encoding next symbol, range is [0.071,
0.0714). So can output 1.

Precision - intervals can get arbitrarily small
Scaling - Scale interval every time you transmit
Actually scale interval every time it gets below half
original size - (this gives rise to some subtle problems
which can be taken care of)

4/11/2006 14

Golomb-Rice codes
Golomb code of parameter m for positive integer n is
given by coding n div m (quotient) in binary and
n mod m (remainder) in unary.
When m is power of 2, a simple realization also known
as Rice code.
Example: n = 22, k = 2 (m = 4).

n = 22 = ‘10110’. Shift right n by k (= 2) bits. We get ‘101’.
Output 5 (for ‘101’) ‘0’s followed by ‘1’. Then also output the
last k bits of N.
So, Golomb-Rice code for 22 is ‘00000110’.

Decoding is simple: count up to first 1. This gives us the
number 5. Then read the next k (=2) bits - ‘10’ , and
n = m x 5 + 2 (for ‘10’) = 20 + 2 = 22.

4/11/2006 15

Comparison

In practice, for images, arithmetic coding gives 10-20%
improvement in compression ratios over a simple
Huffman coder. The complexity of arithmetic coding is
however 50 - 300% higher.
Golomb-Rice codes if used efficiently have been
demonstrated to give performance within 5 to 10% of
arithmetic coding. They are potentially simpler than
Huffman codes.
Multiplication free binary arithmetic coders (Q, QM
coders) give performance within 2 to 4% of M-ary
arithmetic codes.

4/11/2006 16

Further Reading for Entropy
Coding

Text Compression - T.Bell, J. Cleary and I.
Witten. Prentice Hall. Good coverage of
arithmetic coding
The Data Compression Book - M. Nelson and J-L
Gailly. M&T Books. Includes source code.
Image and Video Compression Standards - V.
Bhaskaran and K. Konstantinides. Kluwer
International. Hardware Implementations.

