Lossless/Near-lossless Compression of Still and Moving Images

> Xiaolin Wu Polytechnic University Brooklyn, NY

Part 2. Entropy coding

Variable length codes (VLC)

- Map more frequently occurring symbols to shorter codewords
 - Abracadabra

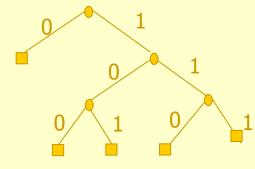
7 fixed length a - 000 b - 001 c - 010 d - 011 r - 100

✓ variable length a - 0 b - 10 c - 110 d - 1110 r - 1111

- For instantaneous and unique decodability we need prefix condition, i.e. no codeword is prefix of another
 - ↑Non-prefix code 0 01 011 0111
 ↑Prefix code 0 10 110 111

Optimality of prefix codes

 Optimal data compression achievable by any VLC can always be achieved by a prefix code
 A prefix code can be represented by a labeled binary tree as follows



Prefix code {0, 100, 101, 110, 111}

An optimal prefix code is always represented by a full binary tree

Huffman codes

Developed in 1952 by D.A. Huffman.

- →Let source alphabet be s₁, s₂,...,s_N with probability of occurrence p₁, p₂, ..., p_N
 - ↑ Step 1 Sort symbols in decreasing order or probability
 - ↑ Step 2 Merge two symbols with lowest probabilities, say, s_{N-1} and s_N . Replace (s_{N-1}, s_N) pair by H_{N-1} (the probability is $p_{N-1} + p_N$). Now new set of symbols has N-1 members $s_1, s_2, ..., H_{N-1}$.

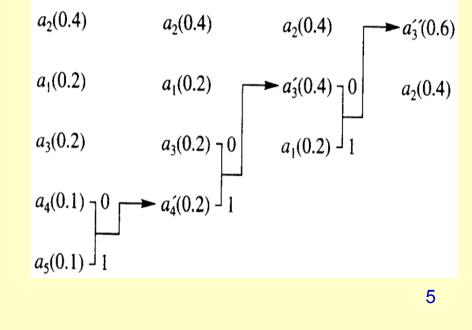
Step 3 Repeat Step 2 until all symbols merged.

Huffman codes (contd.)

 \rightarrow Process viewed as construction of a binary tree. On completion, all symbols s_i will be leaf nodes. Codeword for s_i obtained by traversing tree from root to the leaf node corresponding to

Letter	Probability	Codeword
<i>a</i> ₂	0.4	1
a_1	0.2	01
a_3	0.2	000
a_4	0.1	0010
<i>a</i> 5	0.1	0011

Average code length 2.2



4/11/2006

Properties of Huffman codes

- Optimum code for a given data set requires two passes.
- Code construction complexity O(N logN).
- Fast lookup table based implementation.
- → Requires at least one bit per symbol.
- Average codeword length is within one bit of zero-order entropy (Tighter bounds are known).
- Susceptible to bit errors.

Huffman codes - Blocking symbols to improve efficiency

- → p(w) = 0.8, p(b) = 0.2 Entropy = 0.72
 Bit-rate = 1.0 Efficiency = 72%
- → p(ww) = 0.64, p(wb)=p(bw)=0.16, p(bb) = 0.04
 Bit-rate = 0.80
 Efficiency = 90%
- Blocking three symbols we get alphabet of size 8 and average bit-rate 0.75 efficiency 95%
- Problem alphabet size and consequently Huffman table size grows exponentially with number of symbols blocked.

Run-length codes

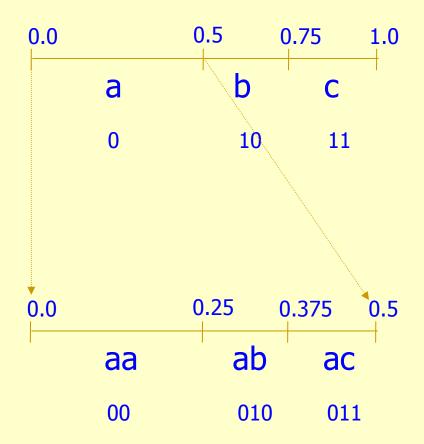
Encode runs of symbols rather than symbols themselves bbbaaaddddcffffffaaaaaddddd encoded as 3b3a4d1c7f5a5d \rightarrow Especially suitable for binary alphabet 00111111100000011011111100000 encoded as 2,7,7,2,1,6,5

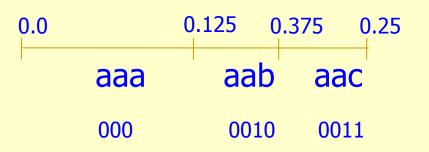
Run lengths can be further encoded using a VLC

Arithmetic Coding

- We have seen that alphabet extension i.e. blocking symbols prior to coding can lead to coding efficiency
- → How about treating entire sequence as one symbol!
- Not practical with Huffman coding
- Arithmetic coding allows you to do precisely this
- Basic idea map data sequences to sub-intervals in (0,1) with lengths equal to probability of corresponding sequence.
- To encode a given sequence transmit any number within the sub-interval

Arithmetic coding - mapping sequences to sub-intervals





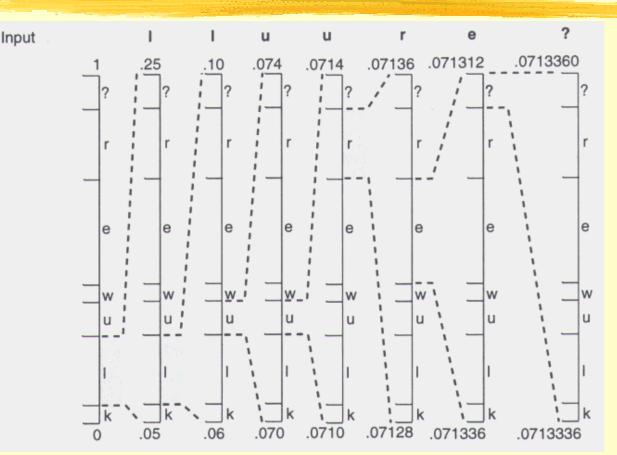
Arithmetic coding - encoding example

Message is lluure? (we use ? As message terminator)

s_i	p_i	Subinterval
k	0.05	[0.00,0.05)
1	0.20	[0.05,0.25)
u	0.10	[0.25,0.35)
w	0.05	[0.35,0.40)
e	0.30	[0.40,0.70)
r	0.20	[0.70,0.90)
?	0.10	[0.90,1.00)

Initial partition of (0,1)

interval



Final range is [0.0713336, 0.0713360). Transmit any number within range, e.g. 0.0713348389... **16 bits**. (Huffman coder needs 18bits. Fixed coder: 21bits). 4/11/2006

Arithmetic coding - decoding example

Symbol probabilities s_i p_i Subintervalk0.05[0.00,0.05)10.20[0.05,0.25)u0.10[0.25,0.35)

w0.05[0.35,0.40)e0.30[0.40,0.70)r0.20[0.70,0.90)?0.10[0.90,1.00)

Modified decoder table

s_i	i	$cumprob_i$
k	7	0.00
1	6	0.05
u	5	0.25
W	4	0.35
e	3	0.40
r	2	0.70
?	1	0.90
	0	1.00

lo = 0, hi = 1, range = 1.

- 1. We find i = 6 such that $cumprob_6 <= (value-lo)/range < cumprob_5 Thus first decoded symbol is l.$
- 2. Update: hi = 0.25, lo = 0.05, range = 0.2
- 3. To decode next symbol we find i = 6 such that $cumprob_6 <= (value)$
- 0.05)/0.2 < cumprob₅ thus next decoded symbol is I.
- 5. Update hi = 0.10, lo = 0.06, range = 0.04.
- 6. Repeat above steps till decoded symbol is ? Terminate decoding. 4/11/2006

Arithmetic coding implementation issues

Incremental output at encoder and decoder

- From example discussed earlier, note that after encoding u, subinterval range [0.07, 0.074). So, can output 07.
- After encoding next symbol, range is [0.071, 0.0714). So can output 1.
- Precision intervals can get arbitrarily small
 - Scaling Scale interval every time you transmit
 - Actually scale interval every time it gets below half original size - (this gives rise to some subtle problems which can be taken care of)

Golomb-Rice codes

- → Golomb code of parameter *m* for positive integer *n* is given by coding *n div m* (quotient) in binary and *n mod m* (remainder) in unary.
- When m is power of 2, a simple realization also known as Rice code.
- → Example: n = 22, k = 2 (m = 4).
 - ↑ n = 22 = 10110. Shift right *n* by *k* (= 2) bits. We get 101.
 - ↑ Output 5 (for '101') '0's followed by '1'. Then also output the last k bits of N.
 - ↑ So, Golomb-Rice code for 22 is `00000110'.

Decoding is simple: count up to first 1. This gives us the number 5. Then read the next k (=2) bits - '10', and n = m x 5 + 2 (for '10') = 20 + 2 = 22.

Comparison

- In practice, for images, arithmetic coding gives 10-20% improvement in compression ratios over a simple Huffman coder. The complexity of arithmetic coding is however 50 300% higher.
- → Golomb-Rice codes if used efficiently have been demonstrated to give performance within 5 to 10% of arithmetic coding. They are potentially simpler than Huffman codes.
- Multiplication free binary arithmetic coders (Q, QM coders) give performance within 2 to 4% of M-ary arithmetic codes.

Further Reading for Entropy Coding

- Text Compression T.Bell, J. Cleary and I. Witten. Prentice Hall. Good coverage of arithmetic coding
- The Data Compression Book M. Nelson and J-L Gailly. M&T Books. Includes source code.
- Image and Video Compression Standards V. Bhaskaran and K. Konstantinides. Kluwer International. Hardware Implementations.