Lossless/Near-lossless
Compression of Still and
Moving Images

Part 2. Entropy coding

Variable length codes (VLC)

=»Map more frequently occurring symbols to shorter
codewords
Mabracadabra
7 fixed length a-000b-001c-010d-011r-100
7 variable length a-0b-10c-110d-1110r- 1111

=» For instantaneous and unique decodability we
need prefix condition, i.e. no codeword is prefix of
another
M Non-prefix code 001011 0111
M Prefix code 010110 111

4/11/2006 2

Optimality of prefix codes

=» Optimal data compression achievable by any
VLC can always be achieved by a prefix code

=» A prefix code can be represented by a labeled
binary tree as follows

Prefix code
{0, 100, 101, 110, 111}

=» An optimal prefix code is always represented by
a full binary tree

4/11/2006 3

Huffman codes

=»Developed in 1952 by D.A. Huffman.

-» Let source alphabet be s;, s,,...,.5y With
probability of occurrence p4, Py, ---» PN
A Step 1 Sort symbols in decreasing order or probability

A Step 2 Merge two symbols with lowest probabilities,
say, Sy.; and sy. Replace (sy.4,Sy) pair by Hy.; (the
probability is py.; + py)- Now new set of symbols has
N-1 members s;, S,, Hy.1-

A Step 3 Repeat Step 2 until all symbols merged.

4/11/2006 4

Huffman codes (contd.)

> Process viewed as construction of a binary
tree. On completion, all symbols s; will be leaf
nodes. Codeword for s; obtained by traversing
tree from root to the leaf node corresponding to

C._
Letter Probability Codeword a(04) a,(0.4) a,(0.6)
a 04 1
a 0.2 01 a,(0.2) a,(0.2)
az 0.2 000
as 0.1 0010
as 0.1 0011 a;(0.2)40 a,(0.2)-1
a,(0.1) 1

Average code length 2.2
0.1) 1

4/11/2006 5

Properties of Huffman codes

=» Optimum code for a given data set requires two
passes.

=» Code construction complexity O(N logN).
=» Fast lookup table based implementation.
=»Requires at least one bit per symbol.

-» Average codeword length is within one bit of
zero-order entropy (Tighter bounds are known).

=» Susceptible to bit errors.

4/11/2006 6

Huffman codes - Blocking
symbols to improve efficiency

=2p(w) = 0.8, p(b) =0.2 Entropy = 0.72

Bit-rate = 1.0 Efficiency = 72%
= p(ww) = 0.64, p(wb)=p(bw)=0.16, p(bb) = 0.04
Bit-rate = 0.80 Efficiency = 90%

=» Blocking three symbols we get alphabet of size 8 and
average bit-rate 0.75 efficiency 95%

=» Problem - alphabet size and consequently Huffman
table size grows exponentially with humber of symbols
blocked.

4/11/2006

Run-length codes

=»Encode runs of symbols rather than symbols
themselves

bbbaaadddddcfffffffaaaaaddddd
encoded as 3b3a4d1c/f5a5d
=» Especially suitable for binary alphabet
001111111000000011011111100000
encoded as 2,7,7,2,1,6,5
=»Run lengths can be further encoded using a VLC

4/11/2006 8

Arithmetic Coding

=» We have seen that alphabet extension i.e. blocking
symbols prior to coding can lead to coding efficiency

=» How about treating entire sequence as one symbol!
=» Not practical with Huffman coding
=» Arithmetic coding allows you to do precisely this

=» Basic idea - map data sequences to sub-intervals in
(0,1) with lengths equal to probability of corresponding
sequence.

=» To encode a given sequence transmit any number
within the sub-interval

4/11/2006

Arithmetic coding - mapping
sequences to sub-intervals

0.0 0.5 0.75 1.0 0.0 0.125 0.375 0.25
a b C aaa aab aac
0 10 11 000 0010 0011
0.0 0.25 0.375 0.5
aa ab ac
00 010 011

4/11/2006 10

Arithmetic coding - encoding
example

Input | | u u r £ ?
Message is lluure? 125 10 Q74 0714 07136 -0?1?12___-“_?1%35_'3
(we use ? As message B I I (I R O (A o
terminator) ! ! : :

r ' r : r II r : r r : r 1‘ r

Si | pi Subinterval 4 4 :' - .'I 4 s, s 4 ¢ _
k | 0.05 | [0.00,0.05) ' ! : ' -I ‘11
1 | 0.20 | [0.05,0.25) e! e, le, e ler e e e
u | 0.10 | [0.25,0.35) ! ; ;' ! : \
w | 0.05 | [0.35,0.40) B L
e | 030 | [0.40,0.70) o 4 i s A S W s W W
r | 0.20 | [0.70,0.90) o i e S S MR R A
7 | 0.10 | [0.90,1.00) S TR U (A O O TR
Initial partition of (0,1) Tien e T e e e STk VT
interval 0 .05 .06 070 .0710 .07128 .071336 .0713336

Final range is [0.0713336, 0.0713360). Transmit any number within range,
e.g. 0.0713348389... 16 bits. (Huffman coder needs 18bits. Fixed coder: 21bits).

4/11/2006 11

Arithmetic coding - decoding
example

Symbol probabilities Modified decoder table
si | pi | Subinterval si | 1 | cumprob; |
k | 0.05 | [0.00,0.05) kK | 7 0.00
1 | 0.20 | [0.05,0.25) 1 16 0.05
u | 0.10 | [0.25,0.35) uls 0.25
w | 0.05 | [0.35,0.40) wl4| 035 lo =0, hi=1, range = 1.
e | 0.30 | [0.40,0.70) e | 3| 040
r | 0.20 | [0.70,0.90) r |2 0.70
? 10.10 { [0.90,1.00) 711 0.90
0 1.00

1. We find i = 6 such that cumprob, <= (value-lo)/range <cumprob.
Thus first decoded symbol is |.

2. Update: hi = 0.25, lo = 0.05, range = 0.2

3. To decode next symbol we find i = 6 such that cumprob, <= (value

- 0.05)/0.2 < cumprob. thus next decoded symbol is .

5. Update hi = 0.10, lo = 0.06, range = 0.04.

6. Repeat above steps till decoded symbol is ? Terminate decoding.
4/11/2006 12

Arithmetic coding -
implementation issues

- Incremental output at encoder and decoder

M From example discussed earlier, note that after
encoding u, subinterval range [0.07, 0.074). So, can
output 07.

A After encoding next symbol, range is [0.071,
0.0714). So can output 1.
=»Precision - intervals can get arbitrarily small
M Scaling - Scale interval every time you transmit

M Actually scale interval every time it gets below half
original size - (this gives rise to some subtle problems
which can be taken care of)

4/11/2006 13

Golomb-Rice codes

-» Golomb code of parameter m for positive integer 7 is
given by coding n div m (quotient) in binary and

n mod m (remainder) in unary.

= When mis power of 2, a simple realization also known
as Rice code.
> Example: n =22 k=2(m = 49).
AN n =22 ="101107 Shift right nby k (= 2) bits. We get 101~

A Output 5 (for '101) 05 followed by ‘77 Then also output the
last 4 bits of N.

A So, Golomb-Rice code for 22is *00000110.

=» Decoding is simple: count up to first 7. This gives us the
number 5. Then read the next & (=2) bits - 107, and
n=mx5s+2(for'10) =20+ 2 = 22.

4/11/2006 14

Comparison

=» In practice, for images, arithmetic coding gives 10-20%
improvement in compression ratios over a simple
Huffman coder. The complexity of arithmetic coding is
however 50 - 300% higher.

=» Golomb-Rice codes if used efficiently have been
demonstrated to give performance within 5 to 10% of
arithmetic coding. They are potentially simpler than
Huffman codes.

=» Multiplication free binary arithmetic coders (Q, QM
coders) give performance within 2 to 4% of M-ary
arithmetic codes.

4/11/2006 15

Further Reading for Entropy
Coding

=» Text Compression - T.Bell, J. Cleary and I.
Witten. Prentice Hall. Good coverage of
arithmetic coding

= The Data Compression Book - M. Nelson and J-L
Gailly. M&T Books. Includes source code.

-=»Image and Video Compression Standards - V.
Bhaskaran and K. Konstantinides. Kluwer
International. Hardware Implementations.

4/11/2006 16

