

Digital Image Fundamentals

- Elements of visual perception
- Image sensing and acquisition
- Sampling and quantization
- Relationship between pixels

University

Image formation in the eye

- Lens is flexible and its refraction is controlled by its thickness.
- Thickness is controlled by the tension of muscles.
- Focus on distance objects: lens is relatively flattened, refractive power is minimum.
- Focus on near objects: lens is thicker, refractive power is maximum
- Perception takes place by excitation of receptors which transform radiant energy into electrical impulses that are decoded by the brain.
McMaster
Univesity

The Human Visual System (HVS)

- A true measure of image processing quality is how well the image appears to the observer.
- The HVS is very complex and is not understood well in a complete sense. However, many of its properties can be identified and used to our advantage.

Brightness \& Intensity

- The dynamic range of light intensity to which eye can adapt is enormous.
- Brightness is a logarithmic function of light intensity.
- HVS cannot operate over the entire range simultaneously. It accomplishes large variations due to
 brightness adaptation.

Image sensing and acquisition

- If a sensor can be developed that is capable of detecting energy radiated by a band of the EM spectrum, we can image events in that band.
- Image is generated by energy of the illumination source reflected (natural scenes) or transmitted through objects (X-ray).
- A sensor detects the energy and converts it to electrical signals.
- Sensor should have a material that is responsive to the particular type of energy being detected.

A simple image model

- The image magnitude depends on:

1. The amount of source illumination incident on the scene, $\mathrm{i}(\mathrm{x}, \mathrm{y})$
2. The amount of illumination reflected by the objects in the scene, $\mathrm{r}(\mathrm{x}, \mathrm{y})$

$$
f(x, y)=i(x, y) \cdot r(x, y)
$$

(x, y): coordinates
Total absorption: $r(x, y)=0$
Total reflection: $\mathrm{r}(\mathrm{x}, \mathrm{y})=1$

University

Sampling \& Quantization

- Computer processing: image $f(x, y)$ must be digitized both spatially and in amplitude
- Digitization in spatial coordinates: sampling
- Digitization in amplitude: quantization
- Image: $[f(i, j)]_{\mathrm{NxM}}$
- What should be the values of N, M and the number of gray levels G?
- Normally: $\mathrm{N}=2^{\mathrm{n}}, \mathrm{M}=2^{\mathrm{m}}, \mathrm{G}=2^{\mathrm{k}}$

r

Sampling \& Quantization

- Number of bits required to store the image: N x M x k.
- The more the values of N,M and G, the better approximation of a continuous image.
- Storage and processing requirements increase as well.

McMaster
\square 13

Basic relationships between pixels

- A pixel p at coordinates (x, y) has four horizontal and vertical neighbors:

$$
N_{4}(P)=\{(x+1, y),(x-1, y),(x, y+1),(x, y-1)\}
$$

- The four diagonal neighbors of P

$$
N_{D}(P)=\{(x+1, y+1),(x-1, y-1),(x-1, y+1),(x+1, y-1)\}
$$

- The eight point neighbors of P

$$
N_{8}(P)=N_{4}(P) U N_{D}(P)
$$

Adjacency

- Two pixels are adjacent if they are neighbors and their gray levels are similar
- V: set of gray levels
- Similar gray level means that the gray levels of both pixels belong to set V
- Exp:
- Binary images: $\mathrm{V}=\{1\}$
- Gray level image: V=\{32,33, ...,63,64\}

McMaster
University

Adjacency

- 4-adjacency: Two pixels p and q with values from V are 4-adjacent if q is in $\mathrm{N}_{4}(\mathrm{p})$
- 8-adjacency: Two pixels p and q with values from V are 8-adjacent if q is in $\mathrm{N}_{8}(\mathrm{p})$
- 4-adjacency: broken paths
- 8-adjacency: multiple paths
$\left.\begin{array}{llllll}0 & 1-1 & 0 & 1-1 & 0 & 1-1 \\ 0 & 1 & 0 & 0 & 1 \mid / 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \backslash 1 & 0\end{array}\right) 0$
McMaster
University

26

Region

- R: a subset of pixels in an image.
- R is called a region if every pixel in R is connected to any other pixel in R.
- Boundary (border or contour) of a region: set of pixels in the region that have one or more neighbors that are not in R.

0	1	1	0	0		0	1	1
0	0							
0	1	1	1	0	1	1	1	
0	0	1	0	0	0	1	0	
0	0	0	0	1	0	0	0	

```
McMaster
```

University

Adjacency

- m-adjacency: Two pixels p and q with values from V are m-adjacent if:
q is in $N_{4}(p)$ or
q is in $N_{D}(p)$ and the intersection of $N_{4}(p)$ and $N_{4}(q)$ has no pixels with values in V .

Distance measures

- For pixels p,q, and z with coordinates (x, y), (s, t) and (v, w), respectively, D is a distance functions if:
$D(p, q) \geq 0$
$D(p, q)=D(q, p)$
$D(p, z) \leq D(p, q)+D(q, z)$
$D_{e}=\left[(x-s)^{2}+(y-t)^{2}\right]^{1 / 2}$

Distance measures

- D_{4} distance
$D_{4}(p, q)=|x-s|+|y-t|$
- D_{8} distance
$D_{8}(p, q)=\max \{|x-s|,|y-t|\}$
Pixel values $\quad D_{4}$ distances $\quad D_{8}$ distances

0	1	1	2	1	2	1	1	1
0	1	0	1	0	1	1	0	1
0	0	1	2	1	2	1	1	1

Distance measures

- D_{m} distance: length of the shortest m-path between two pixels
- $\mathrm{D}_{4}, \mathrm{D}_{8}$ distance between p and q are independent of the pixels along the path
- D_{m} depends on the value of the pixels between p and q
0 (1)
0 (1)
110
$\begin{array}{lll}0 & 1 & 0\end{array}$
(1) $0 \quad 0$
(1) $0 \quad 0$
$\mathrm{D}_{\mathrm{m}}=3$
$\mathrm{D}_{\mathrm{m}}=2$

University ${ }^{\text {最 }}$

Linear \& Non-linear operations

- H: an operator whose inputs and outputs are images
- H is linear if for any two images f and g and any two scalars a and b

$$
\mathrm{H}(\mathrm{af}+\mathrm{bg})=\mathrm{aH}(\mathrm{~F})+\mathrm{bH}(\mathrm{~g})
$$

Iniversity

