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Image Processing

Image Enhancement in
Frequency Domain

Fourier Transform: a review

» Basic ideas:

» A periodic function can be
represented by the sum of
sines/cosines functions of
different frequencies,
multiplied by a different
coefficient.

» Non-periodic functions can
also be represented as the
integral of sines/cosines
multiplied by weighing

function.

Image Enhancement

Original image Enhanced image

Enhancement: to process an image for more
suitable output for a specific application.
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Joseph Fourier
(1768-1830)

Fourier was obsessed
with the physics of
heat and developed
the Fourier transform
theory to model heat-
flow problems. e 1 s 8 i
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Image Enhancement

» Image enhancement techniques:
» Spatial domain methods
» Frequency domain methods

* Spatial (time) domain techniques are techniques that
operate directly on pixels.

* Frequency domain techniques are based on modifying
the Fourier transform of an image.

w .

Square
wave

Fourier transform
basis functions

Two terms:

Approximating a Three terms:
square wave as the ,
sum of sine waves.




Any function can be written as the
sum of an even and an odd function

A

function W E=[f0)+f(=x)]/2
E(-x) = E(X) x

An odd o

)
function /_v\x ox)=[f(x)- f(-x)]/2
"\/,\/ x

O(-x) =-O(x) U
An a@ilmry /w}
’”\“"// _ 0 =EX+0(x)
x
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Fourier Series

So if f(t) is a general function, neither even nor
odd, it can be written:

f(t)y = iz F,cos(mt) + iz F. sin(mt)
”m:O ”m:O

Even component Odd component

where the Fourier series is

E, = J. f(t)cos(mt)dt F = J‘ f(t) sin(mt) dt

\ »w .

Fourier Cosine Series

Because cos(mt) is an even function, we can write an
even function, f(t), as:

1 0
fy = — R mt
o = - mZ‘) 7 cos(mt)
where series F, is computed as

3

F, = I f (t) cos(mt) dt

-

Here we suppose f(t) is over the interval (—m,).

The Fourier Transform

Let F(m) incorporates both cosine and sine series coefficients,
with the sine series distinguished by making it the imaginary
component:

F(m=F, - jF, :j f (t)cos(mt)dt — j j f (t)sin(mt)dt

Let’s now allow f(t) range from —o to o0, we rewrite:

S{fO}=Fu)= T f (t) exp(— j2zut)dt

)

F(u) is called the Fourier Transform of f(t). We say that f(t)
lives in the “time domain,” and F(u) lives in the “frequency

domain.” u is called the frequency variable.
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Fourier Sine Series

Because sin(mt) is an odd function, we can write any
odd function, f(t), as:

o

f(t) = 71[2 F. sin(mt)

m=0

where the series F’ is computed as

Fo= J' f (t) sin(mt) dt
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The Inverse Fourier Transform

We go from f(t) to F(u) by

Fourier

S{tO}=FW = [fOepjomndt| Lo

—0

Given F(u), f(t) can be obtained by the inverse Fourier
transform

w Inverse
IHFW}= O = [FWexp(j2autydy Fourier
=z Transform

) W i




2-D Fourier Transform

Fourier transform for f(x,y) with two variables

S =Fuv =[" [ £ y)exp(-j2z(ux-+vy))dxdy

and the inverse Fourier transform

SUFWWI= ooy =] [ Fuv)exp(j2z(ux-+vy))dudy

Discrete Fourier Transform (DFT)

* The discrete Fourier transform pair that applies to
sampled functions is given by:

M-Il
F(u) :ﬁz f(X)exp(—j2aux/M)| u=0,1,2,... M-1
x=0

and

M-1
f () =) F(uexp(j2aux/M)| x=0,12,...M-1

u=0

¥ .

Discrete Fourier Transform (DFT)

* A continuous function f(x) is discretized as:

{F (%), T (X +AX), T (X, +24X),..., T (X, +(M =1)Ax)}

2-D Discrete Fourier Transform

* In 2-D case, the DFT pair is:

1 M-IN-1

F(u,v)= VN D> E(x y)exp(—j2z(ux/M +vy/N))
X=0 y=
and:
M-IN-1
fOGy) =D D F(u,v)exp(j2z(ux/M +vy/N))
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Discrete Fourier Transform (DFT)

Let x denote the discrete values (x=0,1,2,...,M-1),
ie.

f(x) = (X, +Xx4%)
then

{T (%)), T(X, +4x), T (X, +24X),..., T (X, +(M —1)Ax)}

{f(0), (D), f(2),..., T (M =1)}
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Polar Coordinate Representation of FT

* The Fourier transform of a real function is generally
complex and we use polar coordinates:
F(u,v)=R@u,v)+ j-I(u,v)
Polar coordinate
F(u,v) =[F (u,v)|exp( j@(u,V))
Magnitude:  |F(u,v)|=[R*(u,v)+17(u,v)]"?
I(u,v)
R(u,v)

Phase: #(u,v)=tan™' [




Fourier Transform: shift

* It is common to multiply input image by (-1)**Y prior to
computing the FT. This shift the center of the FT to (M/2,N/2).

I{f(xy)}=Fu,v)
S{F YD =Fu-M/2,v-N/2)

Edge Effect on FT

N N

Periodic signal
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Symmetry of FT
 For real image f(x.y), FT is conjugate symmetric:
F(u,v)=F"(-u,-v)

¢ The magnitude of FT is symmetric:

|[F(u,v)|=|F(-u,-v)|

Edge Effect
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Simple Cases

Magnitude (how much) & Phase (where)




FT

IFT

Frequency Domain
(log magnitude)
Detail

General
appearance
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IFT

IFT .

5 % 1 20 % 50 %

The central part of FT, i.e.
the low frequency

q components are responsible
for the general gray-level
appearance of an image.

The high frequency
components of FT are
responsible for the detail
information of an image.
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Frequency Domain Filtering

Frequency domain Gillesing operation

of e Lof e, Lof o L
| trngm | Hinv) | transform |
W Fluv) Hiw, v}Fiu.v) - =
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l\ processing ) | processing
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Input Enhanced
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FIGURE 4.5 Basic steps lor filtering in the Trequency doman,
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Frequency Domain Filtering

» Edges and sharp transitions (e.g., noise) in an
image contribute significantly to high-frequency
content of FT.

* Low frequency contents in the FT are responsible
to the general appearance of the image over
smooth areas.

* Blurring (smoothing) is achieved by attenuating
range of high frequency components of FT.

¥ .

Ideal low-pass filter (ILPF)

1 Du,v)<D,
Hu,v)=
0  D(u,v)>D,
D(u,v)=[(u—M /2)* +(v—=N/2)’]"
(M/2,N/2): center in frequency domain

D, is called the cutoff frequency.

¥ y

Convolution Theorem

_ Multiplication in
G(u,v)=F(u,v)eH(u,v) Frequrn)ancy Domain

g(xy)=h(xy)*f(x.y) Convolution in
— f(x,y) is the input image
— g(x,y) is the filtered
— h(x,y): impulse response

* Filtering in Frequency Domain with H(u,v) is
equivalent to filtering in Spatial Domain with f(x,y).
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Shape of ILPF

t

Frequency domain

\

\

Spatial domain / l"
P so) o=

Examples of Filters

Hiw) Hiw)
] Il

Frequency
domain

Gaussian lowpass filter ~ Gaussian highpass filter
i) Wi

Spatial ! 4
domain \
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Butterworth Lowpass Filters (BLPF)

* Smooth transfer function, 1
no sharp discontinuity, HUV)=———5=
no clear cutoff 1+ D(UV)}
frequency. D,

it of &t Bistterwarth bowpass filter tramsfer finction. (1) Filter display

soers of arders | through 4 ' 37

Gaussian Lowpass Filters (GLPF)

* Smooth transfer function,

smooth impulse _D*(uy)
res ingi H =g 2D%
ponse, no ringing (uv)=e

Butterworth Lowpass Filters (BLPF)

n=1 I n=2 \ n=s M n=20

H(U,V): 1 2n
1+ D(u,v)
D,
B 38
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Examples of Lowpass Filtering

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize & date using "00"
25 1900 rather than the yiEgr

€]

Historically, certain computer
programs were written using
only two digits rather than

four to define the applicable

vear. Accordingly, the

s software may
scognize & date uging “00*
as 1900 rather than the yESr

——fear
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Examples of Lowpass Filtering

Low-pass filter H(u,v)

Original image and its FT

.

Filtered image and its FT

High-pass Filters

FIGURE 4.23 Spulial rpre
ilers, sl

domnins highpeess £

(h) Butterworih. and (o) Coasing (regquency
alile
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Sharpening High-pass Filters
¢ Hyp(u,v)=1-H,(u,v)
1 D(u,v)>D,
. : H V)=
Ideal u,v) {0 D(UY)<D,
) 1
« Butterworth: |HU,V)['= ﬁ
1+ 0
D(u,v)
+ Gaussian: H(u,v) = |—g DwrD
{ :_-I._ .
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Ideal High-pass Filtering

ringing artifacts

00000

i

asaaadaad

el

oo @
N

22222888

ll =

FIGURE 424 Rowis oof id i i I $Alias w i,

48




Butterworth High-pass Filtering

|

(I

saaaaaaa

FIGURE 4.25 Rosulls of highpess lering the image in Fig 401 osiog a BHPF of osder 2 with 1, 15,
Ui 8, respetivels, These results ane much smoottier tin thise abtained with an (LS

-
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Laplacian in Frequency Domain

O T (xy) , O f(x, i
S e F U

H,(u,v) ==’ +v?)

ﬂ Frequency

JRPp 32?;;?:1 domain

Vi = Eve oy = Laplacian operator

-
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Gaussian High-pass Filtering

T

aaaaaaaad

FIGURE 4.26 Ro~ulis ool highpass filteing the image of Fie 4.0 a0 wsing a GHPF of order 2 with £, = 15
1, and 8 rospoatively, Compare with Figs 424 and 423

-
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Gaussian High-pass Filtering

Gaussian filter H(u,v)

Original image

. Filtered image and its FT
T ————
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Subtract Laplacian from the Original
Image to Enhance It

enhanced  Original Laplacian
image image output
Spatial " zﬂ
x,¥)=f(x,y)—V*f(X,
Spatel gy = Feey) -V (xY)
Frequency — +(u? +y2
o G(U,v) = F(U,v)+ (U +V)F (u,v)

new operator H,(u,v) =1+(u’+v?)=1-H,(u,v)
T

1ster Laplacian
L I ——
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FIGURE .78
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An image formation model

* We can view an image f(x,y) as a product of two
components:

FOGy)=i(x,y)rx,y)
0<i(X,y)< o
0<r(x,y)<l

* i(x,y): illumination. It is determined by the
illumination source.

e 1(x,y): reflectance (or transmissivity). It is
determined by the characteristics of imaged objects.
McMaster
v 5 1
58

Unsharp Masking, High-boost Filtering

* Unsharp masking: f,,(x,y)=f(x,y)-fi,(x,y)
* Hyp(u,v)=1-H, (u,v)

One more

+ High-boost filtering: —mmmmp Parameterto

adjust the

fin(X,y)=AS(x,y)-fi (x,y) ~ enhancement

* F (G Y)=(A-Dfxy ) Hip(x,y)
* Hyp(u,v)=(A-1)+H, (u,v)

McMaster
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Homomorphic Filtering

* In some images, the quality of the image has reduced
because of non-uniform illumination.

* Homomorphic filtering can be used to perform
illumination correction.

fOGy)=i(x,y)r(xy)

» The above equation cannot be used directly in order
to operate separately on the frequency components of
illumination and reflectance.

McMaster
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HGUREl_N
Same o Fig. 343,

Homomorphic Filtering
In: Z(x, y)=In f(x,y)=1Ini(x, y)+Inr(x,y)
DFT:  Z(u,v)= F,(u,v)+ F,(u,v)
Huv): S(u,v)=H(u,v)Z(u,v)
OFT: s(X,Y) =1 (X% y)+r(X,Y)
g% y) =" =iy (%, YR (%, y)

FIGURE 4.31
Homomorphic

fx.5) E> In DFT '”’ DFT E‘P > 8(e) filtering approach
for image

enhancement.

MCMaster
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Homomorphic Filtering

* By separating the illumination and reflectance
components, homomorphic filter can then
operate on them separately.

* [llumination component of an image generally

has slow variations, while the reflectance
component vary abruptly.

» By removing the low frequencies (highpass

filtering) the effects of illumination can be
removed .

\ »w .

Homomorphic Filtering: Example 2

Original image Filtered image

\ »w .

Homomorphic Filtering

Hiw ) FIGURE 4.32
Cross section of 4
circularly
svmmelric filter
funetion. (u, v}

" i« the distance
from the origin of
the ventered
transform,

Diu. v}

End of Lecture

Homomorphic Filtering: Example 1

s b
FIGURE 4.33

£ah Odriginal
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