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Image Processing
Image Enhancement in 

Freq enc DomainFrequency Domain

Image Enhancement
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Original image Enhanced image

Enhancement: to process an image for more 
suitable output for a specific application.

Image Enhancement

• Image enhancement techniques:
Spatial domain methods
Frequency domain methods
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• Spatial (time) domain techniques are techniques that 
operate directly on pixels.

• Frequency domain techniques are based on modifying 
the Fourier transform of an image.

Fourier Transform: a review

• Basic ideas: 
A periodic function can be 
represented by the sum of 
sines/cosines functions of 
different frequencies, 
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multiplied by a different 
coefficient.
Non-periodic functions can 
also be represented as the 
integral of sines/cosines 
multiplied by weighing 
function.

Joseph Fourier
(1768-1830)

Fourier was obsessed
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Fourier was obsessed 
with the physics of 
heat and developed 
the Fourier transform 
theory to model heat-
flow problems.

Fourier transform
basis functions
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Approximating a 
square wave as the 
sum of sine waves.
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Any function can be written as the
sum of an even and an odd function

( ) [ ( ) ( )] / 2E x f x f x≡ + −

E(-x) = E(x)
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( ) [ ( ) ( )] / 2

( ) ( ) ( )

O x f x f x

f x E x O x

≡ − −

⇓

= +

O(-x) = -O(x)

Fourier Cosine Series

Because cos(mt) is an even function, we can write an 
even function, f(t), as:

where series F is computed as

f( t) =
1
π

Fm cos(mt)
m =0

∞

∑
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where series Fm is computed as

Here we suppose f(t) is over the interval (–π,π).

( ) cos( )mF f t mt dt

π

π−

= ∫

Fourier Sine Series

Because sin(mt) is an odd function, we can write any 
odd function, f(t), as:

f (t) =
1
π

′ F m sin(mt)

∞

∑
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where the series F’m is computed as

m= 0

( ) sin( )mF f t mt dt
π

π−

′ = ∫

Fourier Series

0 0

1 1( ) cos( ) sin( )m m
m m

f t F mt F mt
π π

∞ ∞

′= +∑ ∑

So if f(t) is a general function, neither even nor 
odd, it can be written:
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0 0m mπ π= =

Fm = f (t) cos(mt) dt∫ ′ F m = f (t) sin(mt) dt∫

Even component Odd component

where the Fourier series is

The Fourier Transform

Let F(m) incorporates both cosine and sine series coefficients, 
with the sine series distinguished by making it the imaginary 
component:

Let’s now allow f(t) range from ∞ to ∞ we rewrite:

∫∫ ⋅−=−= dtmttfjdtmttfjFFmF mm )sin()()cos()()( '
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Let s now allow f(t) range from  –∞ to ∞, we rewrite:

F(u) is called the Fourier Transform of f(t). We say that f(t)
lives in the “time domain,” and F(u) lives in the “frequency 
domain.” u is called the frequency variable.

{ } ∫
∞

∞−

−==ℑ dtutjtfuFtf )2exp()()()( π

The Inverse Fourier Transform

{ } ∫
∞

∞−

−==ℑ dtutjtfuFtf )2exp()()()( π

We go from f(t) to F(u) by

Fourier 
Transform
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Given F(u), f(t) can be obtained by the inverse Fourier 
transform

Inverse 
Fourier 

Transform
{ } ∫

∞

∞−

− ==ℑ duutjuFtfuF )2exp()()()(1 π
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2-D Fourier Transform

Fourier transform for f(x,y) with two variables

∫ ∫
∞

∞−

∞

∞−
+−==ℑ dxdyvyuxjyxfvuFyxf ))(2exp(),(),()},({ π
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and the inverse Fourier transform

∫ ∫
∞

∞−

∞

∞−

− +==ℑ dudvvyuxjvuFyxfvuF ))(2exp(),(),()},({1 π

Discrete Fourier Transform (DFT)

• A continuous function f(x) is discretized as:

)})1((),...,2(),(),({ 0000 xMxfxxfxxfxf ΔΔΔ −+++
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Discrete Fourier Transform (DFT)

)()( 0 xxxfxf Δ+=

Let x denote the discrete values (x=0,1,2,…,M-1), 
i.e.

then
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)})1((),...,2(),(),({ 0000 xMxfxxfxxfxf ΔΔΔ −+++

)}1(),...,2(),1(),0({ −Mffff

then

Discrete Fourier Transform (DFT)

• The discrete Fourier transform pair that applies to 
sampled functions is given by:

∑
−

−=
1

)/2exp()(1)(
M

MuxjxfuF π u=0 1 2 M-1
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∑
=0

)/2exp()()(
x

Muxjxf
M

uF π u 0,1,2,…,M 1

∑
−

=

=
1

0
)/2exp()()(

M

u
MuxjuFxf π x=0,1,2,…,M-1

and

2-D Discrete Fourier Transform

• In 2-D case, the DFT pair is:

∑∑
−

=

−

=

+−=
1

0

1

0

))//(2exp(),(1),(
M

x

N

y

NvyMuxjyxf
MN

vuF π

0 1 2 1 d 0 1 2 1
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∑∑
−

=

−

=

+=
1

0

1

0

))//(2exp(),(),(
M

u

N

v

NvyMuxjvuFyxf π

u=0,1,2,…,M-1 and v=0,1,2,…,N-1

x=0,1,2,…,M-1 and y=0,1,2,…,N-1

and:

Polar Coordinate Representation of FT

• The  Fourier transform of a real function is generally 
complex and we use polar coordinates:

( , ) ( , ) ( , )F u v R u v j I u v= + ⋅
Polar coordinate
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2 2 1/ 2

1

( , ) [ ( , )

( , ) ( , ) exp( ( , )

( , )

)

]

( , )( , ) tan
( , )

F u v R u v I u v

I u

F u v F u v j u

vu v
R u v

vφ

φ −

= +

⎡
=

=

⎤
⎢ ⎥
⎣ ⎦

Magnitude:

Phase:

Polar coordinate
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Fourier Transform: shift

• It is common to multiply input image by (-1)x+y prior to 
computing the FT. This shift the center of the FT to (M/2,N/2).        

{ }( , ) ( , )f x y F u vℑ =

{ }( , )( 1) ( / 2, / 2)x yf x y F u M v N+ℑ − = − −
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Shift

Symmetry of FT

• For real image f(x,y), FT is conjugate symmetric:             

*( , ) ( , )F u v F u v= − −
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• The magnitude of FT is symmetric:                                    

( , ) ( , )F u v F u v= − −

Simple Cases
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Edge Effect on FT

Periodic signal
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Edge Effect
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Magnitude (how much) & Phase (where)

24



5

FT

25

IFT

IFT
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IFT

The central part of FT, i.e. 
the low frequency 
components are responsible 
for the general gray-level 
appearance of an image.
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The high frequency 
components of FT are 
responsible for the detail 
information of an image.

v

Image

DetailDetail

Frequency Domain 
(log magnitude)
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u

GeneralGeneral
appearanceappearance

10 %5 % 20 % 50 %
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Frequency Domain Filtering 

30
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• Edges and sharp transitions (e.g., noise) in an 
image contribute significantly to high-frequency 
content of FT.

• Low frequency contents in the FT are responsible 

Frequency Domain Filtering 

31

to the general appearance of the image over 
smooth areas. 

• Blurring (smoothing) is achieved by attenuating 
range of high frequency components of FT.

f(x y) is the input image

Convolution Theorem

G(u,v)=F(u,v)●H(u,v)

g(x,y)=h(x,y)*f(x,y)

Multiplication in 
Frequency Domain

Convolution in 
Time Domain
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– f(x,y) is the input image
– g(x,y) is the filtered
– h(x,y): impulse response

• Filtering in Frequency Domain with H(u,v) is 
equivalent to filtering in Spatial Domain with f(x,y). 

Frequency
domain

Examples of Filters
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Spatial
domain

Gaussian lowpass filter Gaussian highpass filter

Ideal low-pass filter (ILPF)

⎩
⎨
⎧

=
0
1

),( vuH 0),( DvuD ≤

0),( DvuD >
2 2 1/ 2( ) [( / 2) ( / 2) ]D u v u M v N= − + −
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( , ) [( / 2) ( / 2) ]D u v u M v N= − + −

D0 is called the cutoff frequency.

(M/2,N/2): center in frequency domain

Shape of ILPF
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Spatial domain

Frequency domain

ringing 
and 
blurringIdeal in frequency 

FT

36

g
domain means 
non-ideal in 
spatial domain, 
vice versa.
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Butterworth Lowpass Filters (BLPF)
• Smooth transfer function, 

no sharp discontinuity, 
no clear cutoff 
frequency. 

n

D
vuD

vuH 2
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37

2
1

Butterworth Lowpass Filters (BLPF)

1 2 5 20
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No serious 
ringing  
artifacts
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• Smooth transfer function, 
smooth impulse 
response, no ringing 0

2

2

2
),(

),( D
vuD

evuH
−

=

Gaussian Lowpass Filters (GLPF)

40

Frequency
domain

GLPF

41

Spatial
domain

Gaussian lowpass filter

No ringing  
artifacts

42

artifacts
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Examples of Lowpass Filtering

43

Examples of Lowpass Filtering

44

Original image and its FT Filtered image and its FT

Low-pass filter H(u,v)

Sharpening High-pass Filters
• Hhp(u,v)=1-Hlp(u,v)

• Ideal:

1

⎩
⎨
⎧

=
0
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),( vuH
0),( DvuD >

0),( DvuD ≤
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• Butterworth:

• Gaussian:
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High-pass Filters

47

Ideal High-pass Filtering

ringing artifacts

48
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Butterworth High-pass Filtering
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Gaussian High-pass Filtering
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Gaussian High-pass Filtering
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Original image Gaussian filter H(u,v)

Filtered image and its FT

Laplacian in Frequency Domain

)(),( 22
1 vuvuH +−=

),()(]),(),([ 22
2

2

2

2

vuFvu
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yxf
x

yxf +−=
∂

∂
+

∂
∂

ℑ
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)()(1

2

2

2

2
2

y
f

x
ff

∂
∂

+
∂
∂

=∇ Laplacian operator

Spatial 
domain

Frequency 
domain
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Subtract Laplacian from the Original 
Image to Enhance It

),(),(),( 2 yxfyxfyxg ∇−=Spatial 
domain

Original 
image

enhanced 
image

Laplacian 
output
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),()(),(),( 22 vuFvuvuFvuG ++=

new operator

domain

Frequency 
domain

)(1),( 22
2 vuvuH ++= ),(1 vuH1−=

Laplacian
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f f2∇

55

ff 2∇−

Unsharp Masking, High-boost Filtering

• Unsharp masking: fhp(x,y)=f(x,y)-flp(x,y)
• Hhp(u,v)=1-Hlp(u,v)

Hi h b t filt i
One more 
parameter to

56

• High-boost filtering: 
fhb(x,y)=Af(x,y)-flp(x,y)

• fhb(x,y)=(A-1)f(x,y)+fhp(x,y)
• Hhb(u,v)=(A-1)+Hhp(u,v)

parameter to 
adjust the 
enhancement
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An image formation model
• We can view an image f(x,y) as a product of two 

components:

( ) ( ) ( )

1)(0
),(0

,,,

<<
∞<<

⋅=

yxr
yxi

yxryxiyxf
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• i(x,y): illumination. It is determined by the 
illumination source.

• r(x,y): reflectance (or transmissivity). It is 
determined by the characteristics of imaged objects.

1),(0 << yxr

Homomorphic Filtering

• In some images, the quality of the image has reduced 
because of non-uniform illumination.

• Homomorphic filtering can be used to perform 
illumination correction.
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• The above equation cannot be used directly in order 
to operate separately on the frequency components of 
illumination and reflectance.

( ) ( ) ( )yxryxiyxf ,,, ⋅=

( ) ( ) ( )vuFvuFvuZ ri ,,, +=

( ) ( ) ( ) ( )yxryxiyxfyxz ,ln,ln,ln, +==

)()()( '' yxryxiyxs +=

Homomorphic Filtering

( )vuZvuHvuS ,),(),( =

ln :

DFT :

H(u,v) :

(DFT)-1 :

60

),(),(),(
),(),(),(

00
),( yxryxieyxg

yxryxiyxs
yxs ==

+(DFT) :

exp :
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• By separating the illumination and reflectance 
components, homomorphic filter can then 
operate on them separately.

• Illumination component of an image generally 
has slow variations while the reflectance

Homomorphic Filtering
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has slow variations, while the reflectance 
component vary abruptly. 

• By removing the low frequencies (highpass 
filtering) the effects of illumination can be 
removed .

Homomorphic Filtering
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Homomorphic Filtering: Example 1
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Homomorphic Filtering: Example 2

64

Original image Filtered image

End of Lecture

65


