Chapter 4: Unconstrained Optimization

e Unconstrained optimization problem min, F'(x) or max, F'(x)

e Constrained optimization problem

min F'(z) or max F(x)

subjectto g(x) =0
and/or h(x) < 0Oor h(x) >0

A
/

Example: minimize the outer area of
a cylinder subject to a fixed volume.
Objective function

F(z) =2rr* + 2nrh, o = UL}

Constraint: 27rr2h =V




Outline:

e Part [: one-dimensional unconstrained optimization

— Analytical method
— Newton’s method

— Golden-section search method
e Part II: multidimensional unconstrained optimization

— Analytical method
— Gradient method — steepest ascent (descent) method

— Newton’s method



PART I: One-Dimensional Unconstrained Optimization Techniques

1 Analytical approach (1-D)

min, F'(x) or max, F(x)
o Let F'(z) =0 and find z = z*
o If F'(z*) > 0, F(z*) = min, F(x), r* is a local minimum of F(x);
o If F'(2%) < 0, F(z*) = max, F(x), z* is a local maximum of F(x);
o If FH(CE*>
Example 1: F(z) = 22, F'(z) = 22 = 0, 2* = 0. F' (z*) = 2 > 0. Therefore,
F(0) = min, F(x)
Example 2: F(z) = 2%, F'(z) = 322 =0, z* = 0. F' (2*) = 0. * is not a local
minimum nor a local maximum.
Example 3: F(z) = 2% F (z) =42 =0, 2* = 0. F (z*) = 0.
In example 2, F'(z) > 0 when 2 < * and F'(z) > 0 when z > z*.

In example 3, z* is a local minimum of F(z). F'(z) < 0 when z < z* and
F'(z) > 0 when z > z*.

= 0, z* is a critical point of F'(x)
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Figure 1: Example of constrained optimization problem

2 Newton’s Method

min, F'(x) or max, F(z)
Use x;. to denote the current solution.

2

F(zp+p) = F(zg) +pF (zx) + %F”m) +..
2

Flay) + pF (zp) + %F”(xk)

Q



F(z*) = min F(z) ~ min F'(z), + p)
x p
/ p2 "
min F(:Uk) + pkF (CEk> + EF (xk)
p

Q

Let IF
a;aj) = F'(x}) + pF (z1) = 0
we have /
F L
pP=— //< )
F ()
Newton’s iteration /
B B F (:Ck>
x/{?—f‘l - .flfk +p _ ka _ F//(xk)
Example: find the maximum value of f(x) = 2sinz — ff—; with an initial guess
of oy — 2.0.
Solution:
/ 237 xr

f(x) :260833—1—0 :2(308:1:—3



2 1
f (r) = —2sinx — -

2cos Ty — &
Li+1l = Lj — : 1
—2sinx; — ¢

o = 25, Tl — 0995, X9 — 1.4609.

Comments:

e Same as N.-R. method for solving F'(z) = 0.

e Quadratic convergence, |71 — 2| < B|zy — 2*|?
e May diverge

e Requires both first and second derivatives

e Solution can be either local minimum or maximum



3 Golden-section search for optimization in 1-D

max, F'(x) (min, F'(x) is equivalent to max, —F(x))
Assume: only 1 peak value (z*) in (z;, ;)
Steps:

1. Select x; < z,

2. Select 2 intermediate values, 7 and x, so that x1 = z; + d, x» = z, — d, and
xr1 > To.

3. Evaluate F'(x1) and F'(x2) and update the search range
—If F(z1) < F(x3), then x* < x7. Update z; = x; and x,, = .
—If F(x1) > F(x2), then x* > 4. Update z; = x5 and z,, = x,.
—If F(x1) = F(x3), then o < x* < x;. Update x; = 5 and x,, = .

4. Estimate
v* = x1if F(z1) > F(x5), and
¥ = x9if F(1) < F(x9)



F(xD)<F(x2)

F(x1)>F(x2)
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Figure 2: Golden search: updating search range

L Calculate ea. If ea < Ethreshold, end.

Lnew — Lold

€, = x 100%

X new

(new Xu)



The choice of d

e Any values can be used as long as x; > x».

e If d is selected appropriately, the number of function evaluations can be min-

1mized.
xl xu
First | | | |
: : | | | |
iteration _ € .
- 61 > <— €2 —
Second | | |

.—b—

iteration ', _ ¢,

Figure 3: Golden search: the choice of d

d() = ll, dl = 12 = l() — d() = l() — ll. Therefore, l() = ll + 12.

h _h lh _h
do—dl.Then Tt

2
12 = lyly = (I + I5)l>. Then 1 = (;_3) + k.

l
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Deﬁnefi“:cll—g:cll—ll:%. Thenfrz—H"—1:O,and7“:@%0.618

d=r(x, —x;) ~ 0.618(x, — ;) is referred to as the golden value.
Relative error

Lnew — Lold < 100%

€q —

xnew
Consider F'(z5) < F(x1). Thatis, x; = x5, and x, = x,.
For case (a), x* > x9 and =* closer to x5.

Ar < 1 —x9=(x;+d) — (x, — d)

= (x; — xy) + 2d = (2] — xy) + 2r(xy — 77)
= (2r — 1)(z, — z;) =~ 0.236(x, — x7)
For case (b), £ > x5 and z* closer to z,,.
Ar < x,— 21
= xy— (rj+d)=xy—x;—d
= (xy —x) —7(xy —27) = (1 — 1) (T8 — T7Y)
0.382(x,, — ;)

Q

Therefore, the maximum absolute error is (1 — r)(x, — x;) ~ 0.382(z, — ;).
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Example: Find the maximum of f(x) = 2sinz — §; _ with z; = 0 and z,, = 4 as
the starting search range.

Solution:

Iteration 1: z; = 0, z, = 4, d = \/_2 Ly — 2)) = 2472, 2 = 21+ d = 2.472,
To =1, —d=1.528. f ( 1) =0.63, f(z )—1765

Since f(x9) > f(x1), 2* = x9 = 1.528, ; = x; = 0 and x, = x1 = 2.472.

Iteration 2: z; = 0, 2, = 2.472, d = Y21z, — 2)) = 1.528, 21 = @1+ d = 1.528,
) =

2
vy = 2y = d = 0944 f(m1) = 1.765, f(z2) = 1.531.

Since f(x1) > f(x), 2* =21 = 1.528, ; = x5 = 0.944 and x,, = z, = 2.472.
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Multidimensional Unconstrained Optimization

4 Analytical Method

e Definitions:
- 1If f(x,y) < f(a,b) forall (x,y) near (a,b), f(a,b) is a local maximum;
—1If f(z,y) > f(a,b) for all (x,y) near (a,b), f(a,b) is a local minimum.

e If f(x,y) has alocal maximum or minimum at (a, b), and the first order partial
derivatives of f(x,y) exist at (a, b), then

of of

—lap) =0, and ——|(, 0
PRGOS an Ay b) —

o [f of of
~ | = 0 and 2=y = 0,
Oz 'Y an oy b)

then (a, b) is a critical point or stationary point of f(z,y).

o [f of of
—l(ap) = 0and | 0
EYRICU an Ay b) —
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and the second order partial derivatives of f(x,y) are continuous, then

— When |H| > Oandaz—f| ap) < 0, f(a,b)is alocal maximum of f(x,y).

— When |H| > 0 and | ap) > 0, f(a,b) is a local minimum of f(x,y).
— When |H| <0, f (a, b) is a saddle point.

0%f  O2f
H=|% g%"fy

Hessian of f(z,y):

dydx  Oy?

a2f 0 f 0%f  O%f

O*f _ 0°f
> Jxdy  Oyox®

e When 2f 1S continuous
0xdy

oWhen\H|>0,§2£ af>0

Example (saddle point): f(z,y) = 2° — y°.

of _

(9x = 2x, oy = —2y.

Letg—iz , then ™ = 0. Letg—f: , then y* = 0.
y

13



Therefore, (0, O) is a critical point.

02 a

82 d
@xg; x( 2y> O’@yg; <21ﬂ =0
H| =20 20 2L 0L 4 <

Ox? 8y Oxdy Oydx
Therefore, (z*, ") = (0, 0) is a saddle maximum.

Example: f(z,vy) = 2xy + 22 — 2° — 2y, find the optimum of f(z,y).

Solution:
L=2y+2-2, 5 =24y
Let & =0, —2:U+2y— —9.
Letaf—O 20 — 4y = 0.
Then r*=2and y* =1, 1i.e., (2,1) is a critical point.
ﬂ:%(2y+2—2x) = —2
9
B
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Figure 4: Saddle point
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62
i = 22y +2— 2z) =2

0%f 2 02 02
’H| - (9:1:]; . (‘9yj2f B 8xﬁfy . 3yéfx — <_2> X <_4) —22=4>0
0 f

da?

< 0. (z*,y*) = (2,1) is a local maximum.

5 Steepest Ascent (Descent) Method

Idea: starting from an initial point, find the function maximum (minimum) along
the steepest direction so that shortest searching time is required.

Steepest direction: directional derivative 1s maximum in that direction — gradi-
ent direction.

Directional derivative
df of af of

th(x,y):%-cosﬁJra—y-smH:<[% ﬁ—y] - [cos @ sind])

(-): inner product
Gradient
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When [% g—g]/ is in the same direction as [cos @ sin ], the directional derivative
is maximized. This direction is called gradient of f(z,v).

The gradient of a 2-D function is represented as V f (z, y) = of z+gf ; , Or [af af]

or 0Oy
' ion i V) — | 9f Of of
The gradient of an n-D function is represented as V f (X ) = Tor Tos - a_a:n] ]
where X = [z1 2o ... xn],
Example: f(z,y) = xy>. Use the gradient to evaluate the path of steepest ascent
at (2,2).
Solution:
9 9
f = q°, a]yt = 2xYy

%|(2,2)=2 24,%!22 —92%x2x2=28

Gradient: V f(x,y) = f’L + 9 ] 47 + 8]

0 = tan‘% = 1.107, or 63. 40
cos = ﬁ, sin = \/428?.

Directional derivative at (2,2): % - cos 6 + g—i -sinf = 4cosf + 8sinf = 8.944
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If ¢ =+ 6, for example, 0 = 0.5325, then

a !/ a / / /
D, fl22) = —f - cos 6 +—f -sinf =4cosf +8sinf = 7.608 < 8.944
ox oy

Steepest ascent method

Ideally:

e Start from (z, y9). Evaluate gradient at (g, yo).
e Walk for a tiny distance along the gradient direction till (1, 7).

e Reevaluate gradient at (x1, ;) and repeat the process.
Pros: always keep steepest direction and walk shortest distance
Cons: not practical due to continuous reevaluation of the gradient.
Practically:

e Start from (xg, o).

e Evaluate gradient (h) at (g, 3o).

18



e Evaluate f(z,y) in direction h.
e Find the maximum function value in this direction at (x1, ).

e Repeat the process until (.1, ;1) is close enough to (x;, ;).

Find )@-H from )Z'Z-

For a 2-D function, evaluate f(x,y) in direction h:

of of
g(a) = flx; + a—x|(:1:i,yi) C QLY T a_y‘(a:i,yz-) - )

where « 1s the coordinate in h-axis.
For an n-D function f(X),

gla) = f(X+ V|5, a)

Let ¢ (o) = 0 and find the solution o = o™,

0 * 0
Update 7,1 = ; + ({9_];‘(1’@':%) T, Ykl = Yi ot 0_5’(%,%) e
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Figure 5: Illustration of steepest ascent
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Figure 6: Relationship between an arbitrary direction h and x and y coordinates
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Example: f(z,y) = 2xy + 2z — 2% — 29°, (x0,v0) = (=1, 1).

First 1teration:

o= —1,yy = 1.

o7 —y% 2—2 =69 =21 — 4 = —6
ax|(—1,1) = 2Y + 33\(—1,1) = 0, 3y|(—1,1) — 2 y\(—1,1) =
Vf=060—67

of of
g<Oé) — f(ﬂfo + %l(mo,yg) QL Yo =+ —|(£E‘0,y()) ) Oé)

dy
= f(—1+6a,1 — 6a)
= 2x (=1 +6a)-(1—6a)+2(—1+6a)— (—1+6a)* —2(1 — 6a)’
= —180a” + T2a — 7

g (o) = =360a+ 72 =0, o = 0.2.

Second iteration:
1 = 20+ 5| @ = —146%0.2 = 0.2, 51 = Yo+ G|z gy 0" = 1—6x0.2 =

—0.2

0| 02—02) = 2y +2 — 22 (02 —02) = 2 X (—0.2) +2—2x 0.2 = 1.2,

O |02-02) = 22 — 4yl00,02) = 2 X 0.2 — 4 X (=0.2) = 1.2

22



Vi=12%+12j

of of
g<Oé> — f<x1+%|(x1,y1) @ y1+ a |:L‘1y1 '&>

= f(0.2+ 1.2a, —0.2 + 1.2ax)

= 2x (0.2+1.2a) - (0.2 4 1.2a0) + 2(0.2 + 1.2x)
—(0.24+1.20)* — 2(—0.2 + 1.2a0)?

= —1.440% 4+ 2.88a + 0.2

g(a)=—288a+288=0,a" = 1.

Third iteration:

T2 = T1+ g_:J;‘(ﬂ?l?yl) o =02+12x1 =141y =y + g_g;‘(xbyl) X
—024+12x1=1

(2%, ") = (2,1)

23



6 Newton’s Method

Extend the Newton’s method for 1-D case to multidimensional case.
Given f ()Z ), approximate f ()Z ) by a second order Taylor series at X =X;:

— — /!, = — — 1 — — — —
f(X) = f(X;) + V(X)X = X;) + §<X — X;) Hi(X — X;)
where H, is the Hessian matrix
[ 92f 92 f 92f |
o2 0r10xe " 0x10xy
a]? o 0%f 02 f
H = 0ro0xq 8x% " Oxolxy,
0% f 0% f 2°f
i 0xpdry Orndry " Ox2 i
At the maximum (or minimum) point, %ng) = (O forall j = 1,2,...,n, or

J

Vf = 0. Then ~ L
VX)) + Hi(X —X;)=0
If H; 1s non-singular, L .
X =X,-H'Vf(X))

24



Iteration: X; .1 = X; — HZ._1Vf()Z'Z-)

Example: f(X) = 0.522 + 2.522
> T
VI(X) = [ : ]

533'2

0%f  O%f

_ | 022 0x0 _ 10
H[fﬂf Wy][m]
dydx  Oy?

o [1) e [1] |
Comments: Newton’s method

e Converges quadratically near the optimum
e Sensitive to initial point
e Requires matrix inversion

e Requires first and second order derivatives
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