ENG4BF3
 Medical Image Processing

 Image Registration

 Image Registration}

McMaster
University

What is image registration?

- Image Registration is the process of estimating an optimal transformation between two images.
- Sometimes also known as "Spatial Normalization".
- Applications in medical imaging
- Matching PET (metabolic) to MR (anatomical) Images
- Atlas-based segmentation/brain stripping
- fMRI Specific
$>$ Motion Correction
$>$ Correcting for Geometric Distortion in EPI
$>$ Alignment of images obtained at different times or with different imaging parameters
McMaster Formation of Composite Functional Maps

A schematic diagram of multi-modality MR-PET image analysis using computerized atlases.

Image Registration Through Transform

- Image registration provides transformation of a source image space to the target image space.
- The target image may be of different modalities from the source one.

Multi-modality brain image registration

- External Markers and Stereotactic Frames Based Landmark Registration.
- Rigid-Body Transformation Based Global Registration.
- Image Feature Based Registration.
- Boundary and Surface Matching Based Registration
- Image Landmarks and Features Based Registration

Rigid-Body Transformation

Rotation Translation

Rigid-Body Transformation

(a) Translation along x -axis by p

$$
\begin{aligned}
& x^{\prime}=x+p \\
& y^{\prime}=y \\
& z^{\prime}=z
\end{aligned}
$$

(c) Translation along z -axis by r

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y \\
& z^{\prime}=z+r
\end{aligned}
$$

(b) Translation along y-axis by q

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y+q \\
& z^{\prime}=z
\end{aligned}
$$

Rigid-Body Transformation

(a) Rotation about x -axis by θ

$$
\begin{aligned}
x^{\prime} & =x+p \\
y^{\prime} & =y \cos \theta+z \sin \theta \\
z^{\prime} & =-y \sin \theta+z \cos \theta
\end{aligned}
$$

(c) Rotation about z -axis by φ

$$
\begin{aligned}
& x^{\prime}=x \cos \varphi+y \sin \varphi \\
& y^{\prime}=-x \sin \varphi+y \cos \varphi \\
& z^{\prime}=z
\end{aligned}
$$

(b) Rotation about y-axis by ω
$x^{\prime}=x \cos \omega-z \sin \omega$
$y=y$
$z^{\prime}=x \sin \omega+z \cos \omega$

Rigid-Body Transformation

$$
\boldsymbol{x}^{\prime}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}
$$

$\boldsymbol{R}=R_{\theta} R_{\omega} R_{\varphi}=$
$\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \omega & 0 & -\sin \omega \\ 0 & 1 & 0 \\ \sin \omega & 0 & \cos \omega\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \varphi & \sin \varphi \\ 0 & -\sin \varphi & \cos \varphi\end{array}\right]$

Rigid-Body Transformation

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t} \\
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\boldsymbol{0} & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x} \\
1
\end{array}\right]}
\end{gathered}
$$

Rigid-Body Transformation: Affine Transform

Affine transform: translation + rotation + scaling
Scaling: $\quad x^{\prime}=a x$

$$
\begin{aligned}
& y^{\prime}=b y \\
& z^{\prime}=c z
\end{aligned}
$$

a, b and c are scaling parameters in the three directions.
Affine transform can be expressed as

$$
\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
1
\end{array}\right]=\boldsymbol{A}\left[\begin{array}{l}
\boldsymbol{x} \\
1
\end{array}\right]
$$

Rigid-Body Transformation: Affine Transform

$$
\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
1
\end{array}\right]=\boldsymbol{A}\left[\begin{array}{l}
\boldsymbol{x} \\
1
\end{array}\right]
$$

A : The affine transform matrix that integrates translation, rotation and scaling effects.

$$
\boldsymbol{A}=\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t} \\
\boldsymbol{0} & 1
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{S} & 0 \\
\boldsymbol{0} & 1
\end{array}\right] \text { where } \boldsymbol{S}=\left[\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right]
$$

Rigid-Body Transformation: Affine Transform

The overall mapping can be expressed as

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & p \\
0 & 1 & 0 & q \\
0 & 0 & 1 & r \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \omega & 0 & -\sin \omega & 0 \\
0 & 1 & 0 & 0 \\
\sin \omega & 0 & \cos \omega & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \varphi & \sin \varphi & 0 \\
0 & -\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]}
\end{aligned}
$$

Rigid-Body Transformation: Principal Axes Registration

Principal axes registration (PAR) is used for global matching of binary volumes from CT, MR or PET images.

$$
\begin{gathered}
B(x, y, z)= \begin{cases}1 & (x, y, z) \in \text { object } \\
0 & (x, y, z) \notin \text { object }\end{cases} \\
\left(x_{g}, y_{g}, z_{g}\right)^{T} \Longrightarrow \text { centroid of } B(x, y, z) \\
x_{g}=\frac{\sum_{x, y, z} x B(x, y, z)}{\sum_{x, y, z} B(x, y, z)} y_{g}=\frac{\sum_{x, y, z} y B(x, y, z)}{\sum_{x, y, y} B(x, y, z)} z_{g}=\frac{\sum_{x, y, z} z B(x, y, z)}{\sum_{x, y, z} B(x, y, z)}
\end{gathered}
$$

Rigid-Body Transformation: Principal Axes Registration

The principal axes of $B(x, y, z)$ are the eigenvector of inertia matrix I :

$$
\begin{gathered}
I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right] \\
I_{x x}=\sum_{x, y, z}\left[\left(y-y_{g}\right)^{2}+\left(z-z_{g}\right)^{2}\right] B(x, y, z) \\
I_{y y}=\sum_{x, y, z}\left[\left(x-x_{g}\right)^{2}+\left(z-z_{g}\right)^{2}\right] B(x, y, z) \\
I_{z z}=\sum_{x, y, z}\left[\left(x-x_{g}\right)^{2}+\left(y-y_{g}\right)^{2}\right] B(x, y, z) \\
I_{x y}=I_{y x}=\sum_{x, y, z}\left[\left(x-x_{g}\right)\left(y-y_{g}\right)\right] B(x, y, z) \\
I_{x z}=I_{z x}=\sum_{x, y, z}\left[\left(x-x_{g}\right)\left(z-z_{g}\right)\right] B(x, y, z) \\
I_{y z}=I_{z y}=\sum_{x, y, z}\left[\left(y-y_{g}\right)\left(z-z_{g}\right)\right] B(x, y, z)
\end{gathered}
$$

Rigid-Body Transformation: Principal Axes Registration
\square The inertia matrix I is diagonal when computed with respect to the principal axes.
\square The centroid and principal axes can describe the orientation of a volume.

The principal axes registration can resolve six degrees of freedom of an object (three rotation and three translation).
\square It can compare the orientations of two binary volumes through rotation, translation and scaling.

Rigid-Body Transformation: Principal Axes Registration

Normalize the principal axes (the eigenvectors of I) and define:

$$
E=\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]
$$

The rotation matrix is

$$
\begin{aligned}
& \boldsymbol{R}=R_{\theta} R_{\omega} R_{\varphi}= \\
& {\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \omega & 0 & -\sin \omega \\
0 & 1 & 0 \\
\sin \omega & 0 & \cos \omega
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi & \sin \varphi \\
0 & -\sin \varphi & \cos \varphi
\end{array}\right]}
\end{aligned}
$$

Rigid-Body Transformation: Principal Axes Registration
Let

$$
E=\boldsymbol{R}
$$

We can resolve the rotation angles as

$$
\begin{aligned}
& \omega=\arcsin \left(e_{31}\right) \\
& \theta=\arcsin \left(-e_{21} / \cos \omega\right) \\
& \varphi=\arcsin \left(-e_{32} / \cos \omega\right)
\end{aligned}
$$

Rigid-Body Transformation: Principal Axes Registration

The PAR algorithm to register V1 and V2:
>1. Compute the centroid of V1 and translate it to the origin.
>2. Compute the principal axes (by using $\boldsymbol{E}=\boldsymbol{R}$) of V1 and rotate V 1 to coincide with the x, y and z axes.
>3. Compute the principal axes of V2 and rotate the x, y and z axes to coincide with it.
>4. Translate the origin to the centroid of V2.
>5. Scaling V 2 to match V 1 by using factor $F_{s}=\sqrt[3]{V 1 / V 2}$.

Rigid-Body Transformation: Principal Axes Registration

Rotated views of the 3-D brain ventricle model in the left image.

Iterative Principal Axes Registration (IPAR)

Advantages over PAR: IPAR can be used with partial volumes.

Assumption made in IPAR: the field of view (FOV) of a functional image (such as PET)) is less than the full brain volume while the other volume (such as MR image) covers the entire brain.

Algorithm: refer to pages $259 \sim 264$ of the textbook.

Iterative Principal Axes Registration (IPAR)

Sequential slices of MR (middle rows) and PET (bottom rows) and the registered MR-PET brain images (top row) using the IPAR method.

Landmarks and Features Based Registration

> With the corresponding landmarks/features identified in the source and target images, a transformation can be computed to register the images.
$>$ Non-rigid transformations have been used in landmarks/features based registration by exploiting the relationship of corresponding points/features in source and target images.
$>$ Two point-based algorithms will be introduced.

Similarity Transformation

X : source image
Y: target image
x : landmark points in X
y : landmark points in Y
$T(x)$: non-rigid transformation

$$
\boldsymbol{x}^{\prime}=T(\boldsymbol{x})=s \cdot \boldsymbol{r} \cdot \boldsymbol{x}+\boldsymbol{t}
$$

Similarity Transformation

The registration error:

$$
E(\boldsymbol{x})=T(\boldsymbol{x})-\boldsymbol{y}=s \boldsymbol{r} \boldsymbol{x}+\boldsymbol{t}-\boldsymbol{y}
$$

The optimal transform is to find s, \boldsymbol{r} and \boldsymbol{t} to minimize:

$$
\sum_{i=1}^{N} w_{i}^{2}\left|s \boldsymbol{r} \boldsymbol{x}_{i}+\boldsymbol{t}-\boldsymbol{y}_{i}\right|^{2}
$$

w_{i} : the weighting factor for landmark \boldsymbol{x}_{i}
N : the number of landmark points

Similarity Transformation: Algorithm

1. Set $s=1$.
2. Find \boldsymbol{r} through the following steps:

2a) Compute the weighted centroids of \boldsymbol{x} and \boldsymbol{y}.

$$
\overline{\boldsymbol{x}}=\frac{\sum_{i=1}^{N} w_{i}^{2} \boldsymbol{x}_{i}}{\sum_{i=1}^{N} w_{i}^{2}} \quad \overline{\boldsymbol{y}}=\frac{\sum_{i=1}^{N} w_{i}^{2} \boldsymbol{y}_{i}}{\sum_{i=1}^{N} w_{i}^{2}}
$$

2b) Compute the distance of each landmark from the centroid.

$$
\overline{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\overline{\boldsymbol{x}} \quad \overline{\boldsymbol{y}}_{i}=\boldsymbol{y}_{i}-\overline{\boldsymbol{y}}
$$

Similarity Transformation: Algorithm (continued)

2c) Compute the weighted co-variance matrix.

$$
\boldsymbol{Z}=\sum_{i=1}^{N} w_{i}^{2} \overline{\boldsymbol{x}}_{i} \overline{\boldsymbol{y}}_{i}^{t}
$$

Singular value decomposition

$$
\boldsymbol{Z}=\boldsymbol{U} \Lambda \boldsymbol{V}^{t}
$$

where $\quad \boldsymbol{U} \boldsymbol{U}^{t}=\boldsymbol{V} \boldsymbol{V}^{t}=\boldsymbol{I}$

$$
\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \quad \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq 0
$$

2d) Compute

$$
\boldsymbol{r}=\boldsymbol{V} \cdot \operatorname{diag}(1,1, \operatorname{det}(\boldsymbol{V} \boldsymbol{U})) \cdot \boldsymbol{U}^{t}
$$

McMaster

Similarity Transformation: Algorithm (continued)

3. Compute the scaling factor:

$$
S=\frac{\sum_{i=1}^{N} w_{i}^{2} \boldsymbol{r} \overline{\boldsymbol{x}}_{i} \overline{\boldsymbol{y}}_{i}}{\sum_{i=1}^{N} w_{i}^{2} \boldsymbol{r} \overline{\boldsymbol{x}}_{i} \overline{\boldsymbol{x}}_{i}}
$$

4. Compute

$$
t=\bar{y}-s r \bar{x}
$$

Iterative Features Based Registration (WFBR)

X_{i} : a data set representing a shape in source image
Y_{i} : the corresponding data set in target image
$x_{i j}$: points in $X_{i} \quad y_{i j}$: points in Y_{i}
$T(x)$: transform operator

$$
\boldsymbol{x}^{\prime}=T(\boldsymbol{x})=s \cdot \boldsymbol{r} \cdot \boldsymbol{x}+\boldsymbol{t}
$$

Disparity function to be minimized:

$$
d(T)=\sqrt{\sum_{i=1}^{N_{s}} \sum_{j=1}^{N_{i}} w_{i j}^{2}\left\|T\left(\boldsymbol{x}_{i j}\right)-\boldsymbol{y}_{i j}\right\|^{2}}
$$

N_{s} : number of shapes
N_{i} : number of points in shape X_{i}

WFBR: Iterative Algorithm

1. Determine T by the similarity transformation method.
2. Let $T^{(0)}=T$ and initialize the optimization loop for $\mathrm{k}=1$ as

$$
\begin{gathered}
\boldsymbol{x}_{i j}^{(0)}=\boldsymbol{x}_{i j} \\
\boldsymbol{x}_{i j}^{(1)}=T^{(0)}\left(\boldsymbol{x}_{i j}^{(0)}\right)
\end{gathered}
$$

3. For the points in shape X_{i}, find the closest points in Y_{i} as

$$
\boldsymbol{y}_{i j}^{(k)}=C_{i}\left(\boldsymbol{x}_{i j}^{(k)}, Y_{i}\right) \quad j=1,2,3, \ldots, N_{i}
$$

where C_{i} is the operator to find the closest point.

WFBR: Iterative Algorithm (continued)

4.Compute the transformation T^{k} between $\left\{\boldsymbol{x}_{\mathrm{ij}}{ }^{(0)}\right\}$ and $\left\{\boldsymbol{y}_{\mathrm{ij}}{ }^{(k)}\right\}$ with the weights $\left\{w_{\mathrm{ij}}\right\}$ using the similarity transformation method.
5. Compute

$$
\boldsymbol{x}_{i j}^{(k+1)}=T^{(k)}\left(\boldsymbol{x}_{i j}^{(0)}\right)
$$

6. Compute $d\left(T^{k}\right)-d\left(T^{(k+1)}\right)$. If the convergence criterion is met, stop; otherwise go to step 3 for the next iteration.

Elastic Deformation Based Registration

One of the two volume is considered to be made of elastic material while the other serves as a rigid reference. Elastic matching is to map the elastic volume to the reference volume.

The matching starts in a coarse mode followed by fine adjustments.

The constraints in the optimization include smoothness and incompressibility.

The smoothness ensures that there is continuity in the deformed volume while the incompressibility guarantee that there is no change in the total volume.

For detail algorithm, refer to pp. $269 \sim 272$ in the textbook.

Results of the elastic deformation based registration of 3-D MR brain images: The left column shows three reference images, the middle column shows the images to be registered and the right column shows the registered brain images. McMaster

End of Lecture

McMaster

